< (왼쪽부터) 생명과학과 이승재 교수, 박혜은 학생, 함석진 박사, 김은아 박사 >
우리 대학 생명과학과 노화분자유전학 실험실 이승재 교수 연구팀이 가늘고 길게 사는 돌연변이체에 종양 억제 유전자 `PTEN'의 특정 돌연변이를 도입해 건강한 장수를 유도할 수 있다는 연구결과를 발표했다고 6일 밝혔다.
초고령화 사회에 도입한 우리나라의 가장 시급한 문제 중 하나는 단순히 수명을 늘리는 것이 아닌 건강하게 장수하는 방법을 개발하는 것이다. 노화가 건강에 부정적인 영향을 미치기 시작하기 전 시기를 건강 수명이라고 하며, 최근 노화 연구의 주요 목표 중 하나는 건강 수명을 늘리는 것이다.
인슐린 및 인슐린 유사 성장인자는 진화적으로 잘 보존이 된 수명 조절 호르몬인데, 이의 적절한 감소는 수명을 늘리지만 건강 수명(운동성, 성장, 생식능력, 발달 등)은 오히려 악화시킨다.
이승재 교수 연구팀은 노화 연구에서 많이 사용되고 수명이 3주 정도로 짧은 예쁜꼬마선충을 이용해 인슐린과 인슐린 유사 성장인자가 감소된 상황에서 종양 억제 유전자인 PTEN의 유전자 서열 하나만 바꾸면 장수와 건강을 모두 얻을 수 있음을 발견했다.
연구진이 발굴한 변이는 탈인산화 효소인 PTEN 단백질의 기능 중 지질 탈인산화 효소 활성은 감소시키지만, 단백질 탈인산화 효소 활성은 일부를 유지하는 방식으로 장수는 감소시키지 않으면서 건강은 유지하도록 생명체의 기능을 재조정했다.
그 결과, 장수 조절 유도인자인 FOXO의 활성은 유지하지만 과자극 시 건강에 해로운 전사인자인 NRF2의 활성을 적절히 억제해 긴 수명과 노화된 개체에서의 건강을 모두 획득했다.
< 연구 모식도 >
연구팀은 이번 연구를 통해 장수 유도 신호전달 경로에서 효소 하나의 활성을 세심하게 조정해 장수 유지뿐 아니라 건강 수명을 늘릴 수 있다는 매우 획기적인 가능성을 제시했다.
특히, 인간을 비롯한 포유류에도 보존이 잘 돼 있는 종양 억제 유전자 PTEN이 건강한 장수유도에 중요하다는 것을 보여줬기에, PTEN 활성의 적절한 조절을 통해 인간의 건강 장수를 유도해 초고령화 사회의 문제 해소 가능성을 제시한 것에 의의가 있다.
생명과학과 박혜은 학생, 함석진 박사, 김은아 박사와 POSTECH 황우선 박사가 공동 제1 저자로 참여한 이번 연구는 한국연구재단 리더연구과제의 지원을 받아 수행됐으며 세계적인 과학 국제학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2021년 9월 24일 날짜로 게재됐다.
