-
메타버스 시대 이끌 초고해상도 화면 구현 패터닝 기술 개발
생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.
*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.
InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.
이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.
조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.
연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).
한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
2024.12.18
조회수 2482
-
원형 RNA로 특정 유전자 표적 치료한다
코로나19를 계기로 활발히 연구되는 RNA 백신의 효율을 극대화하고자, RNA의 안정성에 관한 연구가 활발히 이뤄지고 있다. 우리 연구진은 생체내 DNA에서 만들어지는 안정한 형태인 동그란 원형 RNA가 세포 내에서 특정 유전자의 발현을 억제할 수 있다는 것을 밝히고, 원형 RNA를 이용한 새로운 형태의 질병치료법을 제시했다.
우리 대학 생명과학과 김윤기 교수 연구팀이 원형 RNA를 이용하여 세포 내 특정 mRNA*의 안정성 조절할 수 있는 새로운 형태의 유전자 발현 조절 기전을 규명했다고 18일 밝혔다.
*mRNA: 메신저 RNA는 단백질을 합성할 수 있는 유전정보를 담아서 이를 전달하는 역할
세포 내에 보존되는 유전정보는 DNA에서 RNA, RNA에서 단백질로 이어지는 중심원리(central dogma)에 의해 조절돼 그 기능이 나타나게 된다. 이 과정에서 세포는 최종적으로 생성되는 단백질의 품질을 엄격히 통제하기 위해 mRNA의 양과 질을 끊임없이 관리한다. 가장 대표적인 mRNA 품질 관리 기전은 ‘논센스 돌연변이 매개 mRNA 분해’다.
김윤기 교수 연구팀은 논센스 돌연변이 매개 mRNA 분해(nonsense-mediated mRNA decay; 이하 NMD)가 원형 RNA (circular RNA)에 의해 유도될 수 있음을 밝혔다. 특히, 해당 기전을 활용해 표적 유전자의 발현을 인위적으로 억제할 수 있음을 규명했다.
DNA에서 만들어진 RNA는 스플라이싱(splicing)* 과정을 통해 성숙되고, 그 결과 성숙된 형태의 선형 RNA가 생성된다. 또한, 최근에 밝혀진 스플라이싱의 또 다른 방법인 백스플라이싱(back-splicing)**을 통해 동그란 형태의 원형 RNA가 생성될 수 있다. 이렇게 생성된 원형 RNA는 세포 내에서 보다 더 안정적으로 존재할 수 있다. 연구팀은 이렇게 형성된 원형 RNA가 특정 mRNA에 결합할 경우, mRNA를 빠르게 분해한다는 것을 밝혔다.
*스플라이싱: DNA에서 갓 만들어진 mRNA 전구체는 인트론(intron)과 액손(exon)으로 구성되어 있다. 스플라이싱 과정을 통해 인트론은 제거되고, 액손만 남은 성숙한 mRNA가 생성된다.
**백스플라이싱: 스플라이싱 과정 동안, 아래쪽 염기서열이 위쪽 염기서열과 연결되는 변형된 형태의 스플라이싱으로서, 일반적인 스플라이싱 대비 염기서열이 거꾸로 연결되기 때문에 백스플라이싱이라고 부른다.
김윤기 교수는 “ 이번 연구를 통해 원형 RNA에 의해 유도되는 표적 유전자 발현을 억제하는 새로운 메커니즘을 밝혀냈다. 또한 인위적으로 제작된 원형 RNA를 이용해 세포 내 특정 mRNA의 양을 조절할 수 있으며, 해당 기능을 인위적으로 조절할 수 있음을 증명했다”고 말했다.
이어 김 교수는 “이 연구 결과는 다양한 질병 치료제 개발에 활용될 수 있을 것으로 기대되며, 교원창업기업인 원형 RNA 플랫폼 개발 회사 라이보텍(주)(대표 김윤기)과 공동연구 및 기술이전을 통해 질병치료제 개발을 가속화 할 계획이다.”고 강조했다.
생명과학과 부성호 박사와 고려대학교 신민경 박사과정생이 공동 제1 저자로 참여한 이번 연구는 12월 11일 자 국제전문학술지 ‘몰레큘러 셀(Molecular Cell)’에 온라인으로 발표됐다. (논문명 : Circular RNAs trigger nonsense-mediated mRNA decay, DOI : 10.1016/j.molcel.2024.11.022)
한편 이번 연구는 한국연구재단의 글로벌리더사업 지원을 받아 수행됐다. 또한, 부성호 박사는 KAIST 장영실 펠로우쉽 지원을 일부 받아 연구를 수행했다.
2024.12.18
조회수 2402
-
인간 장 줄기세포 대량 배양, 재생 치료 길 열렸다
우리 연구진이 세계 최초로 화학적으로 규명되고 동물 성분이 완전히 배제된 완전 무이종 (xenogeneic-free) 환경에서 인간 장 줄기세포를 대량 배양하여 줄기세포 치료제로의 임상 적용 가능성을 입증하는데 성공했다. 이번 성과로 향후 환자 맞춤형 줄기세포를 활용한 첨단 재생 치료에 적용 이 가능할 것으로 기대된다.
