-
물리학 난제였던 유전율 텐서 측정 구현
우리 대학 물리학과 박용근 교수 연구팀이 기존에는 이론조차 존재하지 않았던 물리학 난제 중 하나인 유전율 텐서의 3차원 단층 촬영 방법을 개발했다고 4일 밝혔다.
유전율 텐서는 빛과 물질의 상호작용을 근본적으로 기술하는, 물질의 광학적 이방성(異方性, 방향에 따라 달라 보이는 특성)을 정량적으로 표현할 수 있는 중요한 물리량이다. 유전율은 고등학교 물리학에서도 다루는 기본적인 개념이지만, 지금까지 3차원 유전율 텐서를 실험적으로 측정할 수 있는 방법이 존재하지 않았다. 병리학, 재료과학, 연성물질 과학, 또는 디스플레이 등 다양한 분야에서 갖는 중요성에도 불구하고, 직접적으로 측정할 방법이 없다는 한계가 있었다. 현재까지도 3차원 광학적 이방성은 2차원 편광현미경 측정 및 시뮬레이션을 통해 부정확하게 추정할 수밖에 없다.
3차원 유전율 텐서의 측정은 물리학, 광학 분야의 오래된 난제 중 하나였다. 1967년 광학적 이방성을 무시하고 유전율 텐서를 3차원 굴절률 수치로 단순화하여 측정하는 기술이 발명돼 지난 50여 년간 빠르게 성장하고 상용화까지 성공했지만, 여전히 3차원 유전율 텐서를 측정하는 방법은 개발되지 못했다.
여태껏 이 문제가 풀리지 못했던 까닭은, 3개의 고유치를 가지는 유전율 텐서를 측정하기에는 빛의 편광 방향 자유도가 2개로 제한되기 때문이다.
재료과학 분야 최고 권위지인 `네이처 머티리얼즈(Nature Materials, IF 43.84)'에 3일 발표된 이번 연구(논문명: Tomographic measurements of dielectric tensors at optical frequency)에서 연구팀은 이러한 한계를 극복하고 광학적 이방성 구조의 3차원 유전율 텐서 단층 촬영 이론을 개발해 구현하는 데 성공했다.
기존의 고정관념에서 벗어나, 빛의 방향을 살짝 틀어주어 중첩된 정보를 활용하면, 편광 방향 자유도를 3개로 늘려서 유전율 텐서의 3개 고유치를 모두 구할 수 있다는 점에 착안한 것이 연구진의 핵심 아이디어다. 이렇게 3개의 편광 자유도를 제어하는 것과 동시에, 병원에서 사용하는 엑스레이, 컴퓨터단층(CT) 촬영처럼, 여러 각도에서 광학적 이방성 구조를 홀로그래피 현미경을 개발하여 촬영함으로써 3차원 유전율 텐서를 직접적으로 측정했다.
연구팀은 개발된 방법을 이용해 뒤틀린 네마틱 (twisted nematic) 액정과 같은 잘 알려진 3차원 광학적 이방체의 3차원 유전율 텐서를 성공적으로 측정함으로써 기술의 구현을 입증했다. 더 나아가 열적 비평형 상태로 성장-소멸-융합하는 액정 동역학, 반복되는 위상학적 특이점 구조의 액정 네트워크 등 기존의 방법들로 추정하기 어려웠던 3차원 유전율 텐서를 실험적으로 최초 측정하는 성과를 거뒀다.
제1 저자인 물리학과 신승우 박사는 "지금까지 직접 볼 수 없던 유전율 텐서를 실제로 측정할 수 있는 방법론을 처음으로 개발한 것이 큰 의미ˮ라며 "액정, 카이랄 물질, 암조직과 같은 병리 조직 내부의 콜라겐 파이버 등과 같은 광학적 방향성을 보이는 다양한 물질들의 3차원 구조를 정량적이고 비침습적으로 직접 관측할 수 있기에 여러 분야에 범용적, 필수적으로 사용할 수 있는 도구로 기대한다ˮ라고 말했다.
이번 연구는 박용근 교수 연구팀의 기술 개발 이외에도 다학제적 접근을 통해 결실을 볼 수 있었다. UNIST 물리학과 정준우 교수, 우리 대학 생명화학공학과 김신현 교수, 우리 대학 화학과 윤동기 교수 연구팀들이 오랜 기간 발전시켜온 액정 구조체 제작 기술 덕분에, 다양한 액정 구조체를 통해 기술의 실험적 검증을 효과적으로 진행할 수 있었다.
한편 이번 연구는 과학기술정보통신부의 정보통신기획평가원, 한국연구재단 창의연구사업 및 G-CORE 사업의 지원을 받아 수행됐다.
2022.03.04
조회수 10284
-
디스플레이용 퀀텀닷 패턴 형태에 상관없이 커피링을 완벽 제어하는 기술 개발
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다.
기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519)
최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다.
커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D)
커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다.
연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다.
김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
2022.03.02
조회수 9400
-
기후 변화 예측 정확도 개선 기술 개발
우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수가 국제 공동 연구를 통해 21세기 후반의 전 지구 강수량변화에 대한 기후모델의 예측 불확실성을 줄이는 데 처음으로 성공했다고 28일 밝혔다.
