-
계산적 항체 디자인을 통한 범용성 코로나바이러스 중화항체 개발
우리 대학 생명과학과 오병하 교수 연구팀이 계산적 항체 디자인을 개발하고 이를 적용해 오미크론을 포함해 현재 유행 중인 모든 코로나19 변종 바이러스에 뛰어난 효과를 나타내는 중화항체*를 개발했다고 밝혔다.
*병원체가 신체에 침투했을 때 생화학적으로 미치는 영향을 중화하여 세포를 방어하는 치료용 항체.
코로나19 감염을 유발하는 바이러스로 알려진 SARS-CoV-2 바이러스*는 스파이크 당단백질 부위에 있는 수용체 결합 부위(이하 항원)를 인간 세포막에 붙어있는 hACE2(human Angiotensin Converting Enzyme2) 수용체에 결합시켜 세포 내로 침입하는 기전을 보인다. 이러한 기전에 착안해 세계 유수의 제약회사들의 연구진은 수용체 결합 부위에 붙는 중화항체 에테세비맙(Etesevimab), 밤라니비맙(Bamlanivimab) 등을 개발했다.
*현재 중증급성호흡기 증후군 팬데믹을 일으키고 있는 코로나바이러스. RNA 바이러스이며 바이러스 표면 스파이크 단백질을 통해 인간 ACE2 단백질과 결합하여 세포 내로 침투.
하지만, 이 항체들은 최초에 유행한 코로나바이러스에 효과적인 것과 다르게 알파, 베타, 델타 등과 같은 변이에는 중화능이 없거나 떨어지는 것으로 보고됐다. 변이 바이러스의 등장으로 기존 항체들의 중화능이 떨어지는 이유는 바이러스의 항체 인식부위 서열에 변이가 생겨 항체가 더 이상 제대로 결합하지 못하게 되기 때문이다.
연구진은 계산적 단백질 디자인 방법으로 바이러스 항원에서 변이가 생기지 않는 부분에 강력하게 결합하는 항체를 개발했다. 결과적으로, 이번에 개발한 항체는 오미크론을 포함해 알려진 SARS-CoV-2의 모든 변이 바이러스뿐만 아니라 SARS-CoV-1, 천산갑 코로나 바이러스에도 강력한 결합력*을 보이며 우수한 중화 능력 지표**도 확인했다.
* picomolar(리터당 10-12 mole)에서 femtomolar (리터당 10-15 mole)의 결합력을 보임.
** Neutralization constant 50 (NC50) 가 0.10-8.3 nM로써 높은 중화능을 보임.
연구진이 개발한 항체는 미래에 출현할지 모르는 새로운 중증호흡기증후군 유발 코로나바이러스에도 대응할 수 있는 범용 코로나 치료항체 후보로 기대된다. 또한, 이번에 개발된 계산적 항체 디자인 기술은 항원의 특정 부위에 결합하는 항체를 발굴하는 새로운 방법으로서 그 응용성이 넓고 기술적 가치가 높다.
오병하 교수는 "이번에 개발한 항체는 아미노산 서열이 거의 바뀌지 않는 표면에 결합하기 때문에 향후 출현할 수 있는 신·변종 코로나바이러스에 즉각 대응할 수 있는 치료 물질이 될 수 있다는데 큰 의의가 있다ˮ라고 밝혔으며, 아울러, "이번 연구를 통해 개발한 계산적 항체 디자인 방법은 실험적으로는 얻기 어려운 항체를 개발하는데 널리 이용될 것으로 기대한다ˮ라고 밝혔다.
우리 대학 생명과학과 정보성 박사과정이 제1 저자로 참여한 이번 연구 결과는 항체 전문 학술지 ‘mAbs’에 게재됐다. 이번 연구는 연세대학교 조현수 교수 연구팀과 한국화학연구소 김균도 박사 연구팀도 참여했다. (관련 논문명: Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants)
참고로, 상기 논문 발표 후 오미크론이 새롭게 출현하였으며, 연구진은 개발한 중화항체가 이 변종에도 효과가 있음을 실험적으로 입증하였다.
한편 이번 연구는 KAIST 코로나대응 과학기술뉴딜사업단과 한국과학재단 기초과학연구실 사업의 지원을 받아 수행됐다.
2022.02.04
조회수 8278
-
전기화학 분야의 오랜 난제인 전기 이중층 구조 규명
우리 대학 화학과 김형준 교수 연구팀이 GIST 신소재공학부 최창혁 교수 연구팀과 공동 연구를 통해 전기화학 분야의 오랜 난제 중 하나인 전기 이중층 구조를 이론적으로 규명하는 데 성공했다고 27일 밝혔다.