우리 대학 생명화학공학과 임성갑 교수 연구팀이 한국생명공학연구원(기관장 김장성) 국가아젠다연구부 손미영 박사 연구팀과 공동 연구를 통해, 무이종(xenogeneic-free) 인간 장 줄기세포 재생 치료 플랫폼을 개발했다고 12일 밝혔다.
연구팀은 기존에 사용되던 쥐 섬유아세포, 매트리젤 코팅 없이, 기상 증착된 유기 고분자를 활용한 혁신적인 배양 및 재생 치료 플랫폼을 개발했다.
고분자 스크리닝을 통해 장 줄기세포를 동물 유래 물질 없이 배양하기에 최적인 ‘XF-DISC’ 표면을 발굴했으며, 개발된 XF-DISC는 장 줄기세포의 장기배양, 대량 배양, 동결 보관 시스템에 성공적으로 적용 가능함을 입증했다.
이 플랫폼에서 배양된 장 줄기세포는 분화 모델로 확장 가능할 뿐만 아니라, 생체 내 이식 (in vivo) 실험에 적용되어 장 상피 손상 및 염증성 모델의 쥐 대장에 성공적으로 이식되었다.
이식 이후, 인간 장 줄기세포는 쥐의 대장 조직과 효과적으로 융합되었고, 손상 부위를 재생하고 염증 반응을 완화하는데 탁월한 성능을 보였다.
특히, 사람의 세포가 동물 모델에 이종이식(xenogaft) 된 후에도 기능을 유지하고 조직 재생 효과를 발휘한 것은, 이 플랫폼이 줄기세포 치료제로서의 실질적인 임상 적용 가능성을 입증한 중요한 사례로 평가받고 있다.
이번 연구는 재생 의학 분야에서 인간 만능줄기세포(hPSC)로부터 유도된 장 줄기세포의 신뢰성 있는 대량 배양과 임상 적용 가능성을 한 단계 높일 것으로 기대된다.
향후 연구는 이 플랫폼의 상용화 가능성과 대규모 생산성을 평가하고, 환자 유래 줄기세포에 대한 적용성을 검토할 계획이다. 또한, 환자 유래 장 줄기세포가 무이종 환경에서 성공적으로 배양될 경우, 실제 환자를 대상으로 한 임상 효과를 검증하는 후속 연구가 진행될 예정이다.
임성갑 교수는 “이번 연구성과는 기존 줄기세포 배양 방식을 넘어, 동물 유래 성분을 완전히 배제한 혁신적인 무이종 배양 플랫폼을 개발한 중요한 전환점이다. 특히, 인간 장 줄기세포의 대량 배양, 장기배양 및 이식 가능성을 세계 최초로 입증함으로써 줄기세포 치료제의 신뢰성과 생산성을 획기적으로 향상시켰다. 이는 재생 의학 분야에서 중요한 진전을 의미하며, 향후 연구는 이 플랫폼의 상용화 가능성과 환자 맞춤형 임상 성능을 평가하는 데 집중될 것이다.”라고 말했다.
이번 연구 결과는 우리 대학 박성현 박사과정생, 한국생명공학연구원 권오만 박사, 이하나 박사가 제1 저자로 참여했으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’지에 12월 2일 자 온라인에 게재됐다.
(논문명: Xenogeneic-free culture of human intestinal stem cells on functional polymer-coated substrates for scalable, clinical-grade stem cell therapy)
한편 과학산업통상자원부, 한국연구재단, 한국과학기술정보통신부, 한국보건복지부, 한국생명공학연구원의 지원을 받아 수행됐다.
2024.12.15
조회수 2722
-
항암 면역세포를 체내에서 직접 만들 수 있다
우리 연구진이 종양 조직에서 세포를 분리하고 증식시키는 과정이 매우 복잡하고 시간이 많이 소요되며 고비용으로 인해 환자 접근성이 떨어지는 기존 항암 세포치료 방식의 한계를 극복하면서, 동시에 항암 세포치료제의 강력한 치료 효능을 기대할 수 있는 새로운 암 치료 방식을 개발하여 화제다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 항암 세포치료제의 항암 치료 효과를 체내에서 구현할 수 있는 mRNA 치료제를 개발했다고 11일 밝혔다.
연구팀이 개발한 해당 치료제는 강력한 암세포 사멸 능력을 기반으로 현재 유망한 항암 세포치료제로 개발되고 있는 종양 침윤 T세포를 종양 내에서 직접 증식시켜 항암효과를 유도할 수 있다.
개발된 치료제는 기존 세포치료제 대비 뛰어난 환자 접근성을 기반으로 대장암, 피부암과 같은 다양한 고형암 치료에 적용될 수 있을 것으로 기대된다.
연구팀은 종양 침윤 T세포의 효과적인 증식 및 높은 항암효과를 유도하기 위해 세포막에 발현하는 CD3 항체를 암호화하는 mRNA를 종양 조직 내 대식세포와 암세포에 전달했다.
또한, 암세포의 세포막에 발현된 항 CD3 항체는 현재 항암 치료제로 사용되어 종양 침윤 T세포의 암세포 상호작용 및 암세포 사멸 능력을 증진해 효과적인 항암 치료를 유도한다.
