< (왼쪽부터) 기계공학과 박인규 교수, 전기및전자공학부 윤준보 교수, POSTECH 노준석 교수 >
우리 대학 기계공학과 박인규 교수 연구팀과 전기및전자공학부 윤준보 교수, POSTECH 노준석 교수 공동 연구팀이 외부 전력 공급 없이도 장기간 안정적으로 동작할 수 있는 무전원 수소 감지 센서를 개발했다고 18일 밝혔다.
연구팀은 유연한 폴리머 나노 창살(nanograting)의 한쪽 측벽에 팔라듐(Pd)을 비대칭적으로 코팅하면, 팔라듐(Pd)이 수소 분자를 흡수함에 따라 부피가 팽창하면서 폴리머 나노 창살이 기계적으로 굽혀 일종의 ‘커튼’과 같이 광투과도 변화를 일으킨다는 것을 발견했다. 이러한 현상을 활용하여 태양전지 표면에 감지막을 부착하면 수소 가스에 노출되었을 때 태양전지에 도달하는 빛을 가리고, 이는 태양전지 출력 변화로 이어져 외부의 전력 공급 없이도 수소 가스의 농도를 정밀하게 포착하게 된다.
수소 가스는 석유화학, 반도체, 제약 등 다양한 산업에서 널리 활용되고 있으며 차세대 친환경 에너지원으로도 주목받고 있지만, 누출 발생 시 폭발의 위험이 큰 만큼 안전한 사용을 위해 지속적인 모니터링이 필수적이다. 그러나 기존의 수소 감지 장치들은 지속적인 전원 공급이 필요해 다양한 무선환경에서 장시간 사용하는데 큰 제약이 있었다. 연구팀에서 개발한 무전원 수소 감지 센서는 외부 전원 없이도 수소 가스의 농도를 정밀하게 예측할 수 있어 수소를 활용하는 다양한 무선 원격 환경에서 널리 활용될 것으로 기대된다.
연구팀은 센서의 성능을 극대화하기 위해 수치 시뮬레이션을 통해 팔라듐 코팅 조건(입사각)을 최적화해 0.1%의 저농도 수소 가스에 대해서도 높은 센서 민감도를 달성할 수 있었고, 또한 반복적인 수소 가스 노출 및 습도 변화에도 안정적인 신호를 유지하는 것을 검증했다.
특히 연구팀은 개발한 무전원 수소 센서를 모바일 장치에 탑재해 감지된 수소 농도를 스마트폰에서 원격으로 확인할 수 있는 시제품을 함께 선보여 실제 무선환경에서의 활용성을 높였다. 본 시제품은 수소 감지에 활용되는 태양전지뿐만 아니라 주변 광 세기 변화를 보상하기 위한 추가적인 태양전지를 탑재해 실시간 보상이 이뤄지며, 블루투스를 통해 스마트폰으로 신호를 전송한다. 스마트폰 앱에서는 수소 가스의 폭발 하한 농도인 4%를 초과했을 때 알람을 울려 사용자에게 알려준다.
< 그림 1. 수소 가스 민감성 광투과도 변화 필름을 활용한 무전원 가스센서 >
< 그림 2. 폴리머 나노창살-팔라듐 기반 광투과도 변화 필름 >
< 그림 3. 수치 시뮬레이션을 통한 팔라듐 증착 입사각 최적화 >
< 그림 4. 무전원 수소 가스 센서를 활용한 시제품 및 모바일 애플리케이션 >
박인규 교수는 “이번 연구는 첨단 나노기술을 통해 수소 가스를 정밀하게 감지할 수 있는 새로운 감지 메커니즘을 규명했을 뿐만 아니라 개발된 시제품은 센서 전원 공급이 원활하지 않은 원격지에서의 활용성을 크게 높여, 차세대 에너지원으로 주목받고 있는 수소의 안전한 사용에 기여할 것으로 기대된다”라고 말했다.
한국연구재단의 선도연구센터지원사업, 나노·소재기술개발사업의 지원을 받아 진행된 이 연구의 성과는 국제학술지 ‘ACS Nano’2020년 12월자에 게재됐다. (논문명: Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor)
우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다. 피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다. 이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발
2024-03-05우리 대학이16일 오후 2시 대전 본원 류근철스포츠컴플렉스에서 2024년도 학위수여식을 개최했다. 이번 학위수여식에서는 박사 756명, 석사 1천564명, 학사 694명 등 총 3천14명이 학위를 받는다. 이로써 우리 대학은 지난 1971년 설립 이래 박사 1만 6천528명을 포함해 석사 3만 9천924명, 학사 2만 1천561명 등 총 7만 8천13명의 고급 과학기술 인력을 배출하게 된다. 학사과정 수석 졸업의 영광은 유장목(24·화학과) 씨가 차지해 과학기술정보통신부 장관상을 받는다. 이사장상은 정우진(23·원자력및양자공학과) 씨, 총장상은 민소영(25·산업디자인학과) 씨, 동문회장상과 발전재단 이사장상은 각각 이한빛(23·산업및시스템공학과) 씨와 홍유승(22·생명화학공학과) 씨가 수상한다.올해 학위수여식에서는 우리 대학이 2020년 신설한 융합인재학부(학부장 정재승)가 첫 졸업생을 배출한다. 융합인재학부는
2024-02-16우리 대학 기계공학과 박인규 교수 연구팀이 개발한 마이크로 LED 가스 센서가 과학기술정보통신부와 나노기술연구협의회가 수여하는 2023년 10대 나노기술에 선정됐다고 29일 밝혔다. (기술명: 마이크로 LED와 금속산화물 나노소재가 일체된 초저전력 가스센서 기술) 박인규 교수 연구팀은 수십 마이크로미터 크기(마이크로미터: 10-6m)의 초소형 LED 바로 위에 고민감도의 금속산화물 나노소재가 집적된 광활성식 가스센서 플랫폼을 개발했다. 연구팀은 초소형 마이크로 LED에서 나오는 빛이 금속산화물에 전달되어 광활성시키고 가스 감지 소재로 활용되는 원리를 적용하고, 딥러닝 알고리즘을 이용해 여러 종의 가스를 실시간으로 높은 정확도로 선택적 판별하는 전자코 (electronic nose; E-nose) 기술을 개발했다. (가스 종 판별 정확도 99%, 농도 값 예측 오차 14%) 마이크로 LED 가스 센서는 낭비되는 광 에너지 손실 없이 전달 효율을 높여서 초저전력 가스 감지
2023-12-29우리 대학이 창업과 기술사업화 확대를 위한 벤처캐피탈(이하 VC) 대표들과의 미팅을 6일부터 이틀간 대전 롯데호텔 루비홀에서 진행했다. 기술가치창출원이 주관하는 이번 행사는 우리 대학 교수진과 VC 대표들이 정기적인 만남(Department Capital Meeting, 이하, DCM)을 통해 상호 네트워크를 구축하는 자리다. 창업과 기술사업화에 관심 있는 교수들의 도전 정신을 장려하고 역량을 강화하는 취지로 21년 11월에 시작했다. 5회째를 맞은 올해 행사에는 카카오벤처스 · 포스코기술투자 · KDB 산업은행 · 선보엔젤파트너스 · 카이트창업가재단 · 블루포인트파트너스 · 컴퍼니케이파트너스 · 카이스트홀딩스 · 미래과학기술지주 · 카이스트청년창업투자지주 등 중대형 투자 회사와 창업 초기 투자사까지 총 10개의 VC 기관 대표이사가 참여했다. 우리
2023-12-12대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06