-
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다.
특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다.
유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다.
신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다.
대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다.
기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다.
또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다.
연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다.
연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포
그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 25926
-
김일두 교수, 새집증후군 유발하는 톨루엔 초정밀 감지센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 새집증후군, 새차증후군의 대표적 유해 가스인 톨루엔을 극미량의 농도에서도 검출할 수 있는 초고감도 감지소재 센서를 개발했다.
이번 연구 결과는 화학분야 권위 학술지 미국화학회지(JACS : Journal of the American Chemical Society) 10월자 온라인 판에 게재됐다.
톨루엔은 대표적 유독성, 휘발성 유기화합물로 중추신경계와 호흡기관에 이상을 유발한다. 두통을 유발하고 장기간 노출될 경우에는 사망에 이를 수도 있다.
실내 공기질 관련 톨루엔 농도의 정부 권고기준은 약 244ppb(10억분의 1 단위) 이하로 기준 수치를 넘어가면 새집증후군, 새차증후군 등을 유발시킨다.
하지만 공기 중의 톨루엔을 정밀 분석하기 위해서는 고가의 설비를 활용해야 하는 어려움이 있다. 현재까지 개발된 반도체식(저항 변화식) 휴대용 톨루엔 센서들은 톨루엔의 유무만 구분 가능할 뿐 십 억분의 1에서 백만분의 1(ppm) 사이의 극미량의 톨루엔은 검출할 수 없다는 한계가 있다.
연구팀은 기존 센서의 한계를 극복하기 위해 다공성 물질인 금속유기구조체(metal-organic framework)의 내부에 3나노미터 크기의 촉매 입자를 담지하고, 이를 나노섬유 소재에 붙여 최고 수준의 톨루엔 감지 특성을 갖는 센서를 개발했다.
연구팀은 금속유기구조체를 팔라듐 촉매와 결합시켜 복합 촉매로 활용했다. 이 복합 촉매는 다공성 금속산화물 나노섬유에 결착된 구조로 나노섬유 표면에서 형성되는 비균일 접합(heterojunction) 구조와 나노 촉매의 시너지 효과로 인해 초고감도의 톨루엔 감지특성을 보였다.
연구팀이 개발한 센서는 100ppb 수준의 극미량의 톨루엔 가스 노출에도 일반 공기 중의 상태에 비해 4배 이상의 탁월한 감도 변화를 보였다.
금속유기구조체 기반의 이종 촉매가 결합된 나노섬유 감지소재는 실내외 공기 질 측정기, 환경 유해가스 검출기, 호흡기반 질병진단 센서 등 다양한 분야에서 활용 가능하다.
또한 나노입자 촉매 및 금속유기구조체의 종류만 바꿔주면 톨루엔 외의 다른 특정 가스에 선택적으로 반응하는 고성능 소재를 대량으로 합성할 수 있다. 향후 다양한 센서 소재 라이브러리 구축이 가능할 것으로 기대된다.
김 교수는 “다종 감지 소재를 활용해 수많은 유해가스를 보다 정확히 감지할 수 있는 초고성능 감지소재로 적용 가능하다”며 “대기 환경 속의 유해 기체들을 손쉽게 검출해 각종 질환의 예방이 가능하고 지속적인 건강 관리에 큰 도움을 줄 것이다”고 말했다.
신소재공학과 구원태 박사 과정이 1저자로 참여한 이번 연구는 한국과 미국에 특허 출원됐다. 이번 연구는 미래창조과학부 X-프로젝트와 한국이산화탄소포집 및 처리연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노섬유 감지소재가 코팅된 개별 가스센서 및 가스센서가 장착된 스마트 시계
그림2. 저널 JACS에 게재된 논문 대표 이미지
그림3. 나노섬유사진
그림4. 1 ppm의 극미량 톨루엔 가스에 대한 우수한 선택성 및 반응성을 보여주는 표
2016.10.10
조회수 15272
-
전상용 교수, 몸 속 물질 이용한 염증 치료제 개발
〈 전 상 용 교수 〉
우리 대학 생명과학과 전상용 교수 연구팀(1저자 이용현 박사)이 신체 내부의 항산화물질을 이용한 새로운 항염증 나노의약품을 개발했다.
빌리루빈이라 불리는 생리활성물질 기반 100나노미터 크기의 나노입자로 이뤄진 이 약품은 만성 및 급성 난치성 염증질환 치료에 쓰일 것으로 기대된다.
이번 연구는 화학분야 저명학술지 ‘앙게반테 케미(Angewandte Chemie international Edition)’ 5월 4일자 온라인 판에 게재됐다.