태양광 발전 등 친환경적으로 생산된 전기를 화학연료의 형태로 변환 및 저장하는 기술은 현재 인류가 직면하고 있는 에너지-환경 문제를 해결할 수 있는 가장 효율적인 미래전략이다. 2019년 리튬이온 배터리의 노벨 화학상 수상에서도 볼 수 있듯이, 전기화학 기술은 이러한 지속 가능한 탄소 중립 사회의 구축에 있어 가장 중요한 코어 기술로 여겨진다. 그러나 전기화학 분야에서 교과서에도 등장하는 100년 가까운 오래된 난제 중 하나가 있는데, 이는 바로 `전기 이중층'이라 불리는 특별한 액체 구조를 밝혀내는 것이다.
전기 이중층은 전기를 가한 금속 전극 주변에 액체 속의 이온이 쌓이면서 생성되는 특이한 층 구조를 의미한다. 이 구조적 특성에 따라 에너지 변환/저장 성능이 결정되기 때문에, 전기 이중층의 구조를 밝히려는 노력이 오랫동안 이어져 왔다. 그러나 전기 이중층은 금속 전극과 액체 전해질 사이 계면에 파묻혀 생성되는 나노 크기 정도 공간 속, 물과 이온들의 복잡한 배열을 가지는 구조이기 때문에 이를 직접 관측하기란 거의 불가능에 가까웠으며 지난 수십 년간 난제의 풀이에 대한 뚜렷한 진보를 이룰 수 없었다.
김형준 교수 연구팀은 컴퓨터 속 디지털 세상에 전기 이중층을 구현해 이러한 실험적 한계를 돌파하고자 했다. 양자 역학 및 분자동역학에 기반한 높은 정확도의 컴퓨터 시뮬레이션 방법을 개발해 그동안 베일에 싸여있던 전기 이중층 구조를 규명하는 데 성공했다. 이러한 가상공간에서의 결과는 GIST 최창혁 교수 연구팀이 실제로 실험에서 측정한 전기 이중층의 물리적 특성을 정확하게 예측할 수 있었다. 더 나아가 이러한 지식의 진보를 바탕으로, `주인-손님 화학' (특정 `손님' 분자만을 선택적으로 받아들이는 `주인' 분자의 특이한 화학적 성질을 의미)이라는 특별한 화학 반응을 활용해 전기 이중층 구조를 실제로 제어할 수 있는 전략을 도출했으며, 이를 통해 탄소 저감에 중요한 전기화학적 이산화탄소의 연료화 반응 효율 제어에 성공했다.
연구진은 "이번 연구를 통해 전기화학 분야의 오래된 난제인 전기 이중층 구조를 규명하는 데 성공했을 뿐만 아니라, 궁극적으로 이를 제어해 친환경 전기 에너지의 변환 및 저장 성능을 획기적으로 높일 가능성에 첫 단추를 끼웠다ˮ며, 이어 "이번 연구를 시발점으로 연료전지, 배터리, 질소 고정화 등 인류의 생존에 꼭 필요한 신 전기화학 기술 개발을 위한 연구를 지속하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 신승재 박사과정 학생과 GIST 신소재공학부 김동현, 배근수 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 1월 10일 字 게재됐다. (논문명: On the importance of the electric double layer structure in aqueous electrocatalysis)
한편 이번 연구는 삼성전자 미래기술육성사업 및 한국연구재단(NRF)의 지원으로 진행됐다.
2022.01.27
조회수 13926
-
광학 칩과 광섬유로 초안정 마이크로파 발생 기술 개발
우리 대학 기계공학과 김정원 교수와 물리학과 이한석 교수 공동연구팀이 광학 칩과 광섬유를 이용해 손바닥만 한 작은 장치로부터 2조분의 1(5×10-13) 수준의 주파수 안정도를 가지는 초안정 마이크로파를 발생하는 기술을 개발했다고 26일 밝혔다.
이 새로운 기술을 이용하면 기존의 마이크로파 발생 기술들보다 월등하게 우수한 위상잡음과 주파수 안정도의 마이크로파를 핸드폰 크기 면적의 작은 장치로부터 생성할 수 있어, 향후 5G/6G 통신, 전파망원경을 이용한 천체 관측, 군용 레이더, 휴대용 양자 센서 및 초고속 신호 분석 기술 등의 다양한 분야에서 획기적인 성능 향상이 가능하다.