연구팀은 개발한 mRNA 치료제를 다양한 고형암 동물 모델에 종양 내 투여했을 때 부작용 없이 종양 침윤 T세포, 특히 암세포를 직접 사멸할 수 있음을 확인했다.
더 나아가 연구팀은 면역세포가 암세포를 효과적으로 공격하게 도와주는 PD-1 면역항암제가 잘 듣지 않는다고 알려진 흑색종 동물 모델에 개발한 mRNA 치료제와 PD-1 면역항암제를 병용 처리했을 때, 상승적 항암 치료 효과가 나타나는 것을 확인했다.
박지호 교수는 “이번 연구에서 기존에 체외에서 고비용으로 긴 시간 준비되어서 환자에게 주입되는 항암 세포치료제를 종양 내 mRNA 주입만으로 체내에서 구현할 수 있는 새로운 개념의 항암 mRNA 치료제를 제시했다”고 말했다.
이어 “기존 항암 치료제들로 치료하기 어려워 방법이 없던 고형암 환자들에게 새로운 치료법을 제시할 수 있다는 점에서 큰 의의를 가진다”고 강조했다.
바이오및뇌공학과 윤준용 박사와 에린 파간(Erinn Fagan) 석사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)에 11월 11일 게재됐다.
(논문명: In Situ Tumor-Infiltrating Lymphocyte Therapy by Local Delivery of an mRNA Encoding Membrane-Anchored Anti-CD3 Single-Chain Variable Fragment)
DOI: 10.1021/acsnano.4c03518
이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2024.12.11
조회수 2948
-
일상 움직임으로 웨어러블 기기가 충전된다
국제 공동 연구진이 운동 에너지를 전기 에너지로 효율적으로 변환하여 웨어러블 기기의 자가 충전이 가능하게 하는 새로운 방법을 개발했다. 이제 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있게 되었다.
우리 대학 신소재공학과 서동화 교수 연구팀이 싱가포르 난양공대(NTU, Nanyang Technological Univ.) 전자공학과 이석우 교수 연구팀과의 국제공동연구를 통해 새로운 전기화학적 에너지 수확 방법을 개발했으며, 이를 통해 기존 기술 대비 10배 높은 출력과 100초 이상 지속되는 전류 생성에 성공했다고 10일 밝혔다.
운동 에너지를 전기 에너지로 변환시키는 보통 압전(Piezo-electric)과 마찰전기(Tribo-electric) 방식으로 순간적으로 높은 전력을 발생시킬 수 있지만, 내부 저항이 높기 때문에 전류가 짧게 흐르는 한계가 있다. 이에 따라, 보다 효율적이고 지속 가능한 에너지 하베스팅(수확) 기술이 요구되고 있다.
연구팀은 물과 이온성 액체 전해질에 전극을 각각 담가 이온의 이동으로 발생하는 전위차(전기적 위치에너지)를 이용하여 전력을 수확하는 새로운 방식을 개발했다.
또한, 연구팀은 이온이 전해질과 전극 계면에서 산화ㆍ환원 반응을 통해 에너지를 어떻게 발생시키는지 더 깊이 이해하기 위해 *제1원리 기반 분자동역학 시뮬레이션을 수행했다.
*제1원리 기반 분자동역학 시뮬레이션: 양자역학 법칙을 사용해 전자들의 거동을 계산하는 것을 말하며 원자들 사이의 상호작용을 계산으로 구한 뒤, 이를 통해 시간에 따른 원자들의 움직임을 예측하는 것임
그 결과, 이온이 각 전해질에서 주변 용매와 상호작용하는 방식과, 전해질 환경 따른 전극 내부에서의 주변 상호작용 에너지가 다르게 나타났음을 확인했다. 이러한 종합적인 상호작용이 에너지 차이를 발생시키며, 이를 통해 전해질 간 전위 차이를 설명하는 중요한 원리를 제시했다.
연구진은 이 시스템을 여러 개 직렬로 연결하면 출력 전압을 크게 높일 수 있다는 것도 확인했다. 그 결과 계산기를 작동시킬 수 있을 정도인 935mV의 전압을 달성했으며, 이는 저전압 기기나 웨어러블 디바이스와 같은 장치에 적용 가능하다.
또한, 물리적 마모 없이 장시간 안정적으로 작동할 수 있어, 이 기술은 사물인터넷(IoT) 기기나 자가 충전형 전자기기에도 실용적으로 적용될 가능성이 크다.
서동화 교수는 "이번 연구의 핵심은 일상적인 움직임, 즉 저주파 운동에서도 효율적으로 에너지를 수확할 수 있다는 점”이라며 "시뮬레이션과 실험의 협업을 통해 에너지 수확 원리를 깊이 이해함으로써 설계 가이드라인을 도출할 수 있었고, 이는 상용화 가능성을 크게 높였다”고 설명했다.
이번 연구는 이동훈 난양공대 전자공학과 박사과정, 송유엽 KAIST 신소재공학과 박사과정 학생이 공동 제1 저자로 참여했다. 연구 결과는 네이처 커뮤니케이션에 지난 10월 19일 자로 온라인 출판됐다.