(논문명: A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling)
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다. 우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다. 이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다. 연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매
2024-12-04우리 대학 NOVIC+ 연구센터(센터장 박용화)가 '모드해석 공개강좌 40주년 기념식'을 지난달 23일 오후 대전 본원 기계공학동에서 개최했다. 1983년 시작된 모드해석 공개강좌는 우리 대학에서 가장 오래 지속되고 있는 산학협동 공개강좌다. IMF 금융위기, 코로나 등의 다양한 국가적 위기를 이겨내며 40년에 걸쳐 1,970여 명의 수강생을 배출했다. 특히, IMF로 국내 산업이 큰 침체에 빠졌던 시기에도 산학연 종사자들에게 무상으로 교육을 제공해 자동차, 선박, 가전, 기계시스템 등 우리나라 산업을 대표하는 제조업의 성장을 가속화하고 세계 최고의 기술력을 확보하는 일에 기여했다. 모드해석 강좌는 오랜 연구 경험에 바탕을 둔 우리 대학 내부 강사진과 산업 현장의 최신 동향을 공유하는 외부 전문가의 강연으로 구성되어 있다. 현장의 엔지니어와 연구원들이 모드해석법과 관련된 업무를 수행할 때 학문적 바탕이 되는 이론을 요약하여 전달하고 이와 더불어 최신 연구 동향을 소개해
2024-08-05우리 몸의 세포는 평생 동안 DNA 돌연변이를 지속적으로 축적하며, 이는 세포 간의 유전적 다양성(모자이시즘) 및 세포 노화를 초래한다. 한국 연구진이 세포소기관 미토콘드리아 DNA의 인체 내 모자이시즘 현상을 최초로 규명했다. 우리 대학 의과학대학원 주영석 교수 연구팀 안지송 박사과정이 미토콘드리아 DNA 돌연변이 연구를 주도해 국제 과학학술지 ‘네이처 지네틱스(Nature Genetics)’ 7월 22일 字 온라인판에 게재했다고 24일 밝혔다. (논문명: Mitochondrial DNA mosaicism in normal human somatic cells). 이번 연구에는 서울대학교 의과대학, 연세대학교 의과대학, 고려대학교 의과대학, 국립암센터, 그리고 KAIST 교원창업기업 이노크라스의 연구자들도 참여했다. 미토콘드리아는 세포 에너지 대사 및 사멸에 관여하는 세포소기관으로, 세포핵과 독립적으로 자체 DNA를 가지고 있으며 돌연변이도
2024-07-24뇌를 포함한 모든 신체 기관은 세포 분열 과정에서 발생하는 돌연변이(모자이시즘)을 피할 수 없다. 그렇다면 과연 몇 개의 신경세포에 질병 유발 돌연변이가 생겨났을 때부터 전체 뇌신경 회로를 망가트려 뇌 기능 이상을 일으킬 수 있을까? 우리 대학 의과학대학원 이정호 교수팀이 뇌세포 특이적 돌연변이(뇌 체성 모자이시즘)에 의한 소아 난치성 뇌전증 동물 모델과 환자 뇌 조직 연구를 통해 0.1퍼센트 이하 비율의 극미량 돌연변이 신경세포에 의해서도 뇌 전체 기능 이상을 유발해 뇌전증 발작이 발생할 수 있음을 규명했다고 9일 밝혔다. 이를 통해 난치성 뇌전증의 돌연변이 유전자 진단에 있어 새로운 기준을 마련하는 한편, 극미량의 돌연변이 신경세포가 다양한 뇌 질환 유발에 관여할 수 있음을 밝혔다. 이번 연구의 결과는 세계적 신경 의학 학술지 `브레인(Brain)'에 지난 6월 25일 字 게재됐다. 연구팀은 이번 연구에서 과연 얼마나 적은 수의 세포에서 특정 유전자 모자이시즘이 누
2024-07-091회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고에너지밀도 전지가 필수적이다. 팩 단위*에서 고에너지 밀도가 확보 가능하다는 장점이 있는 리튬인산철 양극은 낮은 전자전도도를 가져 계면층을 형성하기 어렵다는 단점이 있다. KAIST 연구진이 리튬인산철 양극의 낮은 전자전도도를 개선한 전해질 첨가제를 개발하여 화제다. *팩단위: 현재 전기차용 배터리는 단일 전지(Cell)를 적층하여 배터리 관리시스템(BMS)과 냉각장치가 포함된 모듈(Module)을 구성하고, 이를 다시 모아 관리시스템으로 구성한 팩(Pack)으로 구성되어 있음 우리 대학 생명화학공학과 최남순 연구팀이 저비용 리튬인산철 양극과 흑연 음극으로 구성된 리튬이온 이차전지의 상온 및 고온 수명 횟수를 늘린 전해질 첨가제 기술을 개발했다고 16일 밝혔다. 기존 전해질 첨가제 연구는 주로 흑연 음극을 보호하기 위해 설계돼 높은 이온전도도를 가짐과 동시에 전해질 부반응이 억제되고 수지상 리튬
2024-05-16