우리 대학 기계공학과 권도현 박사(現 한국표준과학연구원)와 나노과학기술대학원 정동인 박사가 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 19일 字에 게재됐다. (논문명: Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs)
최근 초소형 마이크로공진기(microresonator)를 이용해 광 펄스를 생성하는 마이크로콤(micro-comb) 기술이 급격하게 발전하고 있다. 마이크로콤은 광 펄스가 나오는 속도를 수십 기가헤르츠(GHz, 1초에 10억 번 진동)에서 테라헤르츠(THz, 1초에 1조 번 진동)까지 높일 수 있어 고주파 마이크로파(microwave)나 밀리미터파(millimeter-wave) 생성이 쉽고 시스템의 소형화가 가능해 다양한 정보통신기술 시스템의 대역폭 향상과 성능 개선에 핵심적인 역할을 할 것으로 기대되고 있다.
마이크로콤은 이론적으로 펨토초(femtosecond, 10-15초=1,000조분의 1초) 수준의 펄스 간 시간 오차를 가지지만, 소형 소자의 특성상 주변 환경에 의해 쉽게 변해 장시간 그 성능을 유지하는 데에 어려움이 있었다. 이를 해결하기 위해 마이크로콤을 기계적으로 안정한 장치에 주파수 잠금해 안정도를 향상할 수 있으나, 지금까지는 이러한 안정화 장치가 매우 복잡하고 진동에 민감하며 부피가 커서 초소형 마이크로콤이 가지는 장점을 살릴 수 없고 실험실 밖 응용에 활용할 수 없었던 문제가 있었다.
연구팀은 이 문제를 해결하기 위해 광섬유를 이용해 마이크로콤의 주파수를 안정화하는 기술을 개발했다. 1km 길이의 광섬유는 열 기계적(thermomechanical) 잡음 한계에 의한 이론적인 길이 안정도가 1,000조분의 1 수준으로 매우 우수하면서도, 부피가 작고 매우 가벼우면서 가격도 저렴한 장점이 있다. 연구팀은 이러한 광섬유 기반의 안정화 장치를 108 mm × 73 mm × 54 mm 크기로 구현할 수 있었다.
그 결과 생성된 22-기가헤르츠(GHz) 마이크로파의 시간 오차를 상용 고성능 신호 발생기보다 6배 이상 향상된 10펨토초 수준으로 낮출 수 있었으며, 주파수 안정도는 2조분의 1(5×10-13) 수준까지 낮출 수 있었다.
이 기술은 매우 우수한 위상잡음과 주파수 안정도의 마이크로파와 광 펄스를 동시에 생성할 수 있어, 다양한 최첨단 과학기술 분야들에서 활용할 수 있다. 대표적인 예로서 전파망원경 기반의 초장기선 간섭계(very long baseline interferometer, VLBI)의 경우 보다 높은 주파수와 낮은 잡음을 가지는 마이크로파와 광 펄스를 사용하면 측정 분해능과 관측 정밀도를 획기적으로 향상시킬 수 있어 기존에는 관측할 수 없었던 블랙홀의 사건의 지평선(event horizon)과 같은 새로운 천체 현상들을 탐사할 수 있을 것으로 기대된다.
우리 대학 기계공학과 김정원 교수는 "이번에 개발된 초안정 기술을 통신, 레이더, 데이터 변환기와 전파망원경 등 다양한 분야들에 적용하기 위한 후속 연구들을 진행 중ˮ이라고 밝혔으며, 물리학과 이한석 교수는 "향후 성능을 더욱 끌어올리고자, 실리콘 칩 상에 구현된 핵심 소자인 마이크로공진기의 광학적 특성을 개선하는 연구를 수행 중ˮ이라고 밝혔다.
한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2022.01.26
조회수 12169
-
다공성 나노소재를 활용한 고신뢰성 시냅스 소자 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다.
☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다.
최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다.
우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 1월호에 출판됐다. (논문명 : Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer)
멤리스터는 저전력으로 인메모리(In-memory) 컴퓨팅, 가중치 저장, 행렬 계산 능력(vector-matrix multiplication) 등으로 차세대 논 폰노이만 구조에 쓰일 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅 (Large-scale neural computing) 시스템을 만들기 위해서는 멤리스터 단위 소자의 신뢰성을 확보할 수 있는 연구가 필요하다.
소자의 신뢰성 저하는 전통적으로 비정질 물질 내에 무작위적으로 움직이는 결함 및 이온의 배치에서 기인한다. 최신현 교수는 이러한 문제를 단결정 물질을 사용해 결함 및 이온의 무작위적인 움직임을 제어함으로써 소자 신뢰성 확보에 성공한 바 있다. 하지만 단결정을 이용하는 문제 및 제작에 고온 공정이 필요하므로 기존 실리콘 CMOS에 집적 및 적층이 어려워 집적도를 높이는 데 한계가 있었다.
