-
종이책보다 읽기 더 편한 전자책 나온다!
- 인간 친화적인 이북 인터페이스 구현해 내 -
스마트폰과 태블릿 PC가 전 세계적으로 빠른 속도로 보급돼 전자책 어플의 활용 빈도가 높아지면서 보다 자연스럽고 편리한 독서기능을 제공하기 위해 점점 진화하고 있다.
우리 학교 IT융합연구소(소장 최준균) 이호원 교수 연구팀이 터치스크린의 간편한 조작을 통해 전자책의 페이지를 손쉽게 넘길 수 있는 ‘스마트 이북 시스템’을 개발했다.
이 기술은 전자책을 이용해 독서를 할 때에도 종이책을 읽는 것과 같은 자연스러운 독서기능을 제공하기 위해 개발됐다.
이번에 KAIST 연구팀이 개발한 핵심기술은 비센서 영역인 베젤(디바이스의 테두리 부분)을 이용한 인식기술이다. 기존 터치스크린 방식은 터치영역 내에서만 인식 할 수 있는 반면, 이 시스템은 터치영역과 베젤영역에서의 이동을 인식할 수 있다.
이 기술을 이용하면 터치스크린의 간편한 조작을 통해 여러 페이지를 넘길 수 있는 페이지 플립핑(Page Flipping), 여러 페이지간의 손쉬운 이동을 돕는 핑거 북마킹(Finger Bookmarking) 등의 명령을 손쉽게 사용할 수 있다.
이와 함께 ▲터치한 손가락 개수 ▲드래그 속도 ▲터치하고 있는 시간 ▲숫자모양의 제스처를 이용해 여러 페이지를 넘길 수 있는 방법을 개발해 이용자의 편리성을 도모한 것이 또 다른 특징이다. 최준균 IT융합연구소장은 “최근 급성장하고 있는 모바일 용 소프트웨어 기술에 대한 핵심 원천기술을 개발해 국가경쟁력이 높아질 것으로 기대한다”고 말했다.
한편, 이호원 교수가 IT융합연구소 지식융합팀 김재정, 김상태 연구원과 함께 개발한 이 기술은 총 11개의 국내 및 해외특허 출원을 진행 중이며 사용자 인터페이스 원천기술에 대한 기술사업화도 곧 진행할 계획이다.유튜브 동영상
http://www.youtube.com/watch?v=PF5BWm_w57I
2012.01.03
조회수 14262
-
생체모방 탄소나노튜브 섬유 합성기술 개발
- 재료분야 저명 국제학술지 ‘어드밴스드 머티리얼스’ 표지 논문 게재- 강도가 3배 이상 향상된 차세대 초경량 초고강도 전도성 신소재 개발
홍합을 지지하고 있는 섬유형태의 족사는 강한 파도가 치는 해안가와 같은 다른 생물이 살기 어려운 환경에서도 바위에 단단히 붙어서 생존한다. 이러한 특성은 홍합 족사의 독특한 구조와 고강도 접착성 때문이다.
우리학교 신소재공학과 홍순형 교수와 화학과 이해신 교수, 생명과학과 故 박태관 교수로 구성된 공동연구팀이 자연계의 홍합 족사 구조를 모방해 탄소나노튜브를 기반으로 한 초고강도 전도성 섬유 제조 원천기술개발에 성공했다.
탄소나노튜브는 1991년 일본의 이지마 교수(현 성균나노과학기술원장)에 의해 발견된 이후 우수한 전기적, 열적, 그리고 기계적 특성으로 차세대 신소재로 각광 받았으나 길이가 수 나노미터 수준으로 미세해 산업용 제품으로 응용하는 데 한계가 있었다.
KAIST 연구팀은 이러한 난제를 자연계의 홍합 족사 구조에 착안해 해결했다.
홍합 족사에는 콜라겐 섬유와 Mefp-1 단백질이 가교 구조(cross-linking structure)로 결합되어 있다. 이 Mefp-1 단백질속에는 카테콜아민이라는 성분이 있어 콜라겐 섬유끼리 강하게 결합한다.
연구팀은 고강도 탄소나노튜브 섬유가 콜라겐 섬유 역할을, 고분자 구조 접착제가 카테콜아민과 같은 역할을 하도록 했다. 그 결과 길이가 길고 가벼우면서도 끊어지지 않는 초경량 초고강도 탄소나노튜브 섬유를 개발했다.
KAIST 홍순형 교수는 “개발된 탄소나노튜브 섬유는 기존의 구조용 탄소강에 비해 강도가 3배 이상 향상된 차세대 초경량 초고강도 고전도성 신소재”라며 “향후 방탄소재, 인공근육소재, 방열소재, 전자파 차폐소재, 스텔스소재 및 스페이스 엘리베이터 케이블 등 다양한 산업계에 응용이 가능하다”고 말했다. 아울러 “새로운 나노융합 소재 산업의 기술혁신을 이룰 수 있을 것”이라고 홍 교수는 덧붙였다.