고분자, 무기 나노입자 등의 많은 나노소재들이 질병 진단 및 치료용 나노의약품으로 개발되고 있다. 그러나 대부분의 약품들은 인공소재로 이뤄져 생분해성 및 생체적합성이 낮다. 이러한 약품들이 신체에 장기간 남을 경우 잠재적인 독성을 유발할 가능성이 있어 실제 임상적용이 되는 예는 소수에 불과하다.
연구팀은 문제 해결을 위해 이미 우리 몸속에 존재하는 항산화 및 면역조절 물질인 빌리루빈을 이용했다. 빌리루빈은 헤모글로빈에 존재하는 산소결합 물질인 헴(Heme)의 최종 대사체이다.
빌리루빈은 노란색 담즙 색소로서 혈중 농도가 높아지면 황달의 원인이 돼 예전에는 쓸데없는 물질로 여겨졌다. 하지만 근래 발표된 역학조사에 따르면 빌리루빈의 혈중 농도가 다소 높으면 심혈관 질환이나 암 발병 가능성이 현저히 낮아진다는 사실이 밝혀졌다.
또한 빌리루빈은 여러 활성산소들을 제거하고 염증과 관련된 면역세포를 조절하는 등의 기능을 해 세포와 조직을 보호한다는 사실이 동물 실험을 통해 확인됐다.
그러나 물에 거의 녹지 않는 특성 때문에 빌리루빈을 실제 치료에 적용하지 못했다. 전 교수 연구팀은 빌리루빈에 초 친수성 고분자인 폴리에틸렌글리콜(PEG)을 결합한 ‘페길화된 빌리루빈’을 합성해 수용액에서 자가 조립돼 약 100나노미터 직경을 갖는 빌리루빈 나노입자로 재탄생시켰다.
이 빌리루빈 나노입자는 항산화 및 항염증 효능을 그대로 유지하면서 신체에 축적되지 않고 배설돼 빌리루빈의 장점만 갖는 나노의약품이 됐다.
효능 확인을 위해 대표적 난치성 만성 염증 질병인 대장염 모델을 쥐에게 투여한 후 빌리루빈 나노입자를 투여했다. 염증이 형성된 부위에 나노입자가 선택적으로 분포됐고 대장염 진행을 효과적으로 차단했다.
또한 장 길이가 짧아지고 혈변 등의 부작용이 생기는 대조군과 다르게 정상 생쥐와 비슷한 수준으로 회복됐고, 황달 등의 부작용이 발생하지 않아 높은 수준의 항염증 효과를 확인했다.
연구팀은 빌리루빈 나노입자가 대장염 모델 외에도 허혈성 간질환, 천식, 췌장소도세포 이식 동물 모델에서 우수한 효과를 보여 향후 범용 항염증 나노의약품이 될 수 있을 것으로 기대된다고 밝혔다.
연구팀은 “빌리루빈 나노입자는 우리 몸속에 존재하는 생리활성물질과 친수성 고분자가 접합된 간단한 화학물질로 구성됐다”며 “생분해성 및 생체적합성이 높고 대량 생산이 가능해 바로 임상 적용이 가능하다”고 말했다.
전 교수는 “향후 국내외 연구진들과 전임상 및 임상실험을 수행할 예정이다”며 “적절한 치료제가 없는 난치성 염증질환을 치료할 수 있는 새로운 나노의약품을 개발해 환자들의 고통을 덜어주고 싶다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실 및 KAIST 시스템헬스케어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 형광물질 ICG가 로딩된 빌리루빈 나노입자가 염증조직(대장, Colon)으로 선택적으로 축적됨
그림2. 빌리루빈과 폴리에틸렌 글리콜의 축합방법 및 제조된 빌리루빈 기반 나노입자의 모식도
그림3. 고용량의 빌리루빈 나노의약품이 정맥주사되었을 때, 부작용이 없음을 나타내는 결과
그림4. 빌리루빈 나노입자를 처리한 염증그룹에서는 정상그룹과 비슷해진 대장을 관찰가능
2016.05.19
조회수 16573
-
허원도 교수, 빛을 통해 세포내 물질 이동 제어 기술 개발
〈 허 원 도 교수 〉
우리 대학 생명과학과 허원도 교수 연구팀이 막으로 이루어진 세포내 소기관들의 이동을 빛으로 자유롭게 제어하는데 성공했다. 이로써 세포내 물질 수송의 단계별 메커니즘을 규명해 암과 신경질환 치료에 새로운 해법을 제시할 수 있을 것으로 기대된다.
연구팀은 세포내 물질 수송을 조절하는 새로운 광유전학 기술인 생체막 올가미(IM-LARIAT; Light-Activated Reversible Inhibition by Assembled Trap of Intracellular Membrane) 기술을 개발했다.