연구팀은 이번 연구를 통해 기존의 비정질 물질을 사용해 신뢰성을 확보할 수 있는 다공성 구조의 양이온 제어층 및 버퍼층으로 이용되는 음이온 제어층을 설계했고, 이를 통해 적층 및 집적 가능한 소자를 제작했다. 연구팀은 기존 소자 대비 6배 이상 신뢰성을 개선할 수 있었으며, 이와 동시에 인공 시냅스 소자로서 필요한 다른 특성들도 확보할 수 있었다.
연구를 주도한 최신현 교수는 "이번에 개발한 고신뢰성 시냅스 소자는 안정적인 대용량 어레이 제작의 방향성을 제시할 수 있을 것으로 기대되며, 차세대 신소자를 기반으로 한 뉴로모픽 컴퓨팅 등 빅데이터 처리가 필요한 응용 분야에 적합한 플랫폼을 구축하는 데에 기여할 수 있기를 바란다. 또한, 미국, 대만 기업에서 활발히 진행 중인 차세대 신소자 기반 기술 개발이 국내에서도 활성화되기를 희망한다ˮ며 "다른 물질계에서도 구조적으로 적용할 수 있는 방법론을 제시함으로써 활발히 연구가 진행될 것으로 생각된다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단, 나노종합기술원, 삼성미래기술육성재단의 지원을 받아 수행됐다.
2022.01.25
조회수 11046
-
전하 전달 복합체를 이용한 신개념 디스플레이 소재 개발
우리 대학 신소재공학과 정연식 교수, 전덕영 명예교수, 한국전자통신연구원(ETRI) 권병화 박사 공동 연구팀이 차세대 디스플레이 소자에 적용 가능한 신개념 금속 산화물 복합 나노소재 개발에 성공했다고 19일 밝혔다.
KAIST-ETRI 공동 연구팀은 특정 금속 산화물 나노입자가 다른 산화물 내부에서 나노미터(nm) 크기로 분산될 경우, 접촉면(인터페이스)에서 전하가 교환되면서 전하 전달 복합체(Charge transfer complex)를 형성하는 새로운 현상을 발견했다. 연구팀은 이를 유기발광다이오드(OLED) 등 고부가가치 디스플레이에 적용해 기존 상용 유기 소재 기반의 소자 성능을 뛰어넘는 데 성공했다.
오는 2월에 우리 대학 신소재공학 박사학위 취득 예정인 김무현 연구원이 주도하고 조남명 박사, ETRI 주철웅 선임연구원 등이 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 1월 10일 字 온라인판에 게재됐다. (논문명: Metal Oxide Charge Transfer Complex for Effective Energy Band Tailoring in Multilayer Optoelectronics)
디스플레이 발광 셀 등 다층구조를 가지는 광전자소자에서 금속 산화물은 우수한 전기적 특성 및 안정성 덕분에 전하 수송 및 주입 층으로 널리 활용되고 있다. 하지만, 유기 발광 다이오드(OLED)에서 퀀텀닷 발광다이오드(QLED), 페로브스카이트 발광다이오드(PeLED)로 이어지는 미래 디스플레이 산업에서 이러한 금속 산화물 소재를 더 유용하게 활용하기 위해서는 에너지 레벨 및 전기전도도와 같은 특성들이 더 넓은 범위에서 제어될 수 있어야 한다.
이는 유기 발광 소재, 퀀텀닷, 페로브스카이트 등으로 발광층 소재가 매우 다양해짐에 따라 디스플레이 소자들의 성능을 극대화하기 위해서는 각각의 시스템에 최적화된 전기적 특성을 제공해야 하기 때문이다.
연구팀은 에너지 레벨 차이가 있는 두 금속 산화물 사이에서 일어나는 전하 전달(Charge transfer) 현상에 주목했다. 전하 전달 복합체는 마치 건포도 빵의 형태와 유사한 구조로 되어 있는데, 건포도(나노입자)를 더 넣게 되면 더 많은 당분(전하)이 빵(매트릭스)으로 이동하여 빵 전체가 더 달콤해지는 원리로 비유될 수 있다.
이 새로운 개념을 산화 몰리브덴(MoO3) 나노입자와 산화니켈(NiO)의 조합으로 구현해 두 금속 산화물의 전하 전달 현상을 효과적으로 유도했으며, 광범위한 에너지 레벨 조절 능력 및 최대 2.4배의 전기전도도 향상을 달성했다. 이를 녹색과 청색 OLED에 적용했고 기존의 상용 유기 소재를 적용한 소자보다 32% 더 우수한 외부양자효율을 달성함으로 높은 범용성과 성능을 입증했다.
