< (왼쪽부터) 물리학과 양용수 교수, 이주혁 석박사통합과정 >
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다.
전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다.
그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다.
양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다.
물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography)
연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다.
연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다.
< 그림 1. 시뮬레이션 원자구조 토모그램에 인공신경망을 적용한 결과 - (a,f,k) 이상적인 원자구조 토모그램 부피데이터, (b,g,l) 손실 웨지 문제로 인해 분해능 저하 및 노이즈가 발생한 토모그램 부피데이터, (c,h,m) (b,g,l)에 인공신경망을 적용한 결과, (d,i,n) 손실 웨지 문제로 인해 분해능 저하 및 노이즈가 발생한 양자역학적으로 계산된 원자구조 토모그램 부피데이터, (e,j,o) (d,i,n)에 인공신경망을 적용한 결과. >
< 그림 2. 실험에서 측정된 백금 나노입자 원자구조 토모그램에 인공신경망을 적용한 결과 – (a,c) 인공신경망을 적용하지 않은 원자구조 토모그램 부피데이터 및 3차원 원자구조, (b,d) 인공신경망을 적용한 원자구조 토모그램 부피데이터 및 3차원 원자구조. >
연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다. 우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다. *가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임. 지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리
2024-10-23‘인류와 인공지능(AI)이 함께 진화할 수 있을까? 그것은 어떤 모습일까?’라는 KAIST 연구진의 질문에서 시작된 미래 인공지능(AI)시스템을 상상해보고 체험해 보는 기회가 마련되었다. 우리 대학 산업디자인학과 강이연 교수가 서울 동대문디지털플라자(이하, DDP)에서 열리는 ‘서울디자인 2024’ 주제전에서 ‘라이트 아키텍처(LIGHT ARCHITECTURE)’ 제목으로 대규모 단독 전시를 진행한다. 서울시가 주최하고 서울디자인재단이 주관하는 ‘서울디자인 2024’는 미래 디자인 유행과 새로운 디자인을 시민들에게 선보이고 향유하고자 2014년부터 개최된 행사이다. 올해는 ‘/내일을 상상하다(/Imagine Tomorrow)’를 주제로 인공지능(AI)이 앞으로의 인류의 삶에 미치는 영향력과 변화를 제시한다. 강이연 교수의 신작 ‘LIGHT ARCHITE
2024-10-18제30회 삼성휴먼테크논문대상에서 우리 대학 물리학과 정채화 학생(지도교수 : 물리학과 양용수 교수)이 기초과학분야 은상을 수상했다. 삼성휴먼테크논문대상은 과학기술 분야의 주역이 될 젊고 우수한 과학자를 발굴하기 위해 1994년부터 시행 중이며 과학기술정보통신부와 중앙일보가 공동 후원하고 있다. 이번 제30회 대회에는 총 1189편의 논문이 접수되었으며, 797명에 달하는 전문가들이 심사를 진행하였다. 정채화 학생은 2000년대 초반 이론적으로만 예측되었으나 20년 이상 풀리지 않았던 난제인 0차원 강유전체에서의 위상학적 분극 정렬을 세계 최초로 실험적으로 규명하였다. 영구자석과 같이 외부의 자기장이 없어도 자화 상태를 스스로 유지할 수 있는 물질들을 강자성체(ferromagnet)라 하고, 강유전체(ferroelectric)는 외부의 전기장 없어도 분극상태를 유지할 수 있는 물질로서 강자성체의 전기(electric) 버전이라고 생각하면 된다. 강자성체(자석)의 경우 나노크
2024-04-04우리 연구진이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다. *그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 우리 대학 전기및전자공학부 최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 진동 신경망은 기
2024-04-03우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나
2024-03-25