(논문명 : Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte)
DOI: 10.1038/s41467-024-53235-z
한편, 이번 연구는 한국연구재단의 나노 및 소재 기술개발사업, 중견연구사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
2024.12.10
조회수 2925
-
‘로봇스케치’ 도쿄 데뷔, 최우수 심사위원상 수상
VR 헤드셋을 쓴 디자이너(산업디자인학과 이준협 박사)가 태블릿과 펜으로 아무 것도 없는 가상 공간 속에서 유려한 입체 형태와 복잡한 관절 구조를 가지는 4족 거미 로봇을 단 몇 분 만에 그려서 완성했다. 디자이너가 컨트롤러를 조작하자 움직이던 거미 로봇이 일어나 2족 휴머노이드 로봇으로 자세를 수정하고 두 발을 짚고 걸음을 내딛기 시작했다. (2024 시그래프 아시아 리얼타임 라이브의 KAIST 로봇스케치 시연 장면)
우리 대학 12월 6일 도쿄 국제 포럼에서 열린 ‘시그래프 아시아 2024’의 하이라이트인 리얼타임 라이브(Real-Time Live!)에서 산업디자인학과 배석형 교수팀이 기계공학과 황보제민 교수팀과 협업하여 개발한 ‘로봇스케치(RobostSketch)’ 기술이 최우수 심사위원상(Jury’s Choice)을 수상했다고 9일 밝혔다.
‘시그래프 리얼타임 라이브’는 컴퓨터 그래픽스 및 상호작용 분야에서 ‘꿈의 무대’로 알려져 있다. 매년 전 세계에서 엄선된 10여 개의 혁신적인 기술만이 무대에 오른다.
모든 시연은 사전 녹화 없이 실시간으로 이루어지며, 6분이라는 제한된 시간 안에 기술의 독창성과 가능성을 선보여야 한다. KAIST의 로봇스케치는 이러한 무대에서 새로운 로봇 디자인 프로세스의 가능성을 보이며 큰 주목을 받았으며, 단 하나의 기술에만 수여되는 최우수 심사위원상을 수상했다.
로봇스케치는 단순히 외형과 구조를 시각적으로 표현하는 설계 도구를 넘어, 3D 스케칭에 생성형 AI와 몰입형 VR을 접목해 로봇 디자인의 개념을 새롭게 정의한 혁신적 기술이다.
디자이너는 VR 환경에서 태블릿과 펜을 사용해 복잡한 관절형 구조를 직관적으로 표현하고, 이를 실제 크기로 확인할 수 있다. 디자이너가 그린 로봇은 강화학습을 통해 현실 세계의 물리 법칙을 따르는 시뮬레이션 속에서 보행법과 움직임을 학습한다.
이를 통해 디자이너는 실제 세계에서 작동 가능한 로봇 디자인을 VR 공간 안에서 만들고, 로봇을 직접 움직이며 로봇이 가질 동작의 자연스러움과 안정성을 실시간으로 확인할 수 있다.
로봇스케치는 3D 스케칭 전문가인 산업디자인학과 배석형 교수 연구팀과 로봇 강화학습 전문가인 기계공학과 황보제민 교수 연구팀의 협업으로 완성됐다.
배석형 교수는 “기존 로봇 디자인의 한계를 극복하고, 로봇 디자이너가 상상하는 모든 것을 실시간으로 표현할 수 있는 도구를 만들고 싶었다”고 밝혔다.
이어 “로봇 디자인은 단순히 외형뿐 아니라 로봇의 움직임과 기능, 더 나아가 사용자와의 상호작용까지 모두 포함하는 과정이며 로봇 디자이너와 로봇 엔지니어의 원활한 소통을 촉진하고 현실 프로토타이핑에 소모되는 시간과 비용을 크게 줄일 수 있는 로봇스케치는 앞으로 로봇 개발과 제품화 과정에서 중요한 도구가 될 것”이라고 덧붙였다.
이 연구는 ‘DRB-KAIST 스케치더퓨처 연구센터’의 지원 아래 이루어진 결과로, 해당 센터는 3D 스케칭, AI, VR 기술을 결합해 전문가의 창의성과 생산성을 극대화하는 도구를 연구하며 첨단 기술과 디자인의 융합 가능성을 탐구하고 있다. 앞으로 로봇 디자인뿐 아니라 미래 산업 전반에서 고도화된 디자인 도구의 발전이 기대된다.
ACM SIGGRAPH Asia 2024 리얼타임 라이브 <로봇 스케치> 시연 영상: https://youtu.be/5wi53Z2_sAk
2024.12.09
조회수 3260
-
62% 향상 수명연장 수소 연료전지 촉매 개발
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다.
우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다.
이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다.
연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매 플랫폼’을 개발하는 데 성공했다. 자이로이드 나노구조체는 3차원적으로 길게 연결된 구조로 인해 전기적 연결성이 우수하고 이온이나 기체의 이동이 이동할 수 있는 빈 통로가 많은 장점이 있어 차세대 에너지 소재로 유망하다.
연구팀은 자기조립 특성이 있는 고분자를 활용해 3차원 자이로이드를 합성하고 백금 입자를 강한 결합으로 탑재해 연료전지 구동 시에도 백금 입자의 이동을 원천 차단하고자 했다.
또한, 자이로이드 내부에 증기압을 발생시켜 자이로이드 내부 공간까지 비움으로써 전해질이 더 원활하게 출입할 수 있도록 설계했다.
