-
원자간력 현미경(AFM)을 이용한 배터리 전극의 구성 성분 분포 영상화 기법 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다.
관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다.
김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode)
리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다.
전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다.
다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다.
또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다.
홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다.
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2020.05.19
조회수 14931
-
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다.
이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites)
기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다.
하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다.
연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다.
연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다.
신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 19138
-
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다.
김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets)
기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다.
이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다.
연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다.
이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 17715
-
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다.
연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages)
현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다.
그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다.
반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다.
연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다.
이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다.
이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다.
연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다.
이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다.
강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도
그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 12538
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 19380
-
이정용 교수, 유기고분자-양자점 기반 하이브리드 태양전지 개발
〈 이정용 교수 〉
우리 대학 EEWS 대학원 이정용 교수 연구팀과 캐나다 토론토 대학교 전기 및 컴퓨터 공학부 테드 사전트(Ted Sargent) 교수 공동 연구팀이 유기 단분자 물질 도입을 통한 고효율, 고 안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다.
연구팀이 개발한 유기 고분자-양자점 하이브리드 태양전지는 단순 성능 개선을 넘어 기존의 구조에서 성능이 제한된 문제점을 해결할 수 있는 구체적인 방안을 제시하고, 차세대 에너지원으로써 하이브리드 태양전지에 적용할 수 있을 것으로 기대된다.
백세웅, 전선홍 박사, 김병수 박사과정 및 앤드류 프로페(Andrew H. Proppe) 박사가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 에너지(Nature Energy)’ 11월 11일 자 온라인판에 게재됐다. (논문명: Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules)
높은 기계적 특성 및 흡광 계수를 갖는 유기 고분자와 근적외선 영역을 흡수할 수 있는 콜로이달 양자점을 이용해 제작되는 하이브리드 태양전지는 용액공정으로 제작할 수 있고 두 물질의 장점을 모두 취할 수 있다는 점에서 많은 관심을 받아왔다.
하지만 유기 고분자-양자점 기반의 하이브리드 구조는 낮은 광전변환 효율과 안정성 측면에서 기존의 차세대 태양전지들과 경쟁하기에 부족한 점이 있다.
낮은 전하추출 능력과 그로 인해 발생하는 재결합 문제로 인해 최근까지도 10% 이하의 낮은 광전변환 효율에 머무르는 하이브리드 태양전지의 성능 개선이 필요한 실정이다.
연구팀은 문제 해결을 위해 고분자와 양자점의 매개체 역할을 할 수 있는 새 유기 단분자 구조를 도입했다. 이렇게 유기 단분자 매개체 도입된 유기 고분자-양자점 하이브리드 구조는 기존의 구조보다 다양한 강점을 가진다.
우선 기존의 유기 고분자에서 생성된 엑시톤을 원활하게 추출할 수 있으며, 상호 보완적인 흡광 대역이 형성돼 추가적인 전류 향상을 얻을 수 있고, 계단형 에너지 레벨을 형성해 에너지 및 전하를 효과적으로 운반할 수 있다.
이러한 강점을 통해 연구팀은 13.1%의 광전변환 효율을 달성했으며, 이는 기존의 유기 고분자와 양자점을 이용하는 하이브리드 태양전지보다 30% 이상 높은 효율이다. 그뿐만 아니라 제작 후 약 1천 500시간 이후에도 초기 효율의 90% 성능을 유지했으며, 최대전력조건에서 약 150시간 이후에도 초기 효율의 80% 이상의 성능을 유지했다.
이 교수는 “단분자를 도입해 기존의 하이브리드 구조의 고질적인 한계를 극복하고 고효율의 차세대 태양전지를 구현했다”라며 “개발한 고효율 태양전지는 최근 주목받고 있는 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업에 적용 가능한 차세대 에너지 동력원으로써 주목받게 될 것이다”라고 말했다.
이 연구는 한국연구재단 중견연구자지원사업, 기후변화대응기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새롭게 제시한 하이브리드 소재 구조의 작동 원리
2019.11.19
조회수 14923
-
김희탁 교수, 바나듐레독스 흐름전지용 전해액 신공정 개발
〈 김희탁 교수, 허지윤 박사과정, KIER 이신근 박사〉
우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수와 한국에너지기술연구원(원장 곽병성) 에너지소재연구실 이신근 박사 공동연구팀이 생산 비용을 40% 줄인 바나듐 레독스 흐름전지용 고순도 전해액 생산 공정 개발에 성공했다.