이번 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 5월 3일자 표지 논문으로 선정됐으며, 최근 국내 및 국외에 4건의 특허 출원 및 등록이 결정됐다.
한편, 이번 연구는 교육과학기술부 21세기 프론티어 연구개발 사업단, 세계수준의 연구중심대학(WCU) 육성사업, KAIST 나노융합연구소 등으로부터 지원받아 수행됐다.
2011.05.11
조회수 24223
-
태양전지 소재 이용, 인공광합성 기술개발
- 국제저명학술지 어드밴스드 머티어리얼스 최근호 게재- 이종 분야 (생명과학, 태양전지)간 융합연구 성공사례로 주목
인류는 지금 지구온난화와 화석 연료의 고갈이라는 문제점을 갖고 있다. 이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있다.
이러한 가운데 우리학교 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했다.
이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 ‘친환경 녹색생물공정’ 개발의 중요한 전기가 될 전망이다.
광합성은 생물체가 태양광을 에너지원으로 사용해 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상이다.
박 교수팀은 이 같은 자연광합성 현상을 모방해 빛에너지로부터 정밀화학 물질 생산이 가능한 신개념 ‘생체촉매기반 인공광합성 기술’을 개발했다.
이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명해냈다.
박찬범 교수는 “지난해 양자점을 이용한 인공광합성 원천기술을 개발해 한국과학기술단체 총연합회가 선정한 10대 과학기술뉴스로 선정된 바 있다”며 “이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가된다”고 강조했다.
이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 4월 26일자에 게재됐으며 특허출원이 완료됐다.
한편, 연구결과는 재료공학과 생명과학분야의 창의적인 융합을 통해 새로운 공정기술을 개발하는 데 크게 기여했다는 평가를 받았으며, 교육과학기술부 신기술융합형 성장동력사업(분자생물공정 융합기술연구단), 국가지정연구실, KAIST EEWS 프로그램 등으로부터 지원받아 수행됐다.
2011.04.26
조회수 20020
-
인문학 융합연구로 세계 환경문제 연구
- 환경과학, 공학 분야 세계권위 학술지 특집호에 선두 논문으로 게재
- 친환경운동 및 정책의 역사의 패턴을 분석하고 전망 제시
우리학교 인문사회과학과 마이클 박(Michael S. Pak) 교수의 논문이 환경과학, 공학 분야 세계 최고 권위 학술지인 ‘환경과학과 기술(Environmental Science and Technology, ES&T)’ 환경정책특집호에 선두 논문(Lead Feature)으로 최근 게재됐다.
학술지 출간에 참여한 전문가 중 유일한 인문학자 출신 정책연구가인 박 교수는 ‘환경운동의 그때와 지금 : 두려움에서 기회로, 1970-2010(Environmentalism Then and Now: From Fears to Opportunities, 1970-2010)’라는 주제로 친환경운동과 정책의 역사에서 나타나는 패턴을 분석하고 그것을 바탕으로 전망을 제시했다.
박 교수는 이번 논문에서 환경문제에 대한 관심과 우려는 최근에 일어나기 시작한 현상이 아님을 지적했다. 19세기 산업혁명이후 여러 선진국에서는 환경보호와 친환경정책이 핵심적인 정치․사회적 이슈로 부각됐었다. 그러나 20세기 초 세계 제1차 대전의 시작으로 관심이 줄어들었고 다시 핵심이슈로 부각하는 데 약 50년이 걸렸다.
이와 같이 환경문제에 대한 관심이 주기가 있듯이 현재 다양한 측면에서 역사가 되풀이되고 있음을 박 교수의 논문은 보여줬다.
박 교수는 논문에서 전세계 국가들의 적극적인 지원이 필요한 환경연구 분야의 예로 ‘지구온난화’와 ‘기후변화’를 지적했다. 특히, 아직도 이 현상들에 대한 과학지식은 불확실성이 많아 정책을 세우는 것은 일종의 도박이라며, 불확실성을 최소화하기 위해서는 이 분야의 기초연구에 보다 적극적인 지원이 시급하다고 강조했다.
이번에 발간된 학술지는 2010년 미국 환경국(EPA) 40주년 창설기념 및 지구의 날 40주년 기념, 그리고 2011년 ‘세계 화학의 해’ 행사를 계기로 EPA와 공동주최해 환경정책관련 논문들을 실은 특집호다.
이번 특집호는 환경문제와 정책의 과거, 현재, 그리고 미래를 여러 분야의 전문가들이 함께 바라보고 분석하는 기회를 마련하기위해 만들어졌다.
재미교포인 박 교수는 버클리대에서 역사학을 전공했고, 하버드대에서 석, 박사학위를 받았으며, 미국 매사추세츠 예술디자인학교(Massachusetts College of Art and Design)에서 조교수를 역임한 후 2008년 KAIST 부교수로 부임했다.