세포 내에는 엔도좀(endosome)이나 리소좀(lysosome), 엑소좀(exosome) 등 막으로 이루어진 다양한 막 구조 세포 소기관2)(intracellular membranes)들이 존재한다. 막 구조 세포 소기관들은 세포의 성장과 분열에 밀접한 세포의 기본 기능인 물질 수송과 물질 분비, 신호전달과정 등에 관여한다.
세포내 물질 수송은 매우 역동적으로 움직이는 세포 소기관들에 의해 이루어지는데, 복잡한 움직임을 제어할 방법이 거의 없어 세포 관련 연구가 제한돼 왔다.
이에 허원도 교수는 생체막 올가미 기술을 개발, 빛을 통해 세포 소기관들의 이동을 원하는 때, 원하는 위치에서 일시 정지시켜 세포 소기관들의 이동 메커니즘을 실시간으로 연구하는데 성공했다.
허원도 교수팀은 청색 빛에 반응하는 식물의 청색광 수용 단백질에, 세포 소기관들의 생체막에 존재하는 랩 단백질(Rab small GTPase)을 결합시킨 융합단백질을 개발했다. 이 융합단백질을 실험동물의 암세포와 신경세포에 발현시킨 뒤 청색 빛을 비춘 결과, 많은 막 구조 세포 소기관들이 서로 응집하여 이동이 일시 정지되는 현상을 확인했다.
특히 생체막 올가미 기술을 신경세포에 적용, 엔도좀들의 이동을 일시 정지 시켜, 뇌 신경 세포 성장원추(growth cone)의 성장을 제어하는데 성공했다. 청색 빛을 비추자 일시적으로 성장이 멈췄던 신경세포가, 빛을 끄자 다시 빠르게 자라나는 것을 추가로 확인했다.
이번 연구는 약물이나 전기 자극이 아닌 빛을 비추는 비 침습적(non-invasive) 방식을 고안, 최소 자극으로 막 구조 세포 소기관들의 이동을 제어할 수 있게 된 데 의의가 있다. 신경세포의 분화 및 암세포의 물질 수송을 빛으로 정지시킬 수 있는 생체막 올가미 기술을 응용하면, 다양한 암과 신경질환의 치료 해법을 제시할 수 있을 것으로 기대된다.
허원도 교수는 “이번 연구는 살아있는 세포내에 존재하는 다양한 세포 소기관들을 빛으로 제어한 연구로, 적외선이나 소형 광원을 이용한 생체막 관련 질환 치료법이나 신경세포재생연구로 발전시킬 수 있을 것”이라며 “특히 뇌 신경세포 내 소기관들의 이동과 물질 수송 연구는 기억과 학습 관련 연구 분야에도 새 장을 열어줄 것”이라고 말했다.
이번 연구결과는 생명과학 분야 세계적 학술지인 네이처 케미컬 바이올로지(Nature Chemical Biology, IF 12.996) 온라인판 4월 12일자에 게재됐다.
허원도 교수는 지난 3년 동안 유명학술지에 독자적으로 개발한 광유전학기술들을 연속적으로 발표하고 있으며 현재 수편의 논문들도 해외유명저널에서 심사 중이다. 2014년에 Nature Methods, Nature Communications, Cell 자매지인 Chemistry & Biology 표지논문으로 발표를 시작했다. 2015년 Nature Biotechnology 표지논문에 이어, 이번에는 Nature Chemical Biology에 발표하는 등 세계적으로 광유전학분야를 선도하고 있다.
□ 그림 설명
그림1. 세포 내 물질 수송의 과정
2016.04.18
조회수 16444
-
빛 이용해 알츠하이머 완화 가능성 열어
박 찬 범 교수
우리 대학 신소재공학과 박찬범 교수 연구팀과 한국생명공학연구원(원장 오태광) 바이오나노센터 유권 박사팀이 빛과 유기분자인 포르피린을 이용해 알츠하이머 증후군의 원인 물질로 알려진 베타-아밀로이드(beta-amyloid)의 응집 과정을 억제하는 데 성공했다.
이 기술을 통해 알츠하이머 증후군을 비롯한 여러 가지 퇴행성 뇌질환 치료에 새로운 가능성을 제시할 것으로 기대된다.
이번 연구결과는 독일의 국제 저명 학술지인 앙케반테 케미(Angewandte Chemie) 21일자 표지논문에 게재됐다.
빛을 이용한 치료는 시간과 치료 부위를 조절하기 쉽다는 장점이 있다. 암과 같은 경우에는 유기 광감응제를 투여하고 빛을 병변 부위에 조사하는 광역학 치료(photodynamic therapy)가 활용되고 있다. 하지만 광역학 치료가 알츠하이머병과 같은 퇴행성 뇌질환에 적용된 사례는 없었다.