허지윤 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 9월 27일 자 온라인판에 게재됐고, 우수성을 인정받아 에디터 하이라이트(Editor’s Highlight)로 선정됐다. (논문명: Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries)
최근 리튬이온전지 기반 대용량 에너지 저장장치의 발화사고가 빈번하게 발생하면서 수계 전해질을 이용하는 비 발화성 바나듐 레독스 흐름전지에 대한 관심이 커지고 있다.
바나듐 레독스 흐름전지는 안전성뿐 아니라 내구성 및 대용량화의 장점이 있어 대용량 에너지 저장장치로의 응용이 기대되고 있으나, 리튬이온전지 대비 높은 가격으로 인해 시장 확대가 지연되고 있다.
바나듐 레독스 흐름전지의 부품 소재 중 바나듐 전해액은 전지의 용량, 수명과 성능을 결정하는 핵심 소재이며 전체 전지 가격의 50% 이상을 차지하고 있어, 바나듐 전해액의 저가격화는 바나듐 레독스 흐름전지 시장 확대의 핵심이라 할 수 있다.
상업적으로 이용되는 바나듐 전해액은 3.5 가의 산화수를 가지며, 이는 5가의 바나듐옥사이드(V2O5) 전구체를 전기분해를 이용해 환원시켜 제조된다. 그러나 전기분해 방식은 고가의 전기분해 장치가 필요하고 에너지 소비가 크며 전기분해 중 생성되는 높은 산화수의 전해액의 재처리가 필요하다.
이에 전기분해 방식을 벗어나 화학적으로 바나듐을 환원시키는 공정이 전 세계적으로 연구됐지만, 환원제의 잔류물에 의한 전해액 오염으로 인해 상업화에 성공한 사례가 없었다.
김 교수와 이 박사 공동연구팀은 유기 연료전지의 촉매 기술을 응용해 잔류물이 남지 않는 환원제인 포름산의 활성을 증대시켜 바나듐을 3.5가로 환원시키는 기술을 개발했다.
연구팀은 이 기술을 이용해 시간당 2리터(L)급 촉매 반응기를 개발했고 연속 공정을 통한 고순도의 3.5가 바나듐 전해액 생산에 성공했다.
이번 촉매반응을 이용한 제조공정은 전기분해 방식 대비 효율적인 공정 구조를 가져 생산 공정 비용을 40% 줄일 수 있다. 또한, 촉매 반응기를 통해 생산된 전해액은 기존 전기분해 방식으로 만들어지는 전해액과 동등한 성능을 보여 그 품질이 검증됐다.
나노융합연구소 차세대배터리센터장 김희탁 교수는 “촉매를 이용한 화학적 전해액 제조기술은 원천성을 가지고 있어, 비 발화성 대용량 에너지 저장장치 분야의 국가 경쟁력을 높일 수 있다”라고 말했다.
한국에너지기술연구원 에너지소재연구실 이신근 박사는 “한국에너지기술연구원에서 개발된 촉매 반응기를 통해 기술의 산업화가 촉진될 것으로 기대한다”라고 말했다.
이번 연구는 산업통상자원부 한국에너지기술평가원 ESS기술개발 사업의 지원을 받아 KAIST, 에너지기술연구원, 연세대학교, ㈜이에스가 참여한 컨소시엄을 통해 개발됐다.
□ 그림 설명
그림1. 촉매반응을 통한 3.5가 바나듐 전해액의 생산 및 기존 전기분해를 이용한 3.5가 전해액 생산 비교
그림2. 연구에서 개발된 촉매반응기 및 이를 이용한 전해액 연속 제조
2019.10.28
조회수 15592
-
육종민 교수, 나트륨 이차전지의 음극 소재 원리 규명
〈 왼쪽부터 육종민 교수, 박재열 박사과정, 박지수 박사과정 〉
우리 대학 신소재공학과 육종민 교수 연구팀이 황화구리를 기반으로 한 나트륨 이차전지 전극 재료의 나트륨 저장 원리를 밝혔다.