전 지구의 평균 기온이 미래에 어느 정도 상승할지에 대한 예측은 보통 복수의 기후모델에 의해 이루어지며 각 기후모델 사이에는 무시할 수 없는 편차가 존재한다. 온도 상승 예측의 불확실성을 줄이기 위한 연구는 성공적으로 수행돼왔으나 강수량 변화 예측의 불확실성을 감소시키는 연구는 아직 보고되지 않고 있다.
KAIST, 일본 국립환경연구소, 일본 동경대학교로 구성된 국제 공동 연구팀은 67개의 기후모델에 의한 기온과 강수량의 시뮬레이션 결과를 과거의 관측자료와 비교함으로써 강수량변화 예측의 불확실성을 줄이는 데 세계 최초로 성공해 그 결과를 국제 학술지 `네이처 (Nature)' 2월 23일 판에 출판됐다. (논문명: Emergent constraints on future precipitation changes; doi.org/10.1038/s41586-021-04310-8)
지금까지 강수량변화 예측의 불확실성 개선이 어려웠던 가장 큰 이유로서 과거의 강수량변화에 온실가스와 대기오염물질인 에어로졸이 함께 작용했음을 들 수 있다. 과거에는 두 요인이 함께 증가했으나 그와 달리 미래에는 적극적인 대기오염 대책에 의한 에어로졸의 급격한 감소에 따라 온실가스의 증가만이 지배적으로 될 것이기 때문이다.
다시 말해 미래의 강수량 변화는 주로 온실가스 농도증가로 설명할 수 있지만, 이는 과거의 메커니즘과 다르므로 관측자료로부터 미래 예측의 불확실성 저감을 위한 정보를 얻는 것이 어려웠다고 할 수 있다.
연구팀은 세계평균 에어로졸 배출량이 거의 변하지 않는 기간(1980~2014년) 동안 모델과 관측의 트렌드를 비교함으로써 온실가스 농도증가에 대한 기후 응답의 신뢰성을 평가할 수 있다고 가정했다. 중간 정도의 온실가스 배출 시나리오(SSP-RCP 245) 에 있어서, 67개의 기후모델이 19세기 후반부터 21세기 후반에 강수량이 1.9-6.2% 증가한다고 예측했으나 각 기후모델의 온실가스에 대한 기후 응답 신뢰성을 고려함으로써 강수량증가의 예측 폭의 상한(6.2%)을 5.2-5.7%까지 감소시킬 수 있었으며 예측의 분산 또한 8-30% 줄이는 것이 가능했다.
공동 저자인 김형준 교수는 "이번 연구를 통해 기온뿐만 아니라 강수량에 대한 기후변화의 예측 정확도를 개선할 수 있게 됐다. 이로써 더욱 신뢰도 높은 기후변화 영향평가와 효율적인 기후변화 대응 및 적응 관련 정책 수립에 이바지할 수 있을 것이라 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)의 지원을 받아 수행됐다.
2022.02.28
조회수 10401
-
강화학습을 활용한 인공지능으로 자유구조 메타표면 최적화 성공
우리 대학 전기및전자공학부 장민석 교수 연구팀이 KC ML2(반도체 제조 솔루션 기업 KC에서 설립한 연구조직) 박찬연 박사와 공동연구를 통해 강화학습에 기반한 자유 구조의 메타 표면 구조 설계 방법을 제안했다고 25일 밝혔다.
메타 표면은 빛의 파장보다 훨씬 작은 크기의 구조를 이용해 이전에 없던 빛의 성질을 달성하는 나노광학 소자를 뜻한다. 나노광학 소자는 빛의 특성을 미시 단위에서 제어하여, 자율주행에 쓰이는 라이다(LiDAR) 빔조향 장치, 초고해상도 이미징 기술, 디스플레이에 활용되는 발광소자의 광특성 제어, 홀로그램 생성 등에 활용될 수 있다. 최근 나노광학 소자에 대한 기대 성능이 높아지면서, 이전에 있던 소자구조를 훨씬 뛰어넘는 성능을 달성하기 위해 자유 구조를 가지는 소자의 최적화에 관한 관심이 증가하고 있다. 자유 구조와 같이 넓은 설계공간을 가진 문제에 대해 강화학습을 적용해 해결한 사례는 이번이 최초다.
우리 대학 서동진 연구원 및 ML2 남원태 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 포토닉스(ACS Photonics)' 2022년 2월호 전면 표지논문으로 게재됐다. (논문명 : Structural Optimization of a One-Dimensional Freeform Metagrating Deflector via Deep Reinforcement Learning)
강화학습은 동물이 학습하는 방법을 모방한 인공지능 방법론이다. 동물 행동 심리학에서 `스키너의 상자'라고 알려진 실험이 그 모티브가 되었는데, 해당 실험은 상자 내부에 쥐를 넣고 누르면 먹이가 나오는 지렛대를 함께 두는 방식으로 진행된다. 처음에 무작위 행동을 하던 쥐는 지렛대를 누르면 먹이가 나오는 것을 확인한다. 시간이 지날수록 더 높은 빈도수로 지렛대를 누르게 되는데, 이렇게 어떠한 보상(먹이)이 행동(지렛대를 누르는 행위)을 `강화'하는 것을 관찰할 수 있다. 해당 실험과 매우 유사한 구조를 갖는 강화학습은 행동 주체가 자기를 둘러싼 `환경'으로부터 `보상'을 받으면서 환경에 대해 배워나가는 인공지능 방법론이다.