현재 환경 분야에 대한 과학기술정책과 인문학의 융합연구를 중점적으로 추진하고 있으며 대학시스템 발전에 연구를 진행 중이다.
2011.02.22
조회수 15097
-
가상 암세포 실험을 통한 암 전이 핵심회로 규명
- 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시 -
우리학교는 바이오 및 뇌 공학과 조광현교수 연구팀이 IT와 BT의 융합연구인 시스템생물학 연구에 기반을 둔 ‘가상 암세포’ 실험을 통해 암 전이를 유발하는 핵심 분자회로를 규명했다고 14일 밝혔다.
이번 연구를 통해 알킵(RKIP)이 매개가 되는 암 전이 조절과정과 핵심회로가 규명됐다. 이로써 향후 이를 표적으로 하는 항암제 개발 등 IT를 이용한 생명과학 응용연구의 중요한 발판을 마련하게 됐다.
특히, 융합연구를 통해 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시하게 됐다.
상피세포가 중간엽세포로 변화하는 과정은 종양세포의 전이단계에서 일어나는 매우 중요한 과정이다. 이 과정의 주요 특징 가운데 하나는 세포 간 결합을 조절하는 단백질인 이카드헤린(E-cadherin)의 양이 급격히 줄어드는 것이다.
이카드헤린의 발현량은 어크(ERK)와 윈트(Wnt)가 포함된 다양한 신호전달경로에 의해 조절되는 것으로 알려져 있다. 하지만, 이들 신호전달경로는 다중결합 피드백회로에 의해 서로 복잡하게 얽혀 있어 실험적인 방법으로는 이들의 동역학 특성과 숨겨진 조절 메커니즘을 분석하는 것이 매우 어려운 것으로 여겨져 왔다.
조광현 교수 연구팀은 이에 대한 수학모형을 개발하고 대규모 컴퓨터시뮬레이션 분석을 통해 이들 결합 피드백회로의 복잡한 상호작용으로 인해 일어날 수 있는 다양한 생명현상을 규명했다.
또한, 어크에 의한 알킵(RKIP) 인산화와 스네일(Snail)에 의한 알킵 전사억제 과정으로 구성된 결합 양성피드백 회로가 임계점 이상의 자극세기에서만 이카드헤린이 급격하게 발현되도록 조절함으로써 외부 노이즈에 강건한 스위칭 동작을 유발한다는 것을 규명했다.
아울러 알킵이 스네일과 슬러그(Slug)의 발현을 억제함으로써 이카드헤린의 발현이 증가되고, 이 때문에 전이과정이 억제될 수 있음을 보였다.
지금까지 전이를 일으키는 종양세포에서 알킵의 발현이 현저하게 감소되었다는 많은 임상적 보고가 있었지만, 그 근본적인 메커니즘은 알려져 있지 않았다.
한편, 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구사업과 기초연구실육성사업으로 수행됐으며, 연구결과는 순수 컴퓨터시뮬레이션 결과임에도 이례적으로 동물 또는 임상실험의 결과가 주로 게재되는 암 전문 학술지 ‘캔서 리서치(Cancer Research)’지 9월 1일자에 게재됐다.
<그림설명>암 전이과정을 조절하는 세포내 분자들 간의 다중결합 피드백 회로의 동역학 특성 및 조절메커니즘의 분석결과. 이 그림은 암 전이 조절회로에 대한 개념도와 시뮬레이션 분석에 사용된 방법 및 결과를 설명한 것이다.
A. 암 전이과정을 조절하는 세포내 주요 신호전달 네트워크의 예시.
B. 전자공학적 논리회로 분석기법을 이용해 암전이 조절회로를 정량적으로 모사하고 핵심 메커니즘을 분석하는 과정.C. 대규모 컴퓨터시뮬레이션 분석을 통해 알킵에 의해 매개되는 결합양성 피드백 회로가 노이즈가 주어지더라도 강건하게 이카드헤린의 스위칭 동작을 유발함을 보이는 예시.
<용어설명>
◯중간엽세포: 발생단계의 중배엽에서 기원된 결합조직세포로서 여러 다른 결합조직세포로 분화할 수 있는 능력이 있는 세포.
◯EMT: 상피세포가 중간엽세포로 변화하는 과정(Epithelial Mesenchymal Transition).
◯어크(ERK): 세포의 유사분열 신호를 전달하는 단백질의 한 종류.
◯윈트(Wnt): 세포의 유사분열 신호를 전달하는 단백질의 한 종류. 특히 배아의 발생단계에서 중요한 역할을 함.
◯이카드헤린(E-cadherin): 세포 접합에 중요한 역할을 하는 단백질의 한 종류.
◯알킵(RKIP): 유사분열 신호를 조절하는 단백질의 한 종류. 특히, 암의 전이과정에서 중요한 역할을 하는 것으로 알려져 있음.
◯스네일(Snail): 이카드헤린의 발현을 억제함으로써 암 전이 과정을 촉진시키는 역할을 하는 단백질.