나트륨 이차전지는 1일 1회 충, 방전 시 5년 이상 사용할 수 있는 우수한 성능을 가진 전지로, 이번 연구를 통해 수명이 긴 전극 재료 개발에 기여할 것으로 예상된다.
연구팀의 이번 연구는 높은 저장 용량을 가지는 소재의 충. 방전 반복에 따른 열화 방지 관련 핵심원리를 규명했다는 점에서 의의가 있다. 황화구리는 지구상에 풍부한 구리와 황으로 이뤄져 있어 다른 나트륨 저장 소재 대비 경쟁력이 높아 나트륨 전지의 상용화를 크게 앞당길 것으로 기대된다.
박재열 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Sciences)’ 6월호 표지논문(Inside back cover)에 선정됐다. (논문명 : Pulverization-tolerance and capacity recovery of copper sulfide for high performance sodium storage)
리튬 이온 전지는 휴대전화, 전기차 등 일상과 밀접한 다양한 곳에 사용된다. 리튬 이온 전지의 원자재인 리튬, 코발트, 니켈 등은 매장지역이 한정돼 있어 가격 흐름이 매우 불안정하다. 2018년에는 수요가 급등해 공급량이 부족해져 리튬과 코발트 가격이 한때 3배 이상 급등하기도 했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재해 원자재 공급 문제를 해결할 수 있다. 따라서 리튬 이온 전지 대비 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
하지만 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 그 이유는 흑연 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장되는데 나트륨 이온을 저장하기에는 흑연의 층간 거리가 너무 좁기 때문이다.
비슷한 이유로 다른 삽입반응을 거치는 나트륨 저장물질들도 저장 용량이 낮다. 낮은 저장 용량 문제를 해결하기 위해서는 높은 저장 용량을 얻을 수 있는 전환(conversion)반응이나 합금(alloying) 반응을 거치는 물질을 사용해야만 한다. 그러나 이 두 가지 반응을 이용하면 부피팽창이 너무 커지고 급격한 결정구조의 변화에 따라 입자가 분쇄돼 성능이 빠르게 저하된다.
육 교수 연구팀은 일반적인 통념과 달리 황화구리는 전환반응을 거침에도 불구하고 오히려 저장 용량이 회복되며 안정적인 충, 방전이 가능하다는 사실을 발견했고 그 원리를 투과전자현미경을 이용해 관찰했다. 그 결과 전환반응에서 유사 정합 경계면 (두 상 혹은 두 결정립 사이의 결정 격자의 합이 잘 맞는 경계면) 을 형성해 입자의 분쇄를 막아준다는 사실을 밝혀냈다.
일반적인 전환반응의 경우 전환반응 전후의 결정구조가 완전히 다르고 부피팽창도 크기 때문에 입자가 분쇄돼 성능 열화를 유발한다. 그러나 황화구리는 나트륨 저장에 따라 유동적인 결정구조 변화를 해 유사 정합 경계면을 형성하고, 이는 입자의 분쇄를 막아주는 결정적인 역할을 한다고 연구팀은 설명했다.
그 결과 황화구리는 입자의 크기나 형상에 상관없이 높은 나트륨 저장 성능을 보이는 것을 확인했다. 수십, 수백 마이크로미터 크기의 별다른 최적화를 거치지 않은 황화구리 입자가 기존 흑연의 이론 용량 대비 약 17% 높은 ~436mAh/g의 저장 용량을 갖고, 2천 회 이상의 충, 방전에도 93% 이상의 저장 용량을 유지함을 확인했다.
육 교수는“이번 연구가 미세먼지 해결을 위한 고성능 배터리 개발에 이바지할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 사이언스 표지
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 유사 정합 경계 (Semi-coherent interface) 들
2019.07.01
조회수 13780
-
정우철, 김상욱 교수, 수소 연료전지 성능 높일 수 있는 나노촉매기술 개발
〈 정우철, 김현유(충남대), 김상욱 교수 연구팀 〉
우리 대학 신소재공학과 정우철, 김상욱 교수와 충남대학교 김현유 교수 공동 연구팀이 금속 나노 소재를 이용해 수소에너지 기술의 핵심인 연료전지의 성능을 대폭 높일 수 있는 새 나노촉매기술을 개발했다.