2016년 이세돌 9단과의 대국에서 승리한 구글 딥마인드의 `알파고(AlphaGo)'가 그 대표적 사례다. 알파고는 바둑판으로 표현되는 환경과의 상호작용을 통해 바둑의 복잡한 규칙을 학습했고, 우주에 있는 원자보다 많다고 알려진 경우의 수 중 최적에 가까운 선택을 할 수 있었다. 최근 인공지능 학계에서 강화학습은 인간의 지능과 가장 유사한 형태의 인공지능 방법론으로 크게 주목받고 있다.
연구팀은 복잡한 환경을 쉽게 학습할 수 있는 강화학습의 특징을 메타 표면 자유 구조의 최적화에 활용하는 아이디어를 제안했다. 이전에 메타 표면 자유 구조 최적화 기술은 너무 많은 경우의 수로 인해 해결하기 어려운 것으로 여겨졌다. 따라서 기존 연구 방향은 주로 간단한 기본도형 등으로 구조를 단순화한 방식을 활용했다. 하지만 해당 방식은 기하학적 구조가 제한된다는 한계가 있었고, 더욱 복잡한 구조에 대한 최적화 기술은 달성하기 어려운 것으로 여겨졌다.
연구팀이 제안한 알고리즘은 아주 간단한 아이디어에서 출발한다. 강화학습의 `행동'을 구조의 구성요소를 하나씩 `뒤집는' 것으로 정의하는 것이다. 이것은 기존에 구조를 전체적으로 생성하는 방식으로만 생각되었던 자유 구조의 최적화에 대한 발상을 뒤집는 것이었다. 연구팀은 해당 방법을 이용해 메타 표면에 대한 특별한 사전지식 없이도 가능한 구조를 넓게 탐색하고 최적 구조를 발견할 수 있음을 보였다. 또한, 많은 입사 조건에서 최신 성능과 비슷하거나 앞서며 특정 조건에서는 100%에 가까운 효율을 달성했다.
이번 연구를 통해 자유 구조 최적화 분야의 새로운 돌파구를 찾을 것으로 기대되며, 광소자뿐 아니라 많은 분야의 소자 구조 최적화에도 활용될 수 있을 것으로 기대된다.
제1 저자인 서동진 연구원은 "강화학습은 복잡한 환경에서 최적의 경우를 찾는 데에 효과적인 알고리즘이다. 이번 연구에서 해당 방법으로 자유 구조의 최적화를 수행하는 것에 성공하는 사례를 남겨 기쁘다ˮ고 말했다.
장민석 교수는 "광공학에 인공지능 기술을 적용하는 분야에서 좋은 결과가 나와 과학의 위상을 높이는 데 기여하기를 희망한다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업(전략연구), 한-스위스 이노베이션프로그램, 그리고 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.02.25
조회수 11066
-
인간의 촉각 뉴런을 모방한 뉴로모픽 모듈 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다.
우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification for a Neuromorphic Tactile System).
인공지능을 이용한 촉각 인식 시스템은 센서 어레이에서 수신된 신호를 인공 신경망을 이용해 높은 정확도로 물체, 패턴, 또는 질감을 인식할 수 있어, 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템의 대부분은 폰 노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 높은 전력을 소모할 수밖에 없어 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다.
한편, 생물학적 촉각 인식 시스템은, 스파이크 형태로 감각 정보를 전달함으로써 낮은 전력 소비만으로 물체, 패턴, 또는 질감을 판별할 수 있다. 따라서 저전력 촉각 인식 시스템을 구축하기 위해, 생물학적 촉각 인식 시스템을 모방한 뉴로모픽 촉각 인식 시스템이 주목을 받고 있다. 뉴로모픽 촉각 인식 시스템을 구현하기 위해서는 인간의 촉각 뉴런처럼 외부 압력 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 압력 센서는 이러한 기능을 수행할 수 없다.
연구팀은 마찰대전 발전기(triboelectric nanogenrator, TENG)와 바이리스터(biristor) 소자를 이용해, 압력을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 모듈을 개발했다. 제작된 뉴로모픽 모듈은 마찰대전을 이용하기 때문에, 자가 발전이 가능하고 3 킬로파스칼(kPa) 수준의 낮은 압력을 감지할 수 있다. 이는 손가락으로 사물을 만질 때, 피부가 느끼는 압력 정도의 크기다. 연구팀은 제작된 뉴로모픽 모듈을 바탕으로 저전력 호흡 모니터링 시스템을 구축했다. 호흡 모니터링 센서가 코 주위에 설치되면 들숨 및 날숨을 감지하고 복부 주변에 설치되면 복식호흡을 별도로 감지할 수 있다. 따라서 수면 중 무호흡이 일어날 경우, 이를 감지해 경보를 보냄으로써 심각한 상황으로의 진행을 미연에 방지할 수 있다.
연구를 주도한 한준규 박사과정은 "이번에 개발한 뉴로모픽 센서 모듈은 센서 구동에 필요한 에너지를 스스로 생산하는 반영구적 자가 발전형으로 사물인터넷(IoT) 분야, 로봇, 보철, 인공촉수, 의료기기 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업, BK21 사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.02.25
조회수 12316
-
생각만으로 정확하게 로봇팔 조종이 가능한 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 정재승 교수 연구팀이 3차원 공간상에서 생각만으로 로봇팔을 높은 정확도 (90.9~92.6%)로 조종하는 `뇌-기계 인터페이스 시스템'을 개발했다고 23일 밝혔다.