◯분자회로: 세포내 유전자, 단백질 등의 분자간 상호작용을 나타낸 회로
◯상피세포: 동물의 몸 표면이나 내장기관의 내부 표면을 덮고 있는 세포
◯전이단계: 암이 다른 부위로 퍼지는 단계
◯다중결합 피드백회로: 피드백회로가 2개 이상 중첩된 구조
2010.09.14
조회수 17585
-
융합연구로 무전원 무선 키보드 개발
- 개발한 무전원 무선키보드의 상용화를 위한 기술이전-
- 학문 분야를 초월한 융합연구로 탄생 -
우리학교 IT융합연구소 미래디바이스팀이 융합연구를 통해 무전원 무선 키보드를 최근 개발했다.
무전원 무선 키보드 기술은 지난 2007년 우리학교 구성원들을 대상으로 KAIST 연구원(KAIST INSTITUTE, KI)이 개최한 ‘미래단말 아이디어 공모전’ 수상작이다. 원내 구성원들의 참여를 이끌어낸 점에서 더욱 의미가 크다.
공모전 수상작 아이디어를 구체화한 이번 연구는 KI의 IT융합연구소 미래디바이스팀(팀장 정성관)과 여러 학문분야의 우리대학 교수들로 구성된 ‘미래단말 TFT’를 만들어 학문 분야를 초월한 융합연구로 진행됐다.
이 키보드는 900MHz 수동형 RFID 태그(Passive RFID tag) 기술을 이용해 별도의 전원 공급 장치를 탑재하지 않은 키보드의 키 누름을 무선으로 인식할 수 있는 기술로 만들어졌다. 키보드 키 구조에 맞는 소형 RFID 태그 스위치 구조 및 필름PCB와 유연한 구조를 가진 물질을 이용해 얇고 유연한 형태의 휴대성이 높다.
이러한 무전원 무선 키보드는 전기및전자공학과 조동호 교수의 수동형 RFID(passive RFID) 방식의 키 인식 기술, 물리학과 윤춘섭 교수의 유연한 구조를 갖는 물질을 개발 기술과 IT융합연구소의 태그 구조 및 인식 소프트웨어 기술의 융합으로 만들어진 결과이다.
새로 개발한 키보드는 기존의 키보드 제품과 달리 건전지를 넣지 않고도 사용이 가능하며 선이 연결되지 않아도 된다. 작고 가벼워 휴대 및 사용이 편리해 제품화에 성공하면 관련 시장에서 크게 각광받을 것으로 기대되고 있다.
위 기술을 통해서 유비쿼터스 컴퓨팅 및 통신 환경을 실현하고 접는 키보드의 새로운 시장을 개척할 뿐 아니라, 세계시장에서 모바일 디바이스 산업 경쟁력을 확보하는데 한걸음 다가갈 수 있을 것으로 기대된다.
김상수 연구원장은 “아이디어 공모전 개최와 TFT 운영과 같은 적극적인 활동 덕분에 무전원 무선 키보드와 같은 창의적이고 훌륭한 기술이 개발될 수 있었다”며 “창의적인 아이디어와 연구아이템 발굴을 위해 앞으로도 꾸준히 아이디어 공모전을 개최하고 융합연구를 통한 신기술 개발에 노력 하겠다”고 말했다.
우리학교는 이 무전원 무선 키보드의 상용화를 위해 (주)한양세미텍에 최근 기술 이전한 바 있다.
KI는 융합연구 분야의 세계적 연구개발 성과를 통해 대학의 인지도를 높이고, 국가 경쟁력 향상에 기여할 목적으로 서남표 총장이 추진해온 역점 전략사업 중 하나다.
현재 바이오, IT융합, 시스템설계, 엔터테인먼트공학, 나노, 청정에너지, 미래도시, 광기술 등 8개 연구소에서 25개 학과 230여명의 교수가 참여해 활발한 융합연구를 수행하고 있다.
<용어설명>
○ Passive RFID : RFID(Radio Frequency IDentification)는 기존의 바코드 형태의 광학식 ID 식별기술의 한계(가시성, 정보량, 인식속도 등)을 극복하기 위해 개발된 무선 ID 식별 기술로써, 기본적으로 식별정보(ID)를 갖고 있는 RFID tag와 이 tag를 인식하고 tag에 저장되어 있는 정보를 무선으로 읽어올 수 있는 RFID reader로 구성 된다.이때 RFID tag의 특성에 따라서 tag가 베터리 등의 전원 공급 장치를 갖고 있는 active RFID 방식과 별도의 전원 공급 장치를 갖고 있지 않은 passive RFID방식으로 구별된다.
(Active RFID 방식은 온도, 습도 등의 정보를 지속적으로 모니터링할 필요가 있는 분야나 긴 인식거리가 필요한 분야에서 주로 쓰이며, 본 무전원 무선 키보드의 동작 특성을 만족하기에 적합하지 않은(내장 전원 요구) 특성을 갖고 있으므로 별도의 전원을 요구하지 않는 Passive RFID 기술을 사용하여 무전원 무선 키보드를 개발하였다.)