이 기술을 통해 연료전지 외에도 물 분해 수소생산 등 다양한 환경친화적 에너지기술에 폭넓게 적용할 수 있을 것으로 기대된다.
최윤석, 차승근 박사, 그리고 충남대 하현우 박사과정 학생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 2월 18일 자 온라인판에 게재됐고, 3월호 표지로 선정됐다. (논문명: Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes).
10나노미터 이하 크기의 금속 나노입자는 극도로 적은 양으로 높은 촉매 활성을 보일 수 있다는 가능성 때문에 최근 에너지 및 환경기술 분야에서 큰 관심을 받고 있다.
그러나 이러한 신소재들은 가격이 매우 비싸고 높은 온도에서 입자들끼리 뭉치면서 촉매 활성이 저하되는 고질적인 문제점이 남아 있었다. 600도 이상의 높은 온도를 활용해 초고효율 발전 방식으로 주목받는 고체산화물 연료전지도 활용성 측면은 회의적인 시각이 존재했다. 또한 각 금속 입자의 촉매 효율 향상 수치에 대한 정확한 연구결과가 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 세계적으로 인정받는 블록공중합체 자기조립을 이용한 금속 나노패턴기술을 통해 산화물 연료전지 전극 표면에 10나노미터 크기의 균일한 금속 나노입자들을 균일하게 합성하는 데 성공했고, 이를 통해 하나의 입자가 갖는 촉매 특성을 고온에서 정확히 분석해 연료전지의 성능을 극대화하는 기술을 개발했다.
연구팀은 대표적 귀금속 촉매인 백금의 경우 300나노그램(약 0.015원 가치)의 적은 양으로도 연료전지의 성능을 21배까지 높일 수 있음을 확인했다.
나아가 백금 외에 많이 활용되는 촉매인 팔라듐, 금, 코발트 등의 금속 촉매 특성을 정량적으로 파악 및 비교했고 이론적 규명을 통해 촉매 성능이 향상되는 정확한 원리를 밝혔다.
정우철 교수는 “단순히 값비싼 촉매의 양을 늘리는 비효율적인 방법을 사용하던 기존 틀을 깨고 매우 적은 양의 나노입자를 이용해 고성능 연료전지를 개발할 수 있다는 명확한 아이디어를 제시한 의미 있는 결과이다”고 말했다.
또한 “해당 기술은 금속촉매가 사용되는 다양한 산업 분야에 적용할 수 있는 높은 유연성을 가지고 있어 추후 연료전지, 물 분해 수소생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 나노소재원천기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금속나노입자의 고온 전기화학적 촉매 특성 정밀 평가를 위한 전극 구조의 모식도
그림2. 10 nm 크기의 여러 금속나노입자 (백금, 팔라듐, 코발트, 금)의 고온 전기화학적 촉매 특성 정밀 비교 평가 결과
2019.02.25
조회수 16993
-
김희탁 교수, 이론용량 92% 구현한 리튬-황 전지 개발
〈 추현원 석사과정, 김희탁 교수 〉
우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수 연구팀이 이론용량의 92%를 구현하고 높은 용량 밀도 (4mAh/cm2)를 가지는 고성능, 고용량 리튬-황 전지를 개발했다.
추현원 석사과정과 노형준 박사과정이 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 1월 14일 자 온라인판에 게재됐고 우수성을 인정받아 에디터스하이라이트에 선정됐다. (논문명 : Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions) ( https://www.nature.com/ncomms/editorshighlights )
리튬-황 전지는 리튬-이온 전지보다 약 6~7배 높은 이론 에너지밀도를 갖고 원료 물질인 황의 가격이 저렴해 리튬-이온 전지를 대체할 차세대 리튬 이차전지로 주목받고 있다.
그러나 리튬-황 전지는 구동 중 방전 생성물인 황화 리튬이 전극 표면에 쌓이고 전극 표면에서 전자전달을 차단해 리튬-황 전지의 이론용량 구현이 불가능하다는 한계를 갖는다.