정 교수 연구팀은 인공지능과 유전자 알고리즘을 사용해 인간의 대뇌 심부에서 측정한 뇌파만으로 팔 움직임의 의도를 파악해 로봇팔을 제어하는 새로운 형태의 뇌-기계 인터페이스 시스템을 개발했다. 뇌 활동만으로 사람의 의도를 파악해 로봇이나 기계가 대신 행동에 옮기는 `뇌-기계 인터페이스' 기술은 최근 급속도로 발전하고 있다. 하지만 손을 움직이는 정도의 의도 파악을 넘어, 팔 움직임의 방향에 대한 의도를 섬세하게 파악해 정교하게 로봇팔을 움직이는 기술은 아직 정확도가 높지 않았다.
하지만 연구팀은 이번 연구에서 조종 `방향'에 대한 의도를 뇌 활동만으로 인식하는 인공지능 모델을 개발했고, 그 결과 3차원 공간상에서 24개의 방향을 90% 이상의 정확도로 정교하게 해석하는 시스템을 개발했다.
게다가 딥러닝 등 기존 기계학습 기술은 높은 사양의 GPU 하드웨어가 필요했지만, 이번 연구에서는 축적 컴퓨팅(Reservoir Computing) 기법을 이용해 낮은 사양의 하드웨어에서도 인공지능 학습이 가능하여 스마트 모바일 기기에서도 폭넓게 응용될 수 있도록 개발해, 향후 메타버스와 스마트 기기에도 폭넓게 적용이 가능할 것으로 기대된다.
우리 대학 김훈희 박사(現 강남대 조교수)가 제1 저자로 참여한 이번 연구는 국제학술지 `어플라이드 소프트 컴퓨팅(Applied Soft Computing)' 2022년 117권 3월호에 출판됐다. (논문명 : An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout).
뇌-기계 인터페이스는 사용자의 뇌 활동을 통해 의도를 읽고 로봇이나 기계에 전달하는 기술로서 로봇, 드론, 컴퓨터뿐만 아니라 스마트 모바일 기기, 메타버스 등에서의 이용될 차세대 인터페이스 기술로 각광받고 있다.
특히 기존의 인터페이스가 외부 신체 기관을 통해 명령을 간접 전달(버튼, 터치, 제스처 등)해야 하지만 뇌-기계 인터페이스는 명령을 뇌로부터 직접적 전달한다는 점에서 가장 진보된 인터페이스 기술로 여겨진다.
그러나 뇌파는 개개인의 차이가 매우 크고, 단일 신경 세포로부터 정확한 신호를 읽는 것이 아니라 넓은 영역에 있는 신경 세포 집단의 전기적 신호 특성을 해석해야 하므로 잡음이 크다는 한계점을 가지고 있다.
연구팀은 이러한 문제 해결을 위해 최첨단 인공지능 기법의 하나인 `축적 컴퓨팅 기법'을 이용해 뇌-기계 인터페이스에서 필요한 개개인의 뇌파 신호의 중요 특성을 인공신경망이 자동으로 학습해 찾을 수 있도록 구현했다.
또한 유전자 알고리즘(Genetic Algorithm)을 이용해 인공지능 신경망이 최적의 뇌파 특성을 효율적으로 찾을 수 있게 시스템을 설계했다. 연구팀은 심부 뇌파를 최종 해석하는 리드아웃(Readout)을 가우시안(Gaussian) 모델로 설계해 시각피질 신경 세포가 방향을 표현하는 방법을 모방하는 인공신경망을 개발했다. 이런 리드아웃 방식은 축적 컴퓨팅의 선형 학습 알고리즘을 이용해 일반적 사양의 간단한 하드웨어에서도 빠르게 학습할 수 있어 메타버스, 스마트기기 등 일상생활에서 응용이 가능해진다.
특히, 이번 연구에서 만들어진 뇌-기계 인터페이스 인공지능 모델은 3차원상에서 24가지 방향 즉, 각 차원에서 8가지 방향을 디코딩할 수 있으며 모든 방향에서 평균 90% 이상의 정확도 (90.9%~92.6% 범위)를 보였다. 또한 연구된 뇌-기계 인터페이스는 3차원 공간상에서 로봇팔을 움직이는 상상을 할 때의 뇌파를 해석해 성공적으로 로봇팔을 움직이는 시뮬레이션 결과를 보였다.
인공지능 시스템을 만든 제1 저자인 김훈희 박사는 "공학적인 신호처리 기법에 의존해 온 기존 뇌파 디코딩 방법과는 달리, 인간 뇌의 실제 작동 구조를 모방한 인공신경망을 개발해 좀더 발전된 형태의 뇌-기계 인터페이스 시스템을 개발해 기쁘다ˮ면서 "향후 뇌의 특성을 좀 더 구체적으로 이용한 `뇌 모방 인공지능(Brain-inspired A.I.)'을 이용한 다양한 뇌-기계 인터페이스를 개발할 계획이다ˮ라고 말했다.
이번 연구를 주도한 연구책임자 정재승 교수는 "뇌파를 통해 생각만으로 로봇팔을 구동하는 `뇌-기계 인터페이스 시스템'들이 대부분 고사양 하드웨어가 필요해 실시간 응용으로 나아가기 어렵고 스마트기기 등으로 적용이 어려웠다. 그러나 이번 시스템은 90%~92%의 높은 정확도를 가진 의도 인식 인공지능 시스템을 만들어 메타버스 안에서 아바타를 생각대로 움직이게 하거나 앱을 생각만으로 컨트롤하는 스마트기기 등에 광범위하게 사용될 수 있다ˮ고 말했다.