신소재공학과 정연식 교수는 "이번 기술은 핵심 소재의 성능 제어 방법을 혁신함으로써, 실감형 메타버스 구현에 꼭 필요한 최첨단 디스플레이 구현에 기여할 것ˮ이라고 전망했다.
이번 연구는 과학기술정보통신부 및 한국연구재단이 추진하는 미래소재디스커버리지원사업(단장 최성율), 글로벌프런티어 사업(단장 김광호) 및 나노·소재기술개발사업, 그리고 산업통상자원부에서 추진하는 소재부품장비혁신 Lab기술개발사업의 지원을 받아 수행됐다.
2022.01.24
조회수 13016
-
새로운 고무형태의 고체 전해질로 세계 최고성능 전고체전지 구현 성공
우리 대학 생명화학공학과 김범준 교수 연구팀이 미국 조지아공대(Georgia Tech) 이승우 교수팀과 공동연구를 통해 새로운 개념의 엘라스토머 고분자 전해질을 개발하고 이를 통해 세계 최고성능의 전고체전지를 구현했다고 13일 밝혔다.
우리 대학 한정훈 및 조지아공대 이승훈 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처(Nature)' 1월 13일에 출판됐다. (논문명: Elastomeric electrolytes for high-energy solid-state lithium batteries).
전고체 리튬메탈전지(all-solid-state Li-metal battery)는 이차전지에 사용되는 휘발성이 높은 액체전해질을 고체로 대체해 화재 및 자동차 안전사고를 막을 수 있는 미래기술로서, 현재 상용화된 리튬이온전지(Li-ion battery)에 비해 에너지밀도를 획기적으로 향상해 자동차 주행거리 확보 및 안전 문제를 해결할 수 있는 `꿈의 배터리 기술'이다.
공동 연구팀은 상온에서 리튬(Li) 이온의 전도도가 탁월하며, 기계적 신축성이 모두 확보된 엘라스토머(고무) 형태의 고분자 전해질을 개발했으며, 이를 전고체전지에 적용해 410Wh/kg의 세계 최고성능을 보이는 전고체 리튬 메탈전지를 구현했다. 이러한 기술을 도입하면 현재 한번 충전으로 800 km까지 주행 가능한 전기자동차의 구현(현재 500 km수준)이 가능할 것으로 보이며, 기존의 액체 전해질을 적용한 리튬이온전지의 안정성을 획기적으로 향상할 것으로 기대된다.
고체 전해질은 크게 고분자 기반, 산화물 기반, 황화물 기반의 전해질로 나뉘는데, 현재 황화물 기반에서 가장 활발한 연구가 되고 있으나 가격이 매우 비싸다는 단점이 있다. 고분자 기반 고체전해질은 원료가 매우 싸고, 저온 대량생산 공정, 가벼움의 장점을 갖고 있지만, 상온에서 낮은 이온전도도를 가지는 문제점이 있으며, 전지 충‧방전 시 안정성이 떨어진다.
연구팀은 고무처럼 신축성이 탁월한 엘라스토머 내부에 리튬 이온전도도가 매우 높은 플라스틱 결정 물질을 3차원적으로 연결한 엘라스토머 고분자 고체전해질을 개발했다. 연구팀이 개발한 전해질은 기존에 대표적인 폴리에틸렌옥사이드(PEO) 기반의 고분자 전해질에 비해 100배 정도 향상된 10-3 S/cm의 이온전도도를 가진다. 또한, 고무처럼 신축성이 우수한 전해질은 전지 충‧방전 시 안정성에 가장 큰 문제가 되는 리튬 덴드라이트(dendrite)의 성장을 억제해, 탁월한 전지 성능 및 안정성을 확보했다.
개발된 고분자 전해질은 얇은 리튬금속 음극과 니켈 리치 양극(NCM-Ni83)으로 구성된 전고체전지에서 4.5V 이상의 고전압에서도 안정적인 구동을 보였으며, 410Wh/kg 이상의 세계 최고의 에너지밀도를 보였다.
SK이노베이션의 최경환 차세대 배터리 센터장은 “전고체 배터리는 전기차주행거리와 안전성을 획기적으로 늘릴 수 있다”며 “전고체 배터리 상용화 여부는 전기차 시장의 판도를 가를 중요한 과제로, 김범준/이승우 교수 연구팀이 개발한 엘라스토머 전해질은 기존의 고분자계 고체전해질의 한계를 해결한 획기적인 결과”라고 말했다.
