< AI대학원 최재식 교수 >
< (왼쪽부터) 한지연 박사과정, 최환일 박사과정, 정해동 박사과정, 알리 투씨(Ali Tousi) 박사과정 >
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
< 그림 1. 오류를 유발하는 내부 유닛과 계층별 유닛 제거에 대한 모식도 >
< 그림 2. 시각적 결함이 포함된 생성 이미지에 대한 수리 결과 >
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다.
2024-11-12우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산
2024-11-04