알츠하이머 증후군은 환자의 뇌에서 생성되는 베타-아밀로이드라는 단백질이 응집돼 뇌에 침착하면서 시작된다. 이렇게 형성된 응집체는 뇌세포에 유해한 영향을 주고 손상을 일으켜 치매와 같은 뇌 기능 저하를 일으킨다.
이 과정에서 베타-아밀로이드의 응집 과정을 억제하면 아밀로이드 퇴적물의 형성을 막을 수 있고, 따라서 알츠하이머 증후군을 예방하거나 완화시킬 수 있다.
연구팀은 생체 친화적 유기 화합물인 포르피린 유도체와 청색 LED 광을 이용해 베타-아밀로이드 응집을 효과적으로 억제했다.
포르피린과 같은 광감응제는 빛 에너지를 흡수해 여기 상태가 된 후 바닥상태로 돌아가며 활성 산소를 생성한다. 생성된 활성 산소가 베타-아밀로이드 단량체와 결합해 산화시킴으로써 베타-아밀로이드의 응집을 방해하는 원리이다.
연구팀은 이를 무척추 동물에 적용해 알츠하이머 초파리 모델에서 신경 및 근육 접합부의 손상, 뇌 신경세포의 사멸, 운동성 및 수명 감소 등 알츠하이머 증후군에서 발견되는 증상의 완화를 확인했다.
빛을 이용한 치료법은 기존 약물 치료에 비해 적은 양의 약물로도 높은 치료효과를 볼 수 있고 부작용이 적다는 장점이 있다. 뇌질환에 적용할 수 있는 기술 개발이 완료된다면 그 활용도가 높을 것으로 예상된다.
박 교수는 “빛과 광감응화합물을 사용해 무척추 동물(초파리)에서 베타-아밀로이드 응집과 독성을 막는 것을 세계 최초로 확인한 것에 의의가 있다”며 “향후 다양한 유기 및 무기 광감응소재들의 적용가능성을 알아보고, 알츠하이머 마우스 등 척추동물을 대상으로 알츠하이머병의 광역학적 치료 가능성을 연구하고 싶다"고 말했다.
□ 그림 설명
그림 1. 포르피린과 빛을 이용해 알츠하이머 원인 물질의 응집을 제어한 모식도
그림2. 앙케반테 케미에 게재된 표지논문
2015.09.21
조회수 13587
-
단백질의 생체분자에 대한 결합력 조절기작 규명
우리 학교 생명과학과 김학성 교수와 서문형 박사 연구팀은 단백질이 생체 내 분자를 인식하고 기능을 수행하는데 중요한 단백질의 생체분자에 대한 결합력을 조절하는 메커니즘을 새롭게 밝혀냈다 .
연구 결과는 과학 분야의 권위지인 ‘ 네이처 커뮤니케이션즈 (Nature Communications)’ 24일자 온라인판에 게재됐다.
연구팀은 지난해에 단백질의 생체분자 인식 메커니즘을 최초로 밝혀내 Nature Chemical Biology 에 발표한데 이어 , 이번 연구를 통해 단백질이 생체분자에 대한 결합력을 조절하는 핵심 원리를 규명함으로써 생체 내 단백질의 기능과 조절 기작을 보다 명확하게 이해하는 데 크게 기여할 것으로 전망된다 .
효소나 항체 , 호르몬 등으로 대표되는 단백질은 모든 생명체 내에서 다양한 생체 분자를 특이적으로 인식하여 신호전달 , 면역반응 등을 정교하게 진행시켜 생명현상을 유지하고 조절하는데 가장 중요한 역할을 담당한다 . 이런 과정에서 단백질이 생체분자에 대한 결합력은 두 분자 사이의 결합지속 시간이 정해지고 , 단백질의 생체 내 기능을 결정하고 조절하는 핵심 요인이다 . 이번 연구 결과를 바탕으로 단백질 활성을 보다 정교하게 조절하는 것이 가능해질 것으로 예상된다 .
연구팀은 단백질들이 생체분자를 인식하는 과정에서 , 단백질의 생체분자에 대한 결합력은 두 분자 사이의 비 공유 상호작용의 크기뿐만 아니라 단백질의 고유한 동역학적 성질도 긴밀하게 연관되어 있다는 점에 주목했다 .