이차전지 분야의 권위자인 서울대 강기석 교수는 “전고체 이차전지에 대한 세계적인 개발 경쟁이 치열한 가운데, 기존 고체전해질과 차별되는 엘라스토머 기반의 신규 고체전해질 개발은 이 분야의 발전에 새로운 가능성을 제시할 것이다.”라고 말했다.
우리 대학 김범준 교수는 "이번 연구를 통해 미래의 배터리라고 불리는 세계 최고 성능 전고체전지를 개발했을 뿐만 아니라 엘라스토머 전해질이라는 기존과는 완전히 다른 새로운 종류의 고체전해질을 개발해 소재 원천 기술을 확보했다는 것에 큰 의의가 있다ˮ라고 밝혔으며, 미국 조지아공대 이승우 교수는 "이번 연구를 통해 개발한 엘라스토머 전해질은 기존의 고체전해질이 가진 문제점을 획기적으로 개선하고, 제조 공정이 매우 간단해, 전고체전지의 전해질의 게임체인저가 될 것으로 기대한다ˮ라고 밝혔다.
또한 이번 연구에는 한국연구재단의 중견도약연구사업, 미래소재디스커버리 사업, 기초연구실지원사업의 지원을 받아 수행되었으며, 한국화학연구원의 김병각 박사, 한국에너지기술연구원의 정규남 박사가 공동연구에 참여했다.
2022.01.13
조회수 15947
-
낙엽을 활용한 친환경 마이크로 슈퍼커패시터 개발
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다.
웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다.
산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로 풍부하고, 생분해성이며 재생 가능한 매력적인 친환경 재료다. 그러나 이를 효과적으로 활용하지 못하고 방치하면 화재 위험, 식수원 오염 등 산림 재해가 발생할 수 있다.
연구팀은 두 가지 문제점을 동시에 해결할 방법으로 친환경의 생분해성 바이오매스인 낙엽 위에 추가 재료 없이 펨토초 레이저 펄스를 조사해, 대기 중에서 특별한 처리 없이 단일 단계로 높은 전기 전도성을 지닌 미세 전극인 3D 다공성 그래핀을 생성하는 기술을 개발했다. 또한 이를 활용해 유연한 마이크로 슈퍼커패시터를 제작하는 방안을 제시했다. 연구팀은 해당 연구를 통해 낙엽으로부터 쉽고 저렴하며 빠르게 다공성 그래핀-무기결정 하이브리드 전극을 제작할 수 있음을 보였으며, 제작된 그래핀 마이크로 슈퍼커패시터를 LED 발광을 위한 전원 공급 및 온, 습도계 타이머/카운터 기능의 전자시계 전원 공급을 테스트함으로써 성능을 검증했다. 이는 저가의 녹색 그래핀 기반 유연한 전자 제품의 대량 생산을 위한 길을 열 수 있음을 의미한다. (그림1)
연구 논문의 교신저자인 우리 대학 김영진 교수는 개발된 차세대 에너지 저장 소자에 대해 "현재 감당이 어려운 산림 바이오매스인 낙엽을 차세대 에너지 저장 소자로 재사용함으로써, 폐자원의 재사용 및 에너지 선순환 시스템 확립을 가능하게 한다ˮ라고 했다. 또한 공동 교신저자인 에너지연 윤하나 박사는 "이번 기술은 친환경 산업의 기술 혁신 및 고부가가치 신재생에너지 및 이차전지 사업으로써의 신시장 창출뿐 아니라 국가의 사회적, 경제적 비용을 크게 감소시킬 수 있을 것이며, 더 나아가 웨어러블 전자 제품 및 스마트 홈이나 사물 인터넷에도 적용될 것으로 기대된다ˮ라고 말했다.
이번 연구는 한국농림축산식품부의 기획평가원 지원사업과 산림청의 산림과학기술 연구개발사업 및 한국에너지기술연구원 주요사업의 지원을 받아 수행됐다.
기계공학과 레딘츤손 박사 후 연구원과 에너지연 이영아 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 및 융합연구분야의 세계적인 학술지인 `어드밴스드 펑셔널 머티리얼즈'(Advanced Functional Materials)에 작년 12월 5일 온라인 공개됐다. (논문명 : Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses)
2022.01.13
조회수 11878
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 10820
-
세계 최초 그래프 기반 인공지능 추론 가능한 SSD 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 세계 최초로 그래프 기계학습 추론의 그래프처리, 그래프 샘플링 그리고 신경망 가속을 스토리지/SSD 장치 근처에서 수행하는 `전체론적 그래프 기반 신경망 기계학습 기술(이하 홀리스틱 GNN)'을 개발하는데 성공했다고 10일 밝혔다.