이번 연구 결과는 사지마비 환자나 사고로 팔을 잃은 환자들을 위한 로봇팔 장착 및 제어 기술부터, 메타버스, 스마트기기, 게임, 엔터테인먼트 애플리케이션 등 다양한 시스템에 뇌-기계 인터페이스를 적용할 가능성을 열어 줄 것으로 기대된다.
이번 연구는 한국연구재단 뇌 원천기술개발사업의 지원을 받아 수행됐다.
2022.02.24
조회수 14027
-
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다.
리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다.
하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다.
이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다.
그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다.
강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다.
공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다.
대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다.
우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries).
강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다.
한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 10948
-
빛에 담긴 비대칭성을 증폭하는 카이랄 초분자 형성원리 규명
우리 대학 화학과 서명은 교수를 주축으로 한 연구팀이 분자 자기조립 시스템에 대한 연구를 통해 빛으로부터 *초분자 나선 방향이 결정되는 원리를 규명했다고 16일 밝혔다.
☞초분자(supermolecule): 분자 간 결합 또는 인력을 통해 둘 또는 그 이상의 작은 분자들이 모여 생성된 거대한 분자들의 집합을 말한다. 효소 등 기능성 생체 분자들도 초분자로 볼 수 있다.
단백질을 이루는 아미노산 분자는 오른손과 왼손처럼 모양은 같지만 서로 겹칠 수 없는 거울상이 존재할 수 있다. 그러나 지구상에서 탄생한 생명은 한 종류의 거울상 아미노산만을 선택해 단일한 *카이랄성을 띠게끔 진화했다. 아미노산에 담긴 카이랄 정보가 단백질로 전달되면 한쪽으로 꼬인 나선과 같이 분자를 넘어선 초분자 수준에서 증폭돼 나타나며, 이는 단일 카이랄성이 만들어지는 데 중요했을 것으로 여겨진다. 즉, 어떻게 카이랄성이 탄생하고 증폭됐는지는 자연이 단일 카이랄성을 지니게 된 이유와 연관 지을 수 있어, 생명의 기원과 깊게 관련된 문제다.
☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가리키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. (Ex) 오른손 & 왼손)
태초에 같은 양씩 존재했을 거울상 분자 한 쌍 중에 한쪽의 비율이 높아질 수 있는 원인으로 시계 방향 혹은 반대로 회전하면서 나아가는 빛인 원편광이 흔히 거론되는데, 거울상 분자가 원편광을 흡수하는 정도가 서로 다르기 때문이다. 자연적으로 지구에 내리쬐는 원편광은 그 회전 방향이 무작위할 것이므로 분자와 원편광에 담긴 카이랄 정보가 서로 경쟁하는 가운데 어느 순간 한쪽 거울상이 과잉되면서 단일한 카이랄성이 출현했을 것으로 추론할 수 있으나, 분자와 원편광으로부터 카이랄 정보가 동시에 전달될 때 어떤 현상이 일어나는지는 거의 연구된 바 없었다.
우리 대학 서명은 교수 연구팀은 빛에 반응해 자기조립되는 프로펠러 모양의 분자를 찾고, 분자와 빛에 담긴 카이랄 정보가 전달돼 초분자 나선으로 나타날 때 각각 얼마나 효과적인지 연구했다. 먼저 원편광의 회전 방향과 분자 프로펠러 방향이 맞을 때 광화학 반응이 우세하게 일어나고, 이는 자기조립을 유도해 정해진 나선 방향으로 성장함을 밝혔다.
나아가 한쪽 거울상 분자가 과잉된 조건에서 원편광을 쬐어 나선 방향이 어느 쪽을 따라가는지 살핀 결과, 양자의 정보가 일치할 때 초분자 카이랄성이 증폭되고 반대일 때 상쇄되며, 심지어 빛으로 분자 카이랄 정보를 눌러 나선 방향을 반전할 수 있음을 정량적으로 보였다. 또한 일정 비율 이상의 거울상 분자가 축적되면 빛과 관계없이 단일한 나선 방향이 유지되는 것 역시 확인했다.
원편광을 선택적으로 걸러내는 소재는 현재 OLED, 3D 안경 등 디스플레이에 널리 쓰이고 있고, 원편광을 내는 재료 등은 차세대 디스플레이용 소재로 떠오르고 있다. 초분자 나선 구조는 개개의 분자에 비해 원편광을 훨씬 효과적으로 흡수하고 방출할 수 있다. 따라서 초분자 나선 구조를 한번 더 조립하여 분자-초분자-거시적 스케일에서 모두 카이랄성을 띠는 멀티스케일 카이랄 구조체를 구현한다면 카이랄성을 극도로 증폭할 수 있는 소재를 만들 수 있을 것으로 기대된다. 또한 약물로 쓰이는 화합물은 탈리도마이드처럼 반대 거울상 분자가 기형을 유발하는 등의 부작용을 일으킬 수 있는 만큼, 한쪽 카이랄성만을 가지게끔 합성하는 것이 필수적이다. 멀티스케일 카이랄 구조체는 이러한 비대칭 합성에서도 강력한 카이랄 환경을 제공하여 입체 선택성이 높은 촉매를 제조하거나, 거울상 분자를 효과적으로 검출할 수 있는 센서를 만드는 플랫폼이 될 수 있다.