○ RFID tag : RFID 시스템에서 식별하고자 하는 대상체를 구별하기 위한 식별자(ID) 정보를 갖고 있는 장치로서 무선 전파를 수신 및 응답하기 위한 안테나 부분과 수신된 전파로부터 전력을 획득하고 정보 처리 및 응답 동작을 수행하는 tag chip부분으로 구성되어 있다.
○ 필름 PCB 구조의 substrate : 전자 소자들을 연결하여 적절한 전자회로를 구성하기 위해서는 각 소자들을 연결해 주는 "회로"(연결선)를 만들어야 하는데, 동작 특성 만족, 소형화 및 대량 생산 등을 위해 인쇄기판(PCB: Printed Circuit Board) 기술을 이용한다. 일반적인 PCB들은 FR4 등의 단단한 특성을 갖는 재질로 만들기 때문에 형태 변형 등에 강한 특성을 갖는다. 이에 반해 얇은 필름형태의 폴리이미드(Polyimide)를 사용하여 제작되는 PCB(f-PCB: flexible-PCB, Film-PCB)는 폴리이미드의 유연한 특성으로 인해 FR4 등의 단단한 PCB들 사이의 연결회로로서 많이 사용되고 있다.
본 무전원 무선 키보드는 높은 휴대성을 지원하기 위해 얇고 쉽게 접을 수 있는 형태로 제작되었으며 이를 위해 단단한 형태의 FR4가 아닌 유연한 특성을 갖는 폴리이미드 기반의 필름 PCB로 제작되었다.
또한, 필름 PCB를 이용한 유연한 형태의 특성을 키보드 완성품에서도 유지하기 위해서, 회로부분을 지탱하고 전체 키보드 외형을 구성하는 물질(substrate)로 변형에 대한 내구성이 높고 수분/산소 등에 대한 투과도가 낮은 재질(윤춘섭 교수)을 이용하여 전체 키보드 외형을 제작하였다.
2010.07.28
조회수 16921
-
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 -
우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다.
거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다.
이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다.
우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다.
또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다.
이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 22280
-
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다.
이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다.
식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다.
[그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도]
박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다.
인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다.
특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다.
박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다.
[그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산]
관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다.
이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22762
-
최경철 교수연구팀, 세계 최초의 저비용 상온 공정이 가능한 표면 플라즈몬 OLED 원천기술 개발
- 응용물리와 광학 분야 세계적 권위 학술지에 논문발표 및 네이쳐 포토닉스(Nature Photonics)의
8월의 연구 하이라이트로 소개 예정
전기 및 전자공학과 최경철 교수(차세대 플렉시블 디스플레이 융합센터 소장, 45세)연구팀이 OLED의 효율을 획기적으로 향상시키는 원천기술을 세계 최초로 개발해 주목을 끌고 있다.
최 교수팀은 나노 크기의 은(Ag)을 표면 플라즈몬(plasmon)을 일으키는 물질로 사용하여, OLED에서 발생하는 빛과 결합할 경우 발광 재결합 속도가 빨라짐으로써 OLED 밝기가 크게 증가할 수 있다는 사실을 밝혔다. 또한 진공 열증착법을 이용해 나노 크기의 은(Ag)을 OLED 내부의 활성층과 매우 가까운 곳에 삽입하는 기술을 개발함으로써 세계 최초로 표면 플라즈몬을 이용한 OLED의 저비용 상온 공정이 가능하도록 했으며 최대 75%이상의 OLED 발광효율을 향상시켰다. 이 연구는 차세대 디스플레이인 OLED에 저비용의 나노입자를 이용한 표면 플라즈몬 기술을 접목한 새로운 디스플레이 소자 연구로 주목받고 있다.
최 교수는 “표면 플라즈몬을 이용해 개발된 기술은 OLED의 광효율을 향상시킬 수 있는 새로운 기술로서, 원천기술 확보 및 국제경쟁력을 갖는 OLED 및 플렉시블 디스플레이 기술개발에 크게 기여할 수 있을 것”이라고 강조했다. 또한 “이번에 개발된 기술은 디스플레이뿐만 아니라 유기 태양광 전지에서도 적용 가능한 저온 저가의 공정으로 에너지 변환 효율의 향상을 기대할 수 있다.”고 밝혔다.
이 연구는 양기열(22세) 연구원이 주도했으며, 연구결과는 응용물리분야의 세계적 권위지인 ‘Applied Physics Letters’ 4월호, 광학분야 세계 최고의 저널인 ‘Optics Express’ 인터넷판 6월 25일자에 발표됐다.
특히, 이 연구 결과는 네이쳐 포토닉스(Nature Photonics)의 8월의 연구 하이라이트에도 소개될 예정이며, 그 밖에도 응용 물리학 분야의 우수 연구 결과만을 선정하여 발표하는 "울트라패스트 가상 저널(Virtual Journal of Ultrafast Science)" 에 소개됐다.