이를 통해, 내부가 차 있는 일반 자이로이드 구조체 대비 약 3.6배 넓은 촉매 표면적을 확보했다. 그뿐만 아니라 자기조립 고분자에 자체 포함된 피리딘을 이용한 질소 도핑을 통해, 우수한 전기전도성, 촉매 활성도 및 내구성 역시 확보할 수 있었다.
실제 연료전지 구동 환경과 유사한 환경에서 2만 사이클의 고강도 내구성 평가 이후 상용 촉매 대비 약 62% 이상의 출력 밀도 향상을 보였다.
정연식 교수는 “이번 연구는 정밀한 고분자 자기조립 제어 기술을 기반으로 기계적, 화학적으로 견고하고 물질 전달 능력이 탁월한 신규 지지체 소재를 설계해, 촉매의 수명과 활성도를 획기적으로 개선할 수 있음을 입증한 성과”라고 말했으며, “이 기술은 차세대 에너지 전환 기술에 있어 귀금속 촉매 지지체 소재 개발 방향성을 제시하는 중요한 역할을 할 것으로 기대된다”라고 덧붙였다.
신소재공학과 최성수 박사과정 학생, 양현우 박사과정 학생, 이건호 박사 등이 공동 제1 저자로 참여한 이번 연구는 국제학술지‘어드밴스드 머티리얼즈 (Advanced Materials)’11월 21일 字 온라인판에 게재됐다. (논문명: Self-assembled Hollow Gyroids with Bicontinuous Mesostructures: A Highly Robust Electrocatalyst Fixation Platform)
DOI: https://doi.org/10.1002/adma.202412525
한편 이번 연구는 한국 정부(산업통상자원부)가 지원하는 한국에너지기술평가원(KETEP)의 지원 및 과학기술정보통신부가 지원하는 한국연구재단(NRF)의 나노-소재기술개발사업의 지원을 받아 수행되었다.
2024.12.04
조회수 3042
-
물로 차세대 리튬금속전지 750% 수명 연장시켜
리튬금속은 기존 상용 배터리의 성능 한계를 극복할 수 있는 차세대 음극으로 주목받아 왔다. 하지만, 리튬금속 자체 문제로 배터리의 수명을 단축하고 화재 위험을 초래하는 문제를 보여왔다. KAIST 연구진이 물만을 사용해서 기존 리튬금속 음극보다 수명이 약 750% 향상시키는 세계 최고 수준의 연구에 성공했다.
우리 대학 신소재공학과 김일두 교수 연구진이 아주대 이지영 교수와 협력하여 친환경 공법으로 제조한 중공 나노섬유를 리튬금속보호막으로 사용해, 리튬의 성장을 안정화하고 차세대 ‘리튬금속전지’의 수명을 획기적으로 늘리는 데 성공했다고 2일 밝혔다.
리튬 금속 표면에 보호막을 적용해 리튬금속과 전해액간의 계면을 인공적으로 조성하는 기존의 보호막 기술은 인체에 유해한 공정과 원가가 높은 재료를 필요로 하며 리튬금속음극의 수명을 높이는 데 한계가 있어왔다.
김일두 교수 연구진은 이 문제를 해결하기 위해 ‘리튬이온 성장을 물리적·화학적 방법으로 제어할 수 있는 중공 나노섬유 보호막’을 제시했다.
이 보호막은 식물에서 추출한 친환경 고분자인 구아검(Guar gum)*을 주재료로 해, 물 만을 사용한 친환경적인 전기방사 공법**으로 제조됐다.
*구아검: 구아검은 구아콩에서 얻어낸 천연 고분자 화합물로 다량의 단당류로 이루어진 구조를 가지고 있다. 단당류에 있는 산화관능기가 리튬이온과의 반응을 제어한다.
**전기방사 공법: 전기방사는 고분자 용액에 전기장을 가하여 약 수십 나노미터에서 수 마이크로미터 사이의 직경을 가지는 고분자 섬유를 연속생산하는 공정이다.
특히, 나노섬유 보호막을 적용해 전해액과 리튬 이온 간의 가역적인 화학 반응을 효과적으로 제어했다. 또한 섬유 내부의 빈 공간을 활용해서 리튬이온이 금속 표면에 무작위로 쌓이는 것을 억제함으로써 리튬금속 표면과 전해액 사이의 계면 안정화를 동시에 달성했다.
이 보호막을 적용한 리튬금속 음극은 연구 결과, 기존 리튬금속 음극보다 수명이 약 750% 향상됐으며, 300회의 반복적인 충·방전에도 약 93.3%의 용량을 안정적으로 유지하는 세계 최고 수준의 성능을 달성했다.
연구진은 자연에서 얻어진 이 보호막이 흙에서 약 한 달 내에 완전히 분해됨을 입증해, 보호막의 제조에서 폐기에 이르기까지 전 과정이 친환경적인 특성을 증명했다.
신소재공학과 김일두 교수는 “물리적·화학적 보호막 기능을 모두 활용했기 때문에 더욱 효과적으로 리튬금속과 전해액 간의 가역적인 반응을 유도하고 수지상 결정 성장을 억제해 획기적인 수명 특성을 가진 리튬금속음극을 개발할 수 있었다”고 밝혔다.