김 교수 연구팀은 단백질의 생체분자에 대한 결합력을 결정하는 기본 기작을 규명하기 위해 , 단백질의 allosteric site 에 돌연변이를 가하여 동일한 화학적 접촉면을 가지고 있지만 수십 배에서 수백 배의 결합력 차이를 보이는 다양한 돌연변이 단백질을 제작하였다 . 단백질의 allosteric site 는 생체분자와 직접 결합하는 부위는 아니지만 생체 분자 인식에 영향을 미치는 부위를 지칭한다 .
제작된 돌연변이 단백질들의 고유한 동역학적 성질을 단 분자 수준에서 실시간으로 분석하여 , 생체분자에 대한 결합력이 단백질의 고유한 동력학적 특성인 구조 열림 속도에 직접적으로 연관되어 있음을 밝혀냈다 .
또한 , 단백질이 생체 분자와 직접 결합하는 부위가 아닌 allosteric site 에서 단백질의 고유한 특성을 변화시킬 수 있음을 증명함으로써 , 생체 내 단백질들의 기능을 조절하는 새로운 방법론을 제시하였다 .
연구팀의 이번 결과는 다양한 생명현상을 관장하는 단백질의 특성을 보다 깊이 이해하는데 큰 역할을 하였으며 , 단백질의 생체분자에 대한 결합력을 결정하는 원리를 단백질의 동력학적 관점에서 입증한 것으로 평가되고 있다 .
김 학성 교수는 이번 연구에 대해 “ 지금까지는 단백질의 생체분자에 대한 결합력은 두 분자 사이의 직접적인 상호작용에 의해 결정되는 것으로 알려져 왔지만 , 본 연구를 통해 단백질의 고유한 동력학적 특성 , 즉 구조 열림 속도도 결합력을 결정하는 데 핵심적인 역할을 한다는 새로운 사실을 밝힌 것이 큰 의미가 있다 ” 라고 의의를 밝혔다 .
그림 1. 단백질의 안정한 상태인 열린 구조 (open) 와 불안정한 상태인 부분적으로 열린 구조 (partially closed) 사이의 전환 속도 (kopening; opening rate) 와 결합력 (Kd) 사이의 상관관계 그래프
2014.04.25
조회수 20254
-
신개념 심혈관질환 진단시스템 개발
- 심혈관질환 진단을 위한 호모시스테인 분석법 개발 연구에 큰 진보- 분석화학분야 세계적 학술지‘어널리티컬 케미스트리誌’4월호 표지논문 선정
신속하고 간편한 신개념 심혈관질환 진단시스템이 국내연구진에의해 개발됐다.
우리학교 생명화학공학과 박현규 교수는 대장균을 이용해 심혈관질환을 유발하는 혈액 속 호모시스테인(Homocysteine)의 농도를 분석하는 기술을 개발했다.
연구팀은 유전자 재조합을 통해 서로 다른 두 개의 생물발광 대장균 영양요구주를 만들어 호모시스테인에 대한 두 균주의 성장차이를 생물발광 신호로 분석했다.
이 기술은 많은 수의 혈액 샘플을 대량으로 동시에 분석할 수 있어 매우 경제적이기 때문에 최근 급성장하는 호모시스테인 정량검사 분야의 상업화에 커다란 진보를 일궈낸 것으로 평가받고 있다.
기존의 효소반응 또는 고성능 액체크로마토그래피(High Performance Liquid Chromatography)를 이용하는 방법은 비교적 긴 시간이 소요되며 가격이 비싼 단점이 있었다.
연구팀은 이를 극복해 아무런 추가 조작 없이 유전자 재조합 대장균을 배양하고 이에 따라 자동적으로 생성되는 발광신호를 측정함으로써 호모시스테인을 매우 신속하고 간편하게 측정할 수 있었다.
박현규 교수는 “이 기술은 심혈관질환을 유발하는 호모시스테인을 유전자 재조합 대장균을 이용해 정확하게 분석하는 신개념 분석법으로 학계에서 최초로 발표된 신기술이다”라고 말했다.
이번 연구는 그 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 ‘어낼리티컬 케미스트리(Analytical Chemistry)’ 4월호(4월 15일자) 표지논문으로 선정됐다.
한편, 생명화학공학과 박현규 교수와 우민아 박사과정 학생이 주도한 이번 연구는 한국연구재단(이사장 오세정)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐다.
2011.04.27
조회수 19013
-
김상규교수 화학반응의 비밀을 밝히다
네이처 케미스트리誌 발표, "화학반응을 원하는 대로 제어할 수 있는 방법 개발 가능성 열어"
화학반응의 핵심적인 개념이지만, 지난 60년간 학계에서 이론적으로만 예측되었던 원뿔형 교차점(conical intersection)의 존재와 분자구조가 국내연구진에 의해 실험적으로 규명되었다.