이 연구는 한국연구재단의 ‘선도연구센터 사업’ 및 ‘KAIST 고위험 고수익 사업’의 지원을 받아 나노종합팹센터와 공동 수행했다.
2009.07.09
조회수 19813
-
조광현 교수, 컴퓨터시뮬레이션 통해 세포 조절회로의 숨겨진 메커니즘 규명
바이오및뇌공학과 조광현(曺光鉉, 38) 교수 연구팀이 컴퓨터시뮬레이션을 통해 세포의 증식과 분화 조절회로에 숨겨진 동역학 메커니즘을 규명하였다. 연구결과는 세포생물학계의 권위지인 저널오브셀사이언스(Journal of Cell Science)지 21일자 온라인판에 표지논문(Cover Paper)으로 선정, 출판되었다.
이번 연구는 특히 수학 모델과 컴퓨터 시뮬레이션을 이용해 세포내 복잡한 메커니즘을 해석해 내고 이를 생화학실험을 통해 재차 검증함으로서 완성되었다. 이는 IT를 BT에 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합 연구사례로 평가된다.
세포내 어크(ERK) 신호전달경로는 세포의 증식과 분화를 조절하는 주요 회로로 알려져 왔으며, 최종단의 인산화된 어크 단백질의 시간에 따른 농도변화 프로화일은 세포의 운명을 결정하는 핵심인자로 여겨져 왔다. 그러나 이 회로의 복잡한 동역학적 특성으로 인해 조절메커니즘은 아직껏 잘 밝혀지지 않았다. 曺 교수 연구팀은 어크 신호전달경로 가운데 라프(Raf) 단백질의 신호를 선택적으로 차단하는 알킵(RKIP) 단백질이 매개하여 형성하는 양성피드백과 어크에서 에스오에스(SOS)로 이어지는 신호에 의해 형성되는 음성피드백이 최종 어크 단백질의 동역학 패턴을 결정짓는 주요 조절회로임을 규명해 냈다. 특히 양성피드백은 이 신호전달과정이 외부노이즈에 둔감하도록 스위칭동작을 유발하고 음성피드백은 어크 프로파일의 진동현상을 유발함으로써 다이나믹한 동역학 특성이 결정됨을 밝혀냈다. 이러한 컴퓨터 시뮬레이션 분석결과는 공동연구팀인 영국 글라스고우 암연구소에서 생화학실험을 통해 증명되었다.
이번 연구는 인간의 주요 질환과 관련된 세포내의 근원적인 조절메커니즘을 규명함으로써 차후 생명과학 응용연구의 중요한 발판을 마련하였으며, 또한 BIT 융합연구로서 시스템생물학의 새로운 가능성을 제시하게 됐다. 이번 연구는 교육과학기술부지원 연구사업의 일환으로 수행되었다.
<2009년 1월 21일자 온라인판, 인터넷주소>
http://jcs.biologists.org/content/vol122/issue3/cover.shtml
2009.01.29
조회수 20724
-
정하웅 교수, 도로 교통망에서의 사회적 비효율성 규명
- 도로신설이 오히려 교통체증을 유발하는 사회적 비효율성 정량화
- 물리학 분야 세계 최고 권위지‘피지컬 리뷰 레터스’9월 18일자에 게재예정- 경제학 분야 최고저널 ‘이코노미스트’9월 13일자에 소개
교통체증을 완화시키기 위해 길을 하나 더 만들었으나 오히려 체증이 심해질 수도 있을까? 광화문 거리 하나를 막아서 서울 전체 교통 환경을 개선시킬 순 없을까? 각자 자신에게 가장 빠른 길을 이용하는 ‘합리적자기중심주의’ 운전습관이 도리어 전체 교통망의 비효율을 일으킨다는 사실이 최근 한국과 미국의 물리학자들에 의해 밝혀졌다.
네트워크 과학의 전문가로 잘 알려진 우리학교 물리학과 및 바이오융합연구소 정하웅(鄭夏雄, 40세) 교수팀은 미국 샌타페이 연구소와 공동연구를 통해 교통망에서의 사회적 비효율성을 ‘행위자 기반 모형’을 통해 구현해 냈다. 이 연구결과는 물리학분야의 세계 최고 권위지 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 9월 18일자에 발표 예정이다.