연구팀은 자체 제작한 프로그래밍 가능 반도체(FPGA)를 동반한 새로운 형태의 계산형 스토리지/SSD 시스템에 기계학습 전용 신경망 가속 하드웨어와 그래프 전용 처리 컨트롤러/소프트웨어를 시제작했다. 이는 이상적 상황에서 최신 고성능 엔비디아 GPU를 이용한 기계학습 가속 컴퓨팅 대비 7배의 속도 향상과 33배의 에너지 절약을 가져올 수 있다고 밝혔다.
그래프 자료구조가 적용된 새로운 기계학습 모델은 기존 신경망 기반 기계학습 기법들과 달리, 데이터 사이의 연관 관계를 표현할 수 있어 페이스북, 구글, 링크드인, 우버 등, 대규모 소셜 네트워크 서비스(SNS)부터, 내비게이션, 신약개발 등 광범위한 분야와 응용에서 사용된다. 예를 들면 그래프 구조로 저장된 사용자 네트워크를 분석하는 경우 일반적인 기계학습으로는 불가능했던 현실적인 상품 및 아이템 추천, 사람이 추론한 것 같은 친구 추천 등이 가능하다. 이러한 신흥 그래프 기반 신경망 기계학습은 그간 GPU와 같은 일반 기계학습의 가속 시스템을 재이용해 연산 되어왔는데, 이는 그래프 데이터를 스토리지로부터 메모리로 적재하고 샘플링하는 등의 데이터 전처리 과정에서 심각한 성능 병목현상과 함께 장치 메모리 부족 현상으로 실제 시스템 적용에 한계를 보여 왔다.
정명수 교수 연구팀이 개발한 홀리스틱 GNN 기술은 그래프 데이터 자체가 저장된 스토리지 근처에서 사용자 요청에 따른 추론의 모든 과정을 직접 가속한다. 구체적으로는 프로그래밍 가능한 반도체를 스토리지 근처에 배치한 새로운 계산형 스토리지(Computational SSD) 구조를 활용해 대규모 그래프 데이터의 이동을 제거하고 데이터 근처(Near Storage)에서 그래프처리 및 그래프 샘플링 등을 가속해 그래프 기계학습 전처리 과정에서의 병목현상을 해결했다.
일반적인 계산형 스토리지는 장치 내 고정된 펌웨어와 하드웨어 구성을 통해서 데이터를 처리해야 했기 때문에 그 사용에 제한이 있었다. 그래프처리 및 그래프샘플링 외에도, 연구팀의 홀리스틱 GNN 기술은 인공지능 추론 가속에 필요한 다양한 하드웨어 구조, 그리고 소프트웨어를 후원할 수 있도록 다수 그래프 기계학습 모델을 프로그래밍할 수 있는 장치수준의 소프트웨어와 사용자가 자유롭게 변경할 수 있는 신경망 가속 하드웨어 프레임워크 구조를 제공한다.
연구팀은 홀리스틱 GNN 기술의 실효성을 검증하기 위해 계산형 스토리지의 프로토타입을 자체 제작한 후, 그 위에 개발된 그래프 기계학습용 하드웨어 *RTL과 소프트웨어 프레임워크를 구현해 탑재했다. 그래프 기계학습 추론 성능을 제작된 계산형 스토리지 가속기 프로토타입과 최신 고성능 엔비디아 GPU 가속 시스템(RTX 3090)에서 평가한 결과, 홀리스틱 GNN 기술이 이상적인 상황에서 기존 엔비디아 GPU를 이용해 그래프 기계학습을 가속하는 시스템의 경우에 비해 평균 7배 빠르고 33배 에너지를 감소시킴을 확인했다. 특히, 그래프 규모가 점차 커질수록 전처리 병목현상 완화 효과가 증가해 기존 GPU 대비 최대 201배 향상된 속도와 453배 에너지를 감소할 수 있었다.
☞ RTL (Registor Transistor Logic): 저항과 트랜지스터로 구성한 컴퓨터에 사용되는 회로
정명수 교수는 "대규모 그래프에 대해 스토리지 근처에서 그래프 기계학습을 고속으로 추론할 뿐만 아니라 에너지 절약에 최적화된 계산형 스토리지 가속 시스템을 확보했다ˮ며 "기존 고성능 가속 시스템을 대체해 초대형 추천시스템, 교통 예측 시스템, 신약 개발 등의 광범위한 실제 응용에 적용될 수 있을 것ˮ이라고 말했다.