이어, “급증하는 배터리 수요로 인해 배터리 제조와 폐기로 인한 환경부하 문제가 심각하게 대두되고 있는 상황에서, 물만을 사용한 친환경적인 제조 방법과 자연 분해되는 특성은 차세대 친환경 배터리의 상용화에 큰 기여를 할 것이다”고 말했다.
이번 연구 결과는 KAIST 신소재공학과 졸업생 이지영 박사(現 아주대학교 화학공학과 교수), 송현섭 박사(現 삼성전자)가 공동 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)' 11월 21일 36권 47호에 표지논문(Front Cover)으로 선정됐다. (논문명 : Overcoming Chemical and Mechanical Instabilities in Lithium Metal Anodes with Sustainable and Eco-Friendly Artificial SEI Layer)
한편 이번 연구는 KAIST-LG에너지솔루션 프론티어 리서치 랩 (Frontier Research Lab, FRL), 산업통상자원부의 알케미스트 사업과 과학기술정보통신부의 탑-티어 연구지원사업의 지원을 받아 수행됐다.
2024.12.02
조회수 2644
-
바이오 경로 이미지 분석하는 AI 최초 개발
유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다.
우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다.
연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분류한다. 그 후 추출된 정보를 통합해 경로 정보를 표 형식으로 제공한다.
연구팀은 74,853편의 논문에서 추출한 바이오 경로 이미지와 기존 수작업으로 작성된 경로 지도를 비교하며 EBPI의 성능을 검증했다. 그 결과, 높은 정확도로 바이오 경로 정보가 자동으로 추출됐음을 확인했다.
EBPI를 사용해 대표적인 바이오 경로 데이터베이스에 포함되지 않은 생화학 반응 정보를 대량의 문헌 내 바이오 경로 이미지로부터 추출하는 데에도 성공했다.
다양한 산업적 가치를 지닌 대사물질들의 생합성 관련 문헌을 EBPI로 분석한 결과, 문헌에서는 보고가 됐지만, 기존 데이터베이스에서는 누락된 생화학 반응들이 확인된 것이다. 화학산업에서 다양한 응용분야를 갖는 1,4-부탄디올, 2-메틸부티르산, 하이드록시티로솔, 레불린산 및 발레로락탐의 생합성 경로를 예시로 이러한 발견을 제시했다.
연구를 총괄한 김현욱 교수는 “이번 연구에서 개발된 EBPI는 대규모 문헌 데이터 분석에 있어 중요한 도구가 될 것이며 생명공학, 대사공학 및 합성생물학 분야에서 바이오 경로 이미지를 AI로 분석하는 최초의 사례로, 관련 연구의 실험 디자인 및 분석 시 유용하게 활용될 수 있을 것”이라고 밝혔다.
생명화학공학과 권문수 박사과정생과 이준규 박사과정생이 공동 제1 저자인 이번 연구는 대사공학 및 합성생물학 분야의 대표적 국제학술지인 대사공학(Metabolic Engineering, JCR 분야 상위 10% 이내)에 11월호에 게재됐다.
※ 논문명 : A machine learning framework for extracting information from biological pathway images in the literature
※ 저자 정보 : 권문수(한국과학기술원, 공동 제1 저자), 이준규(한국과학기술원, 공동 제1 저자), 김현욱(한국과학기술원, 교신저자) 포함 총 3명
한편 이번 연구는 과학기술정보통신부 한국연구재단 및 농촌진흥청의 농업미생물사업단의 지원을 받아 수행됐다.
2024.11.28
조회수 3290
-
이제 골격근도 제작 가능하다
인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다.
우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다.
*바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨
연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다.
또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반응 속도 측정과 함께 조직 형태, 기계적 특성, 골격근 성장 및 분화와 관련된 유전자 발현 비교 등 다양한 분석을 진행했다. 그리고 결과 분석을 통해 최적의 근육 조직 제작법을 확립했으며, 이러한 최적의 제작법으로 배양했을 때 견고한 골격근 조직이 제작된 것을 확인했다.
조직공학 및 배양 시스템 설계의 중요성을 강조한 이번 연구에서는, 하이드로젤 특성이 3D 근골격계 조직 발달에 미치는 영향을 조사했다. 주요 연구 결과에 따르면 하이드로젤의 기계적 특성은 세포 분화와 조직 기능을 높인다.
전성윤 교수는 “이번 연구는 인공 골격근 조직 배양에 있어 세포가 함유된 하이드로젤 제조에 대한 조건의 영향을 탐구함으로써 기존의 균일하지 못한 배양 방식에 가이드라인을 제시하고, 치료 응용 및 질병 모델링을 위한 조직 공학 최적화를 위한 필수 인사이트를 제공한다. 그리고 향후 골격근뿐 아니라 심장이나 골수와 같은 인공 생체 조직 제작에 도움을 주고 본 플랫폼은 노화나 우주 미세중력등에 의한 근감소증을 비롯한 여러 근골격계 질병 연구에 활용 될 것을 기대한다”고 말했다.