복잡한 관계로 얽혀있는 인간 사회에 나타나는 비효율성을 줄이기 위한 연구가 최근 활발하게 진행되고 있지만 그동안 비효율성의 정도를 정량화하는 것조차 쉽지가 않았다. 鄭 교수팀은 출발지에서 목적지까지의 차량소요시간을 이용하여 사회적 비효율성을 정의하였다. 즉 운전자마다 가장 빠른 길을 선택하는 모형설계를 통해 도시에서의 교통흐름을 재현해 냈다. 대부분의 운전자는 출발지에서 목적지까지 가장 빠른 이동경로를 선택하게 되고, 교통체증이 덜한 먼 길로 스스로 우회를 선택하는 운전자는 없었다. 만약 일부 운전자들이 우회를 선택해 준다면 도시 전체의 교통흐름은 훨씬 빨라질 수도 있겠지만 불행히도 이런 운전자는 존재하지 않는다. 결국 개인의 이익을 극대화하려는 합리적자기중심주의 행동이 전체의 효율성을 떨어뜨려 자신과 다른 사람 모두에게 악영향을 미치게 된다. 연구팀은 교통체증이 심한 미국의 뉴욕과 보스턴, 영국의 런던 등 대도시 도로망의 비효율성을 분석한 결과 도로망 비효율성이 최고 30%에 달한다는 사실에 주목, 현재 도로망 상태를 유지한 채로 적절하게 교통량을 우회, 분산시킬 수만 있다면 1시간 걸리던 거리를 40분 만에 주파할 수도 있다는 사실을 밝혀냈다. 또한 연구팀은 연구대상 도시의 교통 상황을 오히려 악화시키는 도로를 찾아냈는데[자료그림], 흔히 교통흐름을 개선시킬 것이라고 생각했던 도로들이 도리어 반대의 역할을 하는 경우가 상당히 많았다고 한다. 즉 차량수가 늘지 않은 상태에서도 효율성을 감안하지 않은 새로운 도로로 인하여 정체가 더 심해진다는 것이다.
이와 같은 사회적 비효율성에 대한 연구는 경제학에서 주 관심사였다. 이번 물리학자들의 연구는 새로운 관점에서 현실적 숫자를 제시한 것으로 경제학자들로부터도 관심을 모으고 있다. 세계적 경제학 잡지인 ‘이코노미스트’는 9월 13일자 판에 이슈 논문으로 이 연구결과를 소개하기도 했다.
도로망 설계 시 사회적 비효율성 점검을 강조한 정하웅 교수는 “이번에 개발한 방법을 더욱 발전시켜 직접적으로는 출퇴근시간의 짜증을 없애는 것과 네트워크 과학을 활용, 다양한 분야에 산재하는 사회적 비효율성을 해결하는 것이 연구의 궁극적인 목표다”라고 말했다.
[자료그림설명] 뉴욕 맨해튼의 도로망 분석: 도로의 색은 그 도로가 통제되었을 때 더 필요한 지체소요시간을 나타낸다. 빨간 색은 도로를 막으면 안되는 것이고 파란 색일 수록 도로를 막아도 차들이 빠른 시간 내에 우회 가능하다는 것이다. 점선부분으로 된 곳이 흥미 있는 곳으로, 그 도로를 막았을 때 체증은커녕 오히려 전체 소요시간이 줄어드는 현상을 나타낸다. 이 점선 도로가 잘못 설계된 도로를 나타낸다(브래스 패러독스)
용어설명 :행위자 기반 모형: 상호작용하는 많은 행위자들로 이루어진 작은 가상세계이다. 여기서 크게 행위자, 행위자가 활동하고 상호작용 하는 시스템 공간, 시스템에 영향을 끼치는 외부환경 등의 세 가지 요소로 구성되며, 이들 요소를 설계하여 조립하는 방식으로 모형을 만든다. 이 때문에 행위자 기반 모형으로 복잡계를 탐구하는 방법을 생성적 접근법 또는 구성적 접근법이라고 한다.
정하웅 교수 소개
KAIST 물리학과 정하웅 교수는 ‘복잡계 네트워크’라는 새로운 연구 분야를 개척했으며, 지금까지 물리학, 생물학, 컴퓨터와 관련된 네이처(Nature)誌 5편, 미국국립과학원 회보(PNAS) 3편, 피지컬 리뷰 레터스(Phys. Rev. Lett.)誌 6편 등을 포함한 통산 누적 피인용회수 5천여 회가 넘는 70여 편의 논문을 발표해 주목을 받았다. 현재는 물리학, 사회학, 경제학, 인터넷, 생물정보학 등에서의 다양한 학제간 연구를 통해 21세기 과학의 연구 주제로 떠오르고 있는 복잡계(Complex Systems)의 이해를 위해 노력 중이며, 많은 학술 논문 발표뿐만 아니라 과학기술 앰배서더로서 네트워크 과학에 대한 대중강연을 활발하게 펼치며 물리학의 저변확대에도 힘을 쏟고 있다.