우리학교 김상규 교수와 임정식 박사가 주도한 이번 연구는 교육과학 기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견 연구자지원사업(도약연구)과 우수연구센터(SRC)사업의 지원을 받아 수행되었고, 연구결과는 화학분야 세계 최고 권위의 과학 전문지인 ‘네이처 케미스트리(Nature Chemistry)’지 온라인 속보(7월 4일자)에 주요 논문으로 게재되었다.
김상규 교수 연구팀은 지금까지 이론적으로만 존재했던 원뿔형 교차점을 실험적으로 구체화하고, 화학반응의 핵심이론을 검증했으며, 화학 반응을 제어하는 새로운 방법론 구축에 성공하였다.
원뿔형 교차점은 화학반응은 물론이고, 우리 눈의 망막에서 일어나는 광이성질체화(光異性質體化)* 반응 및 DNA의 강한 자외선 보호 메커니즘 등 화학과 의학 문제를 설명하는데 필수적인 매우 중요한 화학적 개념이다. ※ 광이성질체화(photoisomerization) : 분자가 빛을 흡수하여 들뜬상태를 거쳐 이성질체화를 일으키는 현상
학계는 눈 깜짝할 사이에 사라지고, 다차원적 위치에너지의 복잡한 구조를 지닌 ‘화학반응의 특이점’에 접근하는 것이 사실상 불가능해, 지금까지 원뿔형 교차점의 존재를 실험적으로 규명하기 위해 무수히 시도하였지만 실패하였다.
김상규 교수팀은 서로 다른 두 개의 전자적 양자상태가 화학반응을 하면서 중첩하는 지점에 발생한 원뿔형 교차점을 관측하고, 에너지 위치와 자세한 분자구조를 유추해냈다.
김 교수팀은 레이저와 분자선 기술을 사용하여 분자의 특정 양자 상태에서 일어나는 화학반응의 자세한 동역학적 움직임을 살펴본 결과, 두 개의 서로 다른 전자적 양자상태가 중첩될 때 뚜렷한 공명 (resonance)현상이 발생하며, 이것은 원뿔형 교차점에 의한 것임을 확인하였다.
김상규 교수는 “화학반응에서 전자와 핵 사이에 상호작용이 가장 크게 일어나는, 화학반응의 핵심개념인 원뿔형 교차점을 최초로 관측한 점은 이번 연구의 가장 큰 성과로, 향후 화학반응을 원하는 대로 제어하여, 치료 및 제약 등 다각적으로 활용될 수 있는 원천적 기초지식 기반을 마련하였다”라고 연구의의를 밝혔다.
2010.07.06
조회수 22642
-
배병수교수팀, 새로운 LED봉지재 개발
신소재공학과 배병수 교수연구팀이 고휘도 LED 개발에 필수적인 고굴절률 고내열성 하이브리드소재 LED 봉지재를 개발했다. LED 봉지재는 백색 빛을 내는 형광체를 포함해 LED 칩을 둘러싸서 외부 충격과 환경 등으로 부터 LED 칩을 보호하는 핵심 소재다. LED의 빛은 결국 봉지재를 통해 나오기 때문에 빛의 흡수, 산란, 굴절을 최소화한 고휘도 LED 구현을 위해 고굴절률 투명 봉지재 소재의 개발이 필요하다.
또, 봉지재는 외부 노출에 견디는 내후성 외에 LED칩에서 발산되는 열을 견디는 내열성이 매우 중요하다. 특히, 향후 상용화하게 될 고출력 조명에서는 매우 높은 열이 발생될 것으로 예상되기 때문에 이를 상용화하기 위해서는 고내열성 봉지재 소재의 개발이 필수적이다.
기존 에폭시 봉지재는 최근 고내열성의 요구로 실리콘소재로 대체되고 있으며, 현재 해외 주요 실리콘업체들이 국내에 독점 공급한다. 일반적으로 굴절률이 낮은 메틸 실리콘소재에 비해 굴절률이 높은 페닐 실리콘소재가 사용된다. 그러나 고온에서 쉽게 노란색으로 변색(황변)되어 전 세계 업체들은 굴절률을 높이면서 내열성이 우수한 소재를 개발하기 위해 노력하고 있다.
배교수 연구팀은 기존 LED 봉지재 소재인 실리콘소재의 제조방법과 달리, 실리카 유리 제조에 사용하는 솔-젤 공정과 함께 실리콘 제조공정인 하이드로실릴레이션(Hydrosilylation) 반응을 함께 사용해 다량의 페닐기를 포함하고 치밀한 네트워크 분자구조를 갖는 투명 하이브리드소재를 개발했다. 이번에 개발된 하이브리드재료는 1.56이상의 고굴절률을 가지면서 200도 이상의 고온에서도 황변이 일어나지 않는 고내열성을 보인다. 현재까지 전 세계적으로 1.53이상의 고굴절률 투명소재가 200도 온도에서 황변이 일어나지 않는 고내열성은 아직 보고되지 않았다.