기계공학과 김재상 박사 및 김인우 박사과정 학생이 공동으로 진행한 이번 연구는, 국제 학술지인 ‘어드밴스드 펑셔널 머터리얼즈(Advanced functional materials)’에 2024년 10월 7일자로 게제됐다.(논문명 : Strategic Approaches in Generation of Robust Microphysiological 3D Musculoskeletal Tissue System. https://doi.org/10.1002/adfm.202410872)
한편 이번 연구는 한국연구재단 및 BK21 사업의 지원으로 수행되었다.
2024.11.27
조회수 3695
-
반도체 정밀 공정 흐린 영상 복원 가능하다
생물학 연구에 사용되는 형광 현미경이나 반도체 산업에 사용되는 주사전자현미경의 공통점은 불안정성으로 인해 흐려진 영상(블러, blur)을 보정하는 과정이 반드시 필요하다는 점이다. 우리 연구진이 굉장히 강한 잡음에 의해 손상된 왜곡 영상에 대해 적응형 필터와 생성형 인공지능 모델을 융합해 영상을 복원하는 데 성공했다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 삼성전자 DS부문 반도체연구소 차세대공정개발실과 공동 연구를 통해 왜곡 및 강한 잡음이 존재하는 의료·산업 영상을 복원하는 기술을 개발했다고 26일 밝혔다.
스마트폰 카메라 사진에 영상의 흐림·왜곡이 생겼을 때 보정하는 문제를 디컨볼루션(deconvolution) 또는 디블러링(deblurring)이라고 하며, 흐려진 영상 정보만 이용해 선명한 영상을 복원하는 기술을 블라인드 디컨볼루션(blind deconvolution)이라고 한다. 흥미롭게도 디컨볼루션 문제는 일상뿐만 아니라 생물학 연구, 반도체 산업 등 다양한 분야에서 공통적으로 발생한다.
예를 들어, 형광 현미경은 세포와 분자 수준의 미세 구조를 시각화하기 때문에 측정된 형광 신호는 산란이나 회절, 수차 등의 효과로 인해 흐려지기 때문에 디컨볼루션 기법을 통해 보정하는 과정이 반드시 필요하다.
또한, 반도체 산업에서는 수천 개의 생산 공정 중간에 검사·계측 기술을 통해 발생할 수 있는 미세 공정 오류를 감지하고, 공정 수율 개선을 위한 프로세스 개선 과정에 사용되는 주사전자현미경이 전자 빔의 불안정성으로 인해 영상이 흐려지기 쉬우며, 이를 보정하는 과정이 반드시 필요하다.
연구팀은 이처럼 영상이 흐려지는 원인은 움직임, 빛의 산란, 전자의 불안정성 등과 같이 다양하지만, 공통적으로 ‘영상의 흐려짐을 없앤다’라는 점에서 수학적으로 동일한 접근 방법이 활용될 수 있다고 생각했다.
특히 잡음 수준이 높은 영상의 경우, 영상의 잡음을 효과적으로 억제함과 동시에 블러 효과가 제거된 선명한 영상을 복원하는 과정의 균형을 맞추는 것이 매우 중요하다는 점을 착안했다.
연구팀은 위너 디컨볼루션*을 기반으로 영상을 복원하는 접근법을 개발했다. 이를 적응형 잡음 억제 변수, 영상 생성형 인공지능 모델과 결합해 영상 복원 과정에서 발생할 수 있는 잡음을 억제하고 영상 선명도도 높였다.
*위너 디컨볼루션(Wiener deconvolution)은 왜곡된 영상을 역 필터(inverse filter)를 기반으로 깨끗한 영상으로 복원하는 전통적인 방식임.
연구팀은 잡음 민감도가 높은 주사전자현미경으로부터 측정된 왜곡된 영상으로부터 깨끗하고 초점이 맞는 나노미터 단위의 반도체 구조에 대한 영상을 성공적으로 복원해 냄으로써 반도체 검사·계측에 매우 효과적으로 적용할 수 있음을 실험적으로 증명했다.
바이오및뇌공학과 이찬석 연구원은 “이번 연구를 통해 강한 잡음 속에서 왜곡된 영상을 복원하는 난제를 해결했다ˮ며, 이어 "이번 연구에서는 무작위적 잡음을 극복하는 영상 복원 기술을 개발하는 데에 집중했고, 향후 비균일 영상 복원 및 다양한 손상 형태를 극복하는 영상 복원 기술 개발에 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 비전 분야 최고 학회인 ‘제18회 유럽 컴퓨터 비전 학회(The 18th European Conference on Computer Vision)’ 에서 지난 10월 1일에 이탈리아 밀란에서 발표됐고, Springer Nature에서 출판하는 Lecture Notes in Computer Science의 ECCV 2024 프로시딩 집에 게재될 예정이다. (논문명: Blind image deblurring with noise-robust kernel estimation).
2024.11.26
조회수 2537
-
암흑 물질 액시온 탐색 가능성 획기적 높여
암흑 물질이란 질량은 있으나 관측이 불가능한 미지의 물질을 말하며, 우주 전체 에너지의 약 27% 정도를 차지하고 있다. 암흑 물질을 연구하는 주된 이유는 우주의 구조와 진화의 비밀을 밝히고 이를 통해 우주의 형성과 모습을 이해하고자 함이다. 한국 연구진이 암흑 물질 후보로 알려진 액시온의 탐색 효율을 크게 향상시킬 고주파 공진기 튜닝 기술을 개발했다.