2008.09.18
조회수 19131
-
이상엽교수팀, 시스템생물학 기반 산업용 미생물 개발 전략 제시
-생명공학분야 권위 리뷰지 “생명공학의 동향 (Trends in Biotechnology, Cell Press)” 표지 논문 게재
우리학교 생명화학공학과 및 바이오융합연구소 이상엽(李相燁, 44세, LG화학 석좌교수) 특훈교수와 바이오융합연구소 박진환(朴軫煥, 38세) 박사 연구팀이 다가오는 산업바이오텍 시대에 경쟁력을 갖추기 위한 시스템 생물학 기반의 미생물 대사공학 전략을 개발했다. 이 연구 결과는 셀(Cell)誌가 발행하는 생명공학 분야 최고 권위 리뷰지인 생명공학의 동향(Trends in Biotechnology) 8월호 표지 논문에 게재됐다. 교육과학기술부 게놈 정보 활용 통합 생물공정 개발 사업의 일환으로 수행한 이번 연구는 산업용 미생물을 개발함에 있어 유전체 및 기능 유전체 정보와 가상세포 시뮬레이션을 통합 적용하고, 발효 및 분리정제 공정까지 고려한 대사공학 방법을 제시함으로서 다가오는 바이오 기반 산업 시대에 경쟁력을 갖는 균주 개발 전략을 체계적으로 제시한 것으로 평가됐다.
유가가 고공행진을 계속하고 지구온난화 등 환경문제가 심각하게 대두되는 지금 세계 각국은 바이오매스를 이용하여 화학, 물질, 에너지 등을 생산하는 바이오기반 산업 시스템 구축에 박차를 가하고 있다. 미생물을 이용한 산업바이오텍 공정이 경쟁력을 갖추기 위해서는 자연계에서 분리된 미생물의 낮은 성능을 대폭 향상시키기 위하여 대사공학으로 미생물을 개량하여야 한다. 기존의 산업바이오텍에 사용되는 미생물 균주 제조 방법과 공정개발은 무작위 돌연변이화 및 균주의 일부분만 직관적으로 조작하는 방법에 의해 수행되었다. 하지만 이들은 원하지 않은 부분에도 돌연변이를 일으켜, 균주 전체의 대사 상태를 한눈에 볼 수 없으며, 향후 환경이 바뀌었을 때 추가 개발이 용이하지 않다는 단점이 있었다. 李 교수 연구팀은 시스템 생물학의 원리에 입각하여 크게 3 단계로 나누어 체계적으로 미생물을 개발하는 새로운 전략을 제시하였다. 1단계에서는 미생물의 조절 기작 등 연구를 통해 알게 된 사실에 기반하여 게놈상의 필요한 부위만을 조작, 초기 생산균주를 제작한다. 2단계에서는 시스템 수준의 분석을 통하여 확보한 오믹스 데이터와 가상세포의 시뮬레이션 결과를 융합, 세포내의 대사흐름 최적화를 통해 목적 산물을 최고 수율로 생산할 수 있는 균주를 제작한다. 마지막 3단계에서는 실제 생산 공정 개발 단계에서 생길 수 있는 문제점들을 시스템 생물학 기법에 입각하여 해결함으로써 우수 산업용 균주의 제조를 완료한다. 이 전략은 시스템 생물학 원리를 이용하여 균주 전체의 생리 대사 현상을 한눈에 파악하면서 균주의 대사공학적 개량이 가능하다는 점에서 기존의 방법과는 차별된 한 차원 높은 수준의 균주개발 전략이라고 할 수 있다.
이번 논문의 첫 번째 저자인 朴 박사는 "최근 연구팀에서 수행 중인 시스템 생물학 기법을 이용한 실제 균주 제작 과정의 경험과 결과를 토대로 전략을 확립 제시하였기 때문에 실제 생명공학 산업계에 종사하는 연구자들에게 실질적인 도움이 될 것으로 생각한다“고 말했다. 李 교수팀은 실제로 이 전략을 이용하여 최근 용도가 다양한 숙신산을 고효율로 생산하는 미생물과 고수율의 아미노산 (발린, 쓰레오닌) 생산균주, 바이오부탄올 생산균주 등을 개발한 바 있다.
<용어설명>
1) 가상세포: 세포내에서 일어나는 모든 효소 반응을 컴퓨터에서 재구성하여 실제 세포처럼 반응 시켜 결과를 예측하는 시스템을 말한다.
2) 대사공학: 세포의 대사 및 조절 회로를 체계적으로 조작하여 원하는 생산물을 고효율로 생산할 수 있도록 만드는 기술을 말한다.
3) 오믹스 (omics): 세포 또는 개체 내에서 발현되는 단백체(proteome), 전사체(transcriptome), 대사체(metabolome), 흐름체(fluxome) 등 생명현상과 관련된 중요한 물질에 대한 대량의 정보를 획득하여 이를 생물정보학 기법으로 분석하여 전체적인 생명현상을 밝히려는 학문이다4) 시스템 생물학 (systems biology): 각종 오믹스(transcriptome, proteome, fluxome, metabolome) 데이터를 융합하고 전산 생물학 기법으로 해석하여 세포의 생리 상태를 다차원에서 규명함으로써 세포와 생명체 전체를 이해하고자 하는 학문이며, 이 플랫폼을 기반으로 유용한 미생물의 개발이 가능하다.
2008.07.24
조회수 21215