이러한 전극 부동화의 문제를 완화하기 위해 과량의 도전제를 전극에 도입해 왔으나 이는 리튬-황 전지의 에너지 밀도를 크게 낮추는 문제를 발생시키며, 이론용량 구현이 70%를 넘지 못하는 한계를 보였다.
연구팀은 문제 해결을 위해 기존 리튬-황 전지의 전해질에 사용하던 리튬 염을 대체해 높은 전자기여도를 가지는 음이온 염을 이용했다. 이 전해질 염은 전지 내부의 황화리튬의 용해도를 높여 전극 표면에 3차원 구조의 황화리튬 성장을 유도하고 이는 전극의 부동화를 효율적으로 억제해 높은 용량을 구현할 수 있게 한다.
연구팀은 이 전해액 기술을 바탕으로 기존 리튬-이온 전지와 동등한 수준의 면적당 용량 밀도를 갖는(4mAh/cm2) 고용량 황 전극에 대해 이론용량 92%인 수준을 구현해 기존 리튬-황 전지 기술의 한계를 넘었다. 또한 리튬 음극 표면에 안정한 부동피막을 형성해 100 사이클 이상 구동 시에도 안정적인 수명을 구현했다.
특히 새로운 전해질 설계를 통한 황화리튬의 구조 제어 기술은 다양한 구조의 황 전극 및 구동 조건에서 적용 가능해 산업적으로도 큰 의미를 지닐 것으로 보인다.
김희탁 교수는 “리튬-황 전지의 한계를 돌파하기 위한 새로운 물리 화학적 원리를 제시했다”라며 “리튬-황 전지의 이론용량의 90% 이상을 100 사이클 이상 돌리면서도 용량 저하 없이 구현했다는 점에서 새로운 이정표가 될 것으로 기대한다”라고 말했다.
이번 연구는 나노융합연구소, 한국연구재단 및 LG화학의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전해질에 따른 전극 위 리튬 설파이드 성장 구조 및 축적 메커니즘
그림2. 리튬황전지의 사이클 용량 및 수명 특성
2019.01.31
조회수 15868
-
이진우 교수, 다공성 구조의 기능성 황 담지체 개발
〈 이진우 교수, 임원광 연구원 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통한 황 담지체를 개발해 리튬-황 이차전지의 성능을 높이는 데 성공했다.
연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 이차전지를 구현했다.
포스텍 화학공학과 한정우 교수와 공동으로 진행하고 임원광 석박사통합과정이 1저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 1월 15일자 표지논문에 게재됐다. (논문명 : Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation, 다차원 상분리를 활용한 계층형 다공성 구조의 티타늄질화물 합성 및 이를 통한 우수한 안정성과 높은 속도 특성의 리튬-황 이차전지 개발)
전기 자동차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 효율적으로 활용하기 위한 차세대 이차전지 개발의 필요성이 더욱 커지고 있다.
리튬-황 이차전지는 이론적으로 기존 리튬 이온 이차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다.
그러나 리튬-황 이차전지 음극과 양극에서 많은 문제점이 남아있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다.
이를 해결하기 위해 황을 안정적으로 담을 수 있는 그릇 역할의 소재, 즉 황 담지체에 대한 연구가 활발하게 이뤄지고 있다.
기존 극성 표면의 무기 소재들은 황과 강한 작용력을 갖지만 무기 소재의 구조적 특성 제어를 할 방법이 부족해 황 담지체로 개발하기에는 한계가 있었다. 이번 연구는 독창적인 합성법을 개발함으로써 이 한계점을 극복했다.
연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다.
티타늄질화물은 황과의 화학적 작용력이 매우 강하고 전기 전도도가 높아 충·방전 과정에서 황이 전극으로부터 빠져나가는 것을 막아주고 황의 전기화학적 산화, 환원 반응을 빠르게 해준다.
연구팀은 매크로 기공과 메조 기공의 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다.
이 교수는 “리튬-황 이차전지는 여전히 해결해야 할 문제점이 많아 이를 해결하기 위한 연구는 지속적으로 이뤄져야 한다”라며 “이번 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적인 기술을 확보했다”라고 말했다.