이와 함께 하이브리드소재는 기존 실리콘소재에 비해 기체투과성이 낮으며, 경도가 높아 장기 안정성 높은 고휘도 LED 봉지재로 매우 유리하다. 이번에 개발된 하이브리드소재 봉지재를 사용하는 LED 제품은 일반 조명용 제품은 불론 LED TV용 백라이트 광원용 제품에 널리 활용될 수 있다. LED 산업의 성장과 함께 최근 세계 주요 소재업체들이 줄이어 고성능 봉지재 소재들을 출시하고 있는 시점에, 국내에서 세계 최초로 봉지재 원천소재를 개발한 것은 국내 LED산업의 발전은 물론 소재산업 위상 제공에 기여할 것으로 기대된다.
한편, 이번 연구결과는 미국화학회에서 발간하는 재료화학(Chemistry of Materials)저널 최근호에 게재됐으며, 관련 원천소재 특허 3건을 국내외에 출원했다. 연구팀은 현재 국내 실리콘 제조업체인 (주)KCC와 이번에 개발된 봉지재가 실제 LED칩에 실장되는 생산 공정에 적합하도록 최적화하고 굴절률을 더 높여 해외 선진사 제품 대비 경쟁력 높은 제품으로 상용화할 계획이다.
<사진설명>배교수 연구팀이 개발한 하이브리드소재 LED 봉지재와 해외 선진사 상용 실리콘 LED봉지재의 250도 내열성 비교평가결과. 상용 제품은 황변이 일어난 반면, 개발 제품은 투명하고 굴절률이 높다.
2010.06.16
조회수 21700
-
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발
- 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정
생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다.
교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다.
이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다.
두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다.
기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다.
폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다.
그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다.
또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다.
이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다.
그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다.
따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다.
이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다.
李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다.
한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 26392
-
박재우.유승협교수 산화티타늄 투명박막트랜지스터 독자기술 세계최초 개발
- 미국, 일본, 유럽에 특허출원, 관련 국제학회 발표예정
2002년에 개봉된 스티븐 스필버그 감독의 "마이너리티 리포트”(톰 크루즈 주연) 장면들 중에 보았던 투명디스플레이 구현이 꿈이 아니라 현실로 다가오고 있다.
‘꿈의 디스플레이’라 불리는 투명디스플레이, 에이엠올레드(AMOLED, 능동형 유기발광 다이오드) 디스플레이 및 플렉서블 디스플레이 등의 구동회로용으로 사용되는 투명박막트랜지스터(Transparent Thin Film Transistor) 기술이 국내 연구진에 의해 개발됐다.
전기전자공학과 박재우(朴在佑, 44) 교수와 유승협교수는 ㈜테크노세미켐, 삼성전자LCD총괄과 공동연구를 통해 미국, 일본 등이 원천특허를 보유하고 있는 산화아연(ZnO)기반 투명박막트랜지스터 기술에서 벗어나, 세계최초로 산화티타늄(TiO2)물질을 이용한 투명박막트랜지스터의 원천기술을 확보하는데 성공했다.
朴 교수팀은 미국, 일본 등과 기술특허분쟁이 일어나지 않을 뿐만 아니라 기존특허로 잡혀진 산화아연(ZnO) 물질에 포함된 In(인듐) 또는 Ga(갈륨)과 같은 희소성 금속을 사용하지 않고 지구상에 풍부한 금속자원을 이용한다는 원칙과 기존 반도체/디스플레이 산업용 대형 양산 장비로 검증 받은 화학기상증착(CVD, Chemical Vapor Deposition)법을 이용하여 낮은 온도에서 TiO2박막의 성막이 가능하게 함으로써 차세대 디스플레이의 대형화 가능성뿐만 아니라, 소다라임글래스(Soda-lime Glass)와 같은 저가 글라스기판 및 플렉서블 기판위에도 성막할 수 있는 원천 기술을 확보하는데 성공했다. 朴 교수팀은 미국, 일본이 보유한 원천기술이 스퍼터링 방식을 주로 사용하고 있으나 스퍼터링의 연속작업에 따른 물질 조성의 변화로 트랜지스터 특성의 재현성, 신뢰성에 문제점을 가지고 있다는 것에 착안, 재현성과 대형화가 검증된 CVD법을 이용하여 투명박막 트랜지스터 기술을 개발하게 되었다.