연구진은 "이번 연구를 통해 빛에 담긴 비대칭성이 어떻게 분자 및 초분자 수준으로 전달되고 증폭될 수 있는지를 이해할 수 있었을 뿐 아니라, 분자에 담긴 정보와 별개로 초분자 카이랄성을 제어할 수 있는 가능성을 보였다는 데 큰 의의가 있다ˮ며, "이번 연구를 발판으로 카이랄 광학 소재, 비대칭 촉매 등 미래 먹거리가 될 수 있는 멀티스케일 카이랄 신소재 개발로 연구를 확장하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 강준수 석박사통합과정 학생이 제1 저자로 연구를 주도하고, 화학과 김우연 교수, 임미희 교수, 윤동기 교수 연구팀이 협업한 이번 연구 결과는 미국화학회가 발행하는 국제 학술지 `미국화학회지(Journal of the American Chemical Society)'에 2월 4일 字로 온라인 게재됐다. (논문명 : Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices)
이번 연구는 한국연구재단(NRF)에서 선정한 선도연구센터인 카이스트 화학과 멀티스케일 카이랄 구조체 연구센터의 지원을 받아 주로 진행됐다.
2022.02.16
조회수 12585
-
수학과 실험을 결합하여 생체시계의 역설 규명
수학과 실험을 결합한 융합연구를 통해 생체시계가 안정적 리듬을 유지하면서도 환경변화에 쉽게 적응할 수 있는 원리가 밝혀졌다. 우리 대학 수리과학과 김재경 교수가 이끄는 기초과학연구원(IBS) 수리 및 계산과학 연구단 의생명 수학 그룹과 우리 대학 수리과학과 연구팀, 그리고 아주대 의과대학 뇌과학과 김은영 교수 연구팀은 공동연구를 통해 초파리 뇌의 생체시계 뉴런들의 생체시계 작동원리를 분석했다.
생체시계(Circadian clock)는 생명체가 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 예를 들어, 생체시계는 밤 9시경이 되면 뇌에서 멜라토닌 호르몬 분비를 유발해 일정 시간이 되면 수면을 취할 수 있도록 하는 등 우리 운동 능력이나 학습 능력에 이르는 거의 모든 생리 작용에 관여한다. 따라서, 평소에는 일정한 시간을 안정적으로 몸에 제시하면서, 동시에 계절 변화에 따른 낮밤의 길이 변화나 해외여행으로 인한 시차 등 환경변화가 생겼을 때는 새로운 환경에 유연하게 적응해서 변화한 시간을 몸에 제시해주어야 한다. 이러한 안정성과 유연성을 동시에 유지하는 생체시계의 역설적인 성질의 원리는 지금까지 알려져 있지 않았다.
초파리 생체시계 뉴런들의 경우, 마스터 뉴런(master neuron)이 외부로부터 들어오는 빛 정보를 취합하여 시간 정보를 슬레이브 뉴런(slave neuron)에 전달하면, 이에 맞춰 슬레이브 뉴런이 일주기 행동을 조절하는 계층구조를 형성하고 있다. 이러한 역할 차이에도 불구하고, 두 뉴런의 생체시계는 동일한 원리로 작동한다고 알려져 있었다. 2017년 노벨 생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다.
연구진은 초파리에서 CLK에 변이가 생겼을 때 마스터 뉴런과 슬레이브 뉴런에서 서로 다른 PER변화 양상이 나타나는 것에 착안하여 마스터 뉴런과 슬레이브 뉴런이 만들어내는 PER 단백질의 변화 양상을 1000여 개 수리 모델을 개발하여 분석한 결과, 마스터 뉴런의 PER이 슬레이브 뉴런의 PER에 비해 빠르게 합성되었다 분해되고 있음을 예측하였다. 이러한 마스터 뉴런의 독특한 성질 덕분에, 평소에 강한 PER 리듬을 생성해서 안정적인 시계 역할을 하다가 외부 환경에 변화가 일어났을 때 빠르게 적응할 수 있음 역시 가상 시뮬레이션을 통해 예측하였다. 이러한 마스터 뉴런에 관한 수리모델링 예측은 초파리 생체 실험을 통해서도 검증되었다.
김재경 교수는 “모든 세포의 생체시계는 당연히 비슷한 방식으로 작동될 것이란 오래된 믿음이 수학을 이용한 분석 덕분에 틀렸음을 알게 되었다”며 “수학과 실험을 융합한 방식으로 문제에 접근하였기 때문에 문제를 해결할 수 있었다”고 말했다. 또한, 김은영 교수는 “마스터 뉴런 생체시계의 독특한 성질 덕분에 생체시계가 안정성과 유연성이라는 역설적인 성질을 모두 가질 수 있었다”며 “모든 세포의 생체시계가 천편일률적으로 작동하는 대신 자신의 역할에 맞게 다른 작동 방식을 취한다는 점이 놀라웠다”고 말했다.
생체시계가 안정성과 유연성을 동시에 유지하지 못하면 다양한 환경에서 일정한 수면패턴을 유지할 수 없고, 일주기 리듬 수면장애가 발생한다. 이번 연구결과는 일주기 리듬 수면장애의 원인을 규명하고 치료법을 찾는 새로운 패러다임을 제시할 수 있을 것으로 예상된다.
정의민, 권미리, 조은주 박사가 공동 제 1저자로 참여한 이번 연구결과는 2월 15일 오후 5시(한국시간) 자연과학 분야의 저명 국제학술지인 미국국립과학원회보(Proceedings Of The National Academy Of Sciences, PNAS, IF 11.205)에 게재됐다.