이번 연구는 LG화학과 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 계층형 다공성 티타늄질화물 합성전략 모식도
그림2. 합성된 계층형 다공성 티타늄질화물 전자현미경 사진
그림3. 저널 표지 원본
2019.01.28
조회수 11350
-
이봉재, 이승섭 교수, 금속-유전체 간 근접장 복사열전달량 제어 기술 개발
〈 왼쪽 위부터 시계방향으로 이승섭 교수, 이봉재 교수, 임미경 박사, 송재만 박사과정 〉
우리 대학 기계공학과 이봉재 교수와 이승섭 교수 연구팀이 금속-유전체 다층구조 사이의 근접장 복사열전달량을 측정하고 제어하는 데 성공했다.
연구팀의 복사열전달 제어 기술은 차세대 반도체 패키징과 열광전지, 열관리 시스템 등에 적용 가능하고 폐열의 재사용을 통한 에너지 절감, 사물인터넷 센서의 지속적 전력 공급원 등에 응용 가능할 것으로 기대된다.
임미경 박사와 송재만 박사과정이 주도한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 16일자 온라인 판에 게재됐다. (논문명 : Tailoring Near-Field Thermal Radiation between Metallo-Dielectric Multilayers using Coupled Surface Plasmon Polaritons, 표면 플라즈몬 폴라리톤 커플링을 이용한 금속-유전체 다층구조 사이의 근접장 복사열전달 제어)
두 물체 사이의 거리가 나노미터 단위일 때 물체 사이의 복사열전달은 거리가 가까워질수록 매우 크게 증가한다. 그 값은 복사열전달량의 이론적인 최댓값이라 여겨졌던 흑체 복사열전달량보다 1천 배에서 1만 배 이상 커질 수 있다. 이 현상을 근접장 복사열전달이라고 한다.
최근 나노기술의 발전으로 다양한 물질 사이의 근접장 복사열전달을 규명하는 연구가 활발히 진행되고 있다. 특히 나노구조에서 발생하는 표면 폴라리톤 커플링을 이용하면 두 물체 사이의 근접장 복사열전달량을 크게 향상시킬 수 있을 뿐 아니라 파장에 따른 복사열전달 제어가 가능해진다.
이런 이유로 박막, 다층나노구조, 나노와이어 등 나노구조를 도입한 근접장 복사열전달 적용 장치에 대한 이론 연구가 계속 진행되고 있다. 그러나 현재까지 대부분의 연구는 등방성(等方性) 물질 사이의 근접장 복사열전달만을 측정하는 데 초점이 맞춰졌다.
이봉재, 이승섭 교수 공동 연구팀은 커스텀 MEMS 장치 통합 플랫픔과 3축 위치 나노제어 시스템을 이용해 금속-유전체 다층나노구조 사이의 진공 거리에 따른 근접장 복사열전달량을 최초로 측정하는 데 성공했다.
금속-유전체 다층나노구조는 일정한 두께를 갖는 금속과 유전체가 반복적으로 쌓인 구조를 말한다. 금속-유전체 단일 층 쌍을 단위 셀이라 부르며 단위 셀에서 금속 층이 차지하는 두께의 비율을 충전인자라 한다.
연구팀은 다층나노구조의 충전인자와 단위 셀 개수의 변화에 따른 근접장 복사열전달량 측정 결과를 통해 표면 플라즈몬 폴라리톤 커플링으로 근접장 복사열전달량을 크게 향상시켰으며, 나아가 열전달의 파장별 제어가 가능함을 증명했다.
연구를 주도한 이봉재 교수는 “그동안 실험적으로 규명된 등방성 물질은 근접장 복사열전달의 파장별 제어에 한계가 있었다”며 “이번에 밝혀낸 다층나노구조를 사용한 근접장 복사열전달 제어 기술은 열광전지, 다이오드, 복사냉각 등 다양한 근접장 복사열전달 적용 장치 개발에 첫걸음이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 근접장 복사열전달 측정 3차원 개념도와 개발한 장치
그림2. 금속-유전체 다층나노구조의 충전 인자에 따른 복사 열전달량 분석 결과
2018.11.14
조회수 12525