향후 2~3년을 목표로 지속적인 공동연구개발을 통해 신뢰성 검증 및 대형 CVD장비에서의 양산가능한 기술이 확보되면, 국내 디스플레이 산업체에서 생산하는 AMOLED 및 AMLCD 디스플레이 양산에도 곧바로 적용될 수 있도록 기술 이전 계획도 갖고 있다.
연구팀 관계자는 “이번 새로운 물질 기반 투명박막트랜지스터의 기술 개발 성공은 기존 외국기업의 기술 사용에 따른 로열티 지급으로부터 벗어날 수 있는 기술 독립선언이며, 앞으로도 세계디스플레이산업을 선도하는 종주국의 면모를 이어갈 수 있는 디딤돌 역할을 할 것으로 본다” 고 말했다.
이번 기술 개발과 관련하여 TiO2박막트랜지스터의 원천특허는 KAIST 소유로 돼 있는데, 2007년 3월 국내특허를 출원하여 오는 10~11월 중에 등록될 예정이다. 지난 3월에는 지식경제부 해외특허 지원프로그램으로 채택되어 미국, 일본, 유럽에 관련기술 특허 등이 출원 중에 있다. 지난 7월 이 기술과 관련한 기술적 내용의 일부는 미국 IEEE 전자소자誌(IEEE Electron Device Letters)에 발표되었고, 오는 12월 5일, 일본 니가타에서 열리는 국제디스플레이학회(IDW 2008, International Display Workshop 2008)에서도 발표될 예정이다.
신물질 TiO2기반 투명박막트랜지스터 기술개발팀 연구책임자인 朴 교수는 미국 미시간대학교 전자공학과에서 박사학위를 받았으며, 한국, 미국, 일본 등 여러 나라의 산업체에서 근무한 경력을 갖고 있다.
<보충설명>
■ 기술의 배경
현재 국내 대기업(삼성 LCD, SDI, LG디스플레이등) 과 일본업체(소니, 마츠시타, 샤프)들 중심으로 가까운 미래 다가올 AMOLED 및 미래 투명디스플레이의 구동회로용 TFT(Thin Film Transistor) 기술개발에 대한 관심이 뜨겁다. 불행히도 기존 a-Si이나 Poly-Si기술의 한계(신뢰성, 면적제한문제)로 향후 디스플레이 backplane용 TFT는 산화물반도체로 구현되어야 한다는 사실은 이미 산학연에서 공감하고 있으나, 지금까지 산화물반도체TFT는 주로 ZnO계열 중심으로 3원계(ZTO) 또는 4원계(IGZO)를 이용하여 개발되었고 관련 해외특허도 3,000건이상 출원되었거나 등록되어 있다. 또한 In이나 Ga을 포함한 ZnO TFT의 성능은 우수하나 희소성금속으로 높은 국제시장가격과 급작스런 수요 증가시 shortage의 불안감을 항상 가지고 있어 새로운 대체 산화물을 이용한 TFT개발이 필요한 시점이다.
■ 기술의 특징
TiO2(산화티타늄) 물질은 ZnO(산화아연)와 Optical Energy bandgap이 거의 같고(3.4eV) 전자이동도도 ZnO 못지 않게 높으며, 무엇보다도 성막시 재료비가 저렴하다는 장점을 가지고 있다. 최근 KAIST 전기전자과 박재우 교수팀과 ㈜테크노세미켐, 삼성LCD총괄이 공동연구를 통해 세계 최초로 TiO2 박막을 active channel(활성층)로 채택하여 투명 산화물 TFT를 구현하는 데 성공했다. 연구팀은 TiO2박막을 향후 디스플레이 산업에서 양산화와 대형화를 고려하여 기존 반도체/디스플레이 산업용 양산장비로 널리 알려진 CVD(Chemical Vapor Deposition: 화학기상증착)법으로 낮은 온도(250C)에서 성막하여 박막형 트랜지스터를 구현하는데 성공했다. 낮은 온도에서 CVD장치로 투명박막트랜지스터를 구현할 수 있다는 의미는 디스플레이의 대형화(현재 10, 11세대 규격 디스플레이기술 개발 중)가 가능하며, Soda-lime glass와 같은 저렴한 기판을 사용할 수 있기 때문에 재료비 절감효과를 가져올 수 있으며, 향후 투명 및 플렉시블 전자/디스플레이 응용에도 가능하다는 것이다.
2008.08.06
조회수 29162
-
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발
- 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재
KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다.
은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다.
金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다.
은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다.
이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다.
<붙임1. 용어해설>
■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다.
■ 은 나노섬유의 의료분야 응용
은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다.
■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다.
<붙임2. 관련 사진 및 설명>
1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진
2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 28002