* 논문명: Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons
2022.02.16
조회수 12882
-
단일세포 RNA 시퀀싱을 통한 꽃향기 합성 유전자 발굴
우리 대학 생명과학과 김상규 교수 연구팀이 꽃향기 합성 유전자를 발굴하기 위해 꽃잎 단일세포 RNA 시퀀싱 기술을 개발하고 벤질아세톤(benzylacetone) 꽃향기 합성 경로를 밝혔다.
벤질아세톤은 코요테담배(Nicotiana attenuata) 꽃에서 합성되고 밤에 분비가 되는 향기 물질이다. 이 향기물질은 밤에 활동하는 박각시나방을 유인한다. 그리고 꽃은 꿀을 제공하고 그 대가로 나방은 화분pollen을 멀리 날라준다. 또한 벤질아세톤은 코요테담배 꽃을 먹는 해충을 쫓아내는 기능을 하고 있다. 생태적으로 재미있는 기능을 하고 있는 물질이지만 생합성 경로에 대해서는 완전히 알려진 상태가 아니었다.
일반적으로 식물이 만들어내는 대사물질의 생합성 유전자를 밝히기 위해 사용하는 방법의 단점을 극복하기 위해서 꽃잎 단일세포에서 발현되는 유전자의 연관도를 이용하여 물질대사 경로를 밝힐 수 있다는 것을 이번 연구를 통해서 증명하였다. 특히 유전정보가 제한적으로 알려져 있고 다양한 생태형 ecotype을 가진 식물 집단이 없어도 비모델 식물에서 물질합성 경로에 있는 효소와 그 효소의 발현을 조절하는 전사인자 등도 찾을 수 있는 가능성을 제시하였다.
단일세포 RNA 시퀀싱의 장점을 활용하여 향기합성 유전자가 만들어지는 세포를 구별하고 꽃잎에서 향기가 합성되는 위치도 밝힐 수 있었다.
우리 대학 생명과학과 강문영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구 결과는 'New Phytologist' 학술지에 게재됐다. (관련 논문명: Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent)
한편 이번 연구는 삼성미래기술육성사업과 포스코사이언스펠로십 지원을 받아 수행됐다.
2022.02.14
조회수 7289
-
코로나19 바이러스의 높은 전파율은 위중증화 비율을 낮춘다는 연구 결과를 수리 모델로 입증
우리 대학 의과학대학원 신의철 교수, 수리과학과 김재경 교수 공동연구팀은 수학 모델 연구를 통해 ‘높은 바이러스 전파율은 궁극적으로 코로나19 위중증화 비율을 낮춘다’는 역설적인 연구결과를 발표했다.
2년 전부터 시작된 코로나19 팬데믹이 아직 종식되지 않은 가운데, 오미크론 변이주가 우세 종이 되면서 한국을 비롯한 세계 각국에서는 코로나19 환자 수가 급증하고 있다. 한편, 이러한 오미크론의 유행이 오히려 코로나19가 경증 호흡기 질환으로 토착화되는 것을 앞당기면서 코로나19 팬데믹의 종식을 가져올 수 있다는 조심스러운 전망들도 나오고 있다. 이와 동시에, 일부 유럽 국가들에서는 사회적 거리두기 등의 방역 대책을 완화하고 코로나19 이전의 일상생활로 돌아가는 정책을 취하기 시작하고 있다.
이렇게 코로나19 팬데믹의 미래가 아직 불분명하고 혼돈스러운 상황에서, 김재경 교수 및 홍혁표 석박사통합과정, 고려대 구로병원 감염내과 노지윤 교수, 신의철 교수 등으로 구성된 공동연구팀은 ‘바이러스 전파율이 변화하면 코로나19 토착화의 과정에서 어떤 일이 일어날까?’하는 질문에 대한 답을 구하기 위해 수학 모델을 만들어 분석했다.
이번 연구에서는 코로나19 바이러스에 대한 인체 면역반응을, 짧게 유지되는 중화항체 면역반응과 오래 유지되는 T 세포 면역반응으로 나누어 수학 모델에 적용하는 새로운 접근법을 택했다. 그리고 돌파감염이 빈번히 일어날 수 있지만, 돌파감염 후 회복하고 나면 면역반응이 다시 증강된다는 사실을 바탕으로 분석했다.
그 결과, 백신 접종률이 높은 상황에서는 바이러스 전파율이 높아지면 일시적으로는 코로나19 환자 수는 증가하지만 궁극적으로 코로나19 위중증화 비율이 낮아지면서 위중증 코로나19 환자 수는 줄어들고 결과적으로 코로나19가 경증 호흡기 질환으로 토착화되는 과정이 오히려 빨라질 수 있다는 역설적인 연구 결과를 얻었다.
연구팀이 가정한 바이러스 전파율이 높아지는 상황은, 실제에서는 사회적 거리두기 완화나 오미크론 등 전파가 잘 되는 변이주의 출현으로 일어날 수 있다. 이번 연구 결과는 오미크론 자체의 낮은 위중증 성질은 배제하고, 높은 전파율이 일으키는 결과를 예측한 것으로서 코로나19 토착화 과정에서 일어날 수 있는 일들을 잘 설명해 주고 있다.