한편 이번 연구는 미국 산호세에서 오는 2월에 열릴 스토리지 시스템 분야 최우수 학술대회인 `유즈닉스 패스트(USENIX Conference on File and Storage Technologies, FAST), 2022'에 관련 논문(논문명: Hardware/Software Co-Programmable Framework for Computational SSDs to Accelerate Deep Learning Service on Large-Scale Graphs)으로 발표될 예정이다.
해당 연구는 삼성미래기술육성사업 지원을 받아 진행됐고 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다.
2022.01.10
조회수 10076
-
3차원 표정인식용 인공지능 라이트필드 카메라 개발
우리 대학 바이오및뇌공학과 정기훈, 이도헌 교수 공동연구팀이 근적외선 기반 라이트필드 카메라와 인공지능기술을 융합하여 얼굴의 감정표현을 구분하는 기술을 개발했다고 7일 밝혔다.
라이트필드 카메라는 일반적인 카메라와 다르게 미세렌즈 배열(Microlens arrays)을 이미지센서 앞에 삽입해 손에 들 수 있을 정도로 작은 크기이지만 한 번의 촬영으로 빛의 공간 및 방향 정보를 획득한다. 이를 통해 다시점 영상, 디지털 재초점, 3차원 영상 획득 등 다양한 영상 재구성이 가능하고 많은 활용 가능성으로 주목받고 있는 촬영 기술이다.
그러나 기존의 라이트필드 카메라는 실내조명에 의한 그림자와 미세렌즈 사이의 광학 크로스토크(Optical crosstalk)에 의해 이미지의 대비도 및 3차원 재구성의 정확도가 낮아지는 한계점이 있다.
연구팀은 라이트필드 카메라에 근적외선 영역의 수직 공진형 표면 발광 레이저(VCSEL) 광원과 근적외선 대역필터를 적용해 기존 라이트필드 카메라가 갖는 조명 환경에 따라 3차원 재구성의 정확도가 낮아지는 문제를 해결했다. 이를 통해 얼굴 정면 기준 0도, 30도, 60도 각도의 외부 조명에 대해, 근적외선 대역필터를 사용한 경우 최대 54%까지 영상 재구성 오류를 줄일 수 있었다. 또한, 가시광선 및 근적외선 영역을 흡수하는 광 흡수층을 미세렌즈 사이에 제작하면서 광학 크로스토크를 최소화해 원시 영상의 대비도를 기존 대비 약 2.1배 정도로 획기적으로 향상하는 데 성공했다.
이를 통해 기존 라이트필드 카메라의 한계를 극복하고 3차원 표정 영상 재구성에 최적화된 근적외선 기반 라이트필드 카메라(NIR-LFC, NIR-based light-field camera) 개발에 성공했다. 연구팀은 개발한 카메라를 통해 피험자의 다양한 감정표정을 가진 얼굴의 3차원 재구성 이미지를 조명 환경과 관계없이 고품질로 획득할 수 있었다.
획득한 3차원 얼굴 이미지로부터 기계 학습을 통해 성공적으로 표정을 구분할 수 있었고, 분류 결과의 정확도는 평균 85% 정도로 2차원 이미지를 이용했을 때보다 통계적으로 유의미하게 높은 정확도를 보였다. 이뿐만 아니라, 연구팀은 표정에 따른 얼굴의 3차원 거리 정보의 상호의존성을 계산한 결과를 통해, 라이트필드 카메라가 인간이나 기계가 표정을 판독할 때 어떤 정보를 활용하는지에 대한 단서를 제공할 수 있음을 확인했다.
정기훈 교수는 "연구팀이 개발한 초소형 라이트필드 카메라는 정량적으로 인간의 표정과 감정을 분석하기 위한 새로운 플랫폼으로 활용될 수 있을 것으로 기대된다ˮ며 "모바일 헬스케어, 현장 진단, 사회 인지, 인간-기계 상호작용 등의 분야에서 활용될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 바이오및뇌공학과 배상인 박사과정 졸업생이 주도한 이번 연구 결과는 국제저명학술지 `어드밴스드 인텔리전트 시스템즈(Advanced Intelligent Systems)'에 2021년 12월 16일 온라인 게재됐다. (논문명: Machine-Learned Light-Field Camera that Reads Facial Expression from High-Contrast and Illumination Invariant 3D Facial Images).
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 지원을 받아 수행됐다.
2022.01.07
조회수 9551
-
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다.
※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체
스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다.
지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다.
물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다.
과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다.
최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다.
이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다.
이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 9281
-
인공지능의 오랜 난제를 뇌 기반 인공지능으로 풀다
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
2022.01.05
조회수 10603