우리 대학 물리학과 야니스 세메르치디스 교수 연구팀이 기초과학연구원(IBS)(원장 노도영) 산하 액시온 및 극한상호작용 연구단(이하 CAPP)(단장 야니스 세메르치디스)과 협력해 메타물질*을 이용, 암흑 물질인 액시온의 탐색 범위를 효율적으로 확장할 방법을 구현했다고 25일 밝혔다.
*메타물질: 아직 자연에서 발견되지 않은 특성을 갖도록 인공적으로 설계한 물질을 말함.
암흑물질의 존재와 더불어 또 다른 미스터리는 ‘오늘날 우주가 왜 물질로만 이루어져 있는가?’라는 점이다. 초기 우주에서는 물질과 반물질이 거의 같은 양으로 생성되었을 것이라 추정하고 있다. 따라서, 현재의 우주에 대해, 입자물리학에서는 물질이 반물질보다 압도적으로 우세한 이런 물질-반물질의 불균형을 CP*라고 불리는 대칭성의 깨짐으로 설명하려고 한다. *CP: 전하(Charge)와 공간 반전(Parity)
액시온은 강한 상호작용에서 발생하는 이 특정 대칭 불균형과 관련된 문제, 즉 대칭성이 깨져있을 거라는 이론적 예측과 이 대칭성이 보존되는 것처럼 보인다는 실험적 관측 사이의 차이를 해결해 줄 수 있는 가상의 입자이다. 즉, 액시온 입자의 존재는 우주의 물질-반물질 불균형과 암흑물질이라는 두 가지 근본적인 미스터리를 동시에 해결할 열쇠가 될 수 있다.
암흑 물질 액시온은 그 고유한 진동 주파수에 맞는 공진기를 통해 탐색할 수 있으며, 최근 암흑 물질 액시온의 질량을 예측하려는 이론적 연구들에 따르면, 현재 민감한 실험들이 다루고 있는 영역보다 더 높은 주파수대에서 탐색이 필요하다는 전망이 제기되고 있다.
이에 따라 고주파 탐색의 필요성이 대두되면서 다양한 공진기 개발이 이뤄졌고 고주파 액시온 탐색에서 높은 효율을 기대할 수 있게 됐지만, 고차 공명 모드를 효과적으로 튜닝할 방법은 여전히 부족한 상황이다.
이에 연구팀은 음팽창 메타물질 구조를 활용해 회전 운동을 2차원 팽창 및 수축 운동으로 전환하는 새로운 튜닝 메커니즘을 개발했다. 키리가미(kirigami)라는 종이접기/자르기 방식에서 영감을 얻은 음팽창 메타물질 구조체는 특유의 결합 배열 덕분에, 한쪽 면에 팽창·수축하는 힘이 가해질 때 다른 면도 함께 팽창·수축하는 특성을 갖는다.
이러한 성질을 이용하면 구조체의 중심이 회전할 때 전체 구조가 팽창하거나 수축하는 움직임으로 변환된다. 이를 통해 간단한 1차원 회전 움직임을 더 복잡한 2차원 움직임으로 확장할 수 있는 혁신적인 구조가 만들어진다.
또한 저온 환경에서 음팽창 구조체의 효율적인 움직임을 위해 기어 구조를 도입해 힘을 보강했다. 이를 통해 극저온 환경에서도 최소한의 힘과 열 발생으로 구조체를 효과적으로 구동하며 주파수를 조정할 수 있었다.
연구팀은 육각 음팽창 구조를 유전체 튜닝 구조체로 고려하고, 이를 공진기의 적용해 주파수를 효과적으로 조정할 수 있음을 확인했다. 나아가 이 공진기를 극저온으로 냉각한 상태에서 9T(테슬라, 자기장의 강도를 나타내는 단위, 1T는 지구 자기장의 약 2만 배) 자기장을 인가해 실제 액시온 검출 실험을 수행했고, 기존 민감도를 두 배로 향상하는 성과를 거뒀다.
연구팀이 개발한 이 독특한 구조체는 극저온과 강한 자기장 환경에서도 작동 가능한 메타물질 기반 주파수 조정 장치로, 향후 고주파 영역의 암흑 물질 액시온 탐색에 적극 활용될 것으로 기대된다. 또한, 이 시스템은 극한의 저온·고자기장 환경에서 로보틱스 분야로도 확장될 잠재력을 가지고 있다.
제1 저자인 KAIST 배성재 박사과정 학생은 “이 결과는 고차 공명모드를 실용적으로 활용할 수 있는 튜닝 메커니즘의 입증을 통해 고주파 액시온 탐색에 새로운 방향을 제시한 것”이라고 밝혔으며, 공동 제1 저자인 IBS 정준우 박사후 연구원은 “궁극적으로 액시온 암흑 물질의 비밀을 풀기 위해 보다 포괄적이고 효과적인 탐색 전략의 돌파구를 마련했다”라고 덧붙였다.
물리학과 배성재 박사과정과 IBS-CAPP 정준우 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 11월 22일 133호에 게재됐다. (논문명 : Search for Dark Matter Axions with Tunable TM020 mode)
한편 이번 연구는 기초과학연구원의 지원을 받아 수행됐다.
2024.11.25
조회수 2080