연구팀은 연령이나 기저질환 유무에 따라 다르게 나타나는 위중증률을 수학 모델에서 고려하지 않은 제한점을 이야기하며, 특히 고위험군 집단을 대상으로 이번 연구 결과를 적용할 때는 주의가 필요하다고 설명했다. 또한 바이러스 전파율이 높아지는 상황에서 일시적으로 증가하는 코로나19 환자 수가 너무 많아지면 의료체계가 붕괴될 수도 있으므로, 이러한 점을 고려해 연구 결과를 신중하게 해석, 적용할 필요가 있다고 연구팀은 설명하였다. 따라서 향후 단계적 일상회복 정책으로 다시 전환할 때는 그 무엇보다도 위중증 환자를 수용할 병상 확보 등 의료체계의 정비가 중요하다는 점을 강조했다.
김재경 교수와 홍혁표 대학원생은 ‘코로나19 팬데믹과 같이 미래가 불투명한 상황에서 수학 모델을 잘 활용함으로써 인간의 직관으로는 유추하기 어려운 역설적인 연구결과를 얻었다’며 앞으로도 의학 연구에서 수학 모델을 적극적으로 이용하는 것이 중요하다는 점을 역설했다.
노지윤 교수와 신의철 교수는 ‘오미크론이 우세 종이 되고 코로나19 환자 수가 급증하는 현 상황에서 무조건 두려워만 할 것이 아니라 과학적 접근을 통해 미래를 예측하고 이를 정책에 반영하는 것이 매우 중요하다’고 강조했다.
이번 연구 결과는 2월 11일 字로 메드아카이브(medRxiv)에 공개됐다(논문 제목: Increasing viral transmission paradoxically reduces progression rates to severe COVID-19 during endemic transition).
한편, 이번 연구는 기초과학연구원, 한국보건산업진흥원, 한국연구재단의 지원을 받아 수행됐다.
2022.02.14
조회수 8645
-
딥러닝을 응용한 신속한 박테리아 검출 방법 개발
우리 대학 전산학부 조성호 교수, 신소재공학과 정연식 교수 공동 연구팀이 딥러닝(deep learning) 기법과 표면 증강 라만 분광법(surface-enhanced Raman spectroscopy, SERS)의 결합을 통해 효율적인 박테리아 검출 플랫폼 확립에 성공했다고 10일 밝혔다.
공동 연구팀은 질량분석법, 면역분석법(ELISA), 중합효소 연쇄 반응(PCR) 등과 같은 일반적인 박테리아 검출 방법보다 획기적으로 빠르게 신호 습득이 가능한 SERS 스펙트럼을 연구팀 고유의 딥러닝 기술로 분석해 다양한 용액 속 박테리아 신호 구분에 성공했다.
전산학부 노어진 석박사통합과정 학생과 신소재공학과 김민준 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제학술지‘바이오센서 및 바이오일렉트로닉스 (Biosensors and Bioelectronics)’1월 18일 字 온라인 판에 게재됐다. (논문명: Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis)
박테리아 감염으로 인한 질병 예방과 원인 분석을 위해 소변 또는 음식물에서 신속한 박테리아 검출법이 요구되며, 다양한 바이오마커 분석물의 스펙트럼 신호를 높은 민감도로 수초~수십초 이내에 측정하는 SERS가 검출 방법으로 주목받고 있다.
박테리아 대상의 기존 SERS 신호 분석은 그 복잡성과 수많은 신호 겹침 현상 때문에 주성분 분석(principal component analysis, PCA)과 같은 통계적인 방법으로도 정확도에 한계가 있었다. 특히, 박테리아의 고유 신호와 간섭현상을 일으키는 환경 매질의 신호를 제거하기 위해 번거로운 박테리아 분리 과정을 거쳐 시간 소모가 큰 것이 문제로 지적돼 왔다. 따라서 SERS를 이용한 박테리아 검출의 활용도를 높이기 위해서는 분리 단계를 최소화하고 신속하게 높은 정확도로 분석하는 기술 개발이 요구된다.
연구팀은 분리 단계를 완전히 생략해 박테리아가 담긴 서식 용액을 SERS 측정 기판에 올려 신호를 측정하고 딥러닝을 이용해 분석하는 방법을 시도했으며, 이를 위해 서로 다른 커널 크기(kernel size)를 가지는 이중 분기 네트워크로 구성된 `듀얼 WK넷' (DualWKNet, Dual-Branch Wide Kernel Network)라는 효율적인 딥러닝 모델을 개발했다.
특정 매질 속 박테리아의 신호는 매질의 신호와 유사해 사람의 눈으로는 구별하기가 사실상 불가능하지만, 연구팀은 DualWKNet을 이용해 스펙트럼 신호의 특징을 추출하고 물, 소변, 소고기 용액, 우유, 배양 배지 등 다양한 환경 내 대장균(Escherichia coli)과 표피 포도상구균(Staphylococcus epidermidis)의 신호를 학습해 최대 98%의 정확도로 검출 및 구분했다.
조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 사용 가능한 라만 신호 분석 방법을 제시했다는 점에서 의미가 있다ˮ며 "의료 분야와 식품 안전 분야로 확장하여 사용돼 발전에 이바지할 것ˮ이라고 예상했다.
한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업의 지원을 받아 수행됐으며, 향후 추가 연구와 기술이전을 통해 KAIST 교원/학생 공동 창업 기업인 ㈜피코파운드리에서 상용화를 추진할 계획이다.
2022.02.10
조회수 10237