< (왼쪽부터) 신소재공학과 홍승범 교수, 염지원 박사과정 >
우리 대학 신소재공학과 홍승범 교수 연구팀이 시뮬레이션을 기반으로 한 신소재 데이터 분석을 위한 인공지능을 개발했다고 24일 밝혔다.
최근 컴퓨팅 파워가 기하급수적으로 증가함에 따라 인공지능을 활용한 다양한 응용들이 실생활에 활용되고 있으며, 이에 인공지능을 활용해 신소재 데이터를 고속으로 분석하고 소재를 역설계하는 기술의 연구 역시 가속화되고 있다.
최근 인공지능의 효율 및 정확도를 증가시키는 연구를 바탕으로 자율주행 자동차, 데이터베이스 기반의 마케팅 및 물류 시스템 보조 등의 분야에 인공지능의 활용이 높아지고 있다. 특히 신소재 개발에 장시간이 소요되는 점을 고려할 때, 소재 및 공정 개발에 인공지능을 활용해 다양한 구조 및 물성 데이터 사이의 상관관계를 빠르게 분석해 신소재 개발 소요 시간을 획기적으로 줄일 수 있는 인공지능 방법론이 주목을 받고 있다.
그러나 신소재 데이터의 경우, 대량의 유의미한 실험 데이터를 구하기 어렵고 기업들이 중요한 데이터는 대외비로 취급하고 있어서 인공지능을 소재 데이터 영역에 적용하는 것이 상당히 어려운 것이 현실이다. 이런 데이터의 다양성, 크기 및 접근성 문제가 해결돼야 하며, 이를 보완하기 위해 생성 모델 및 적절한 데이터의 합성에 관한 연구가 진행되고 있다. 인공지능의 성능 향상을 위해 생성되는 데이터 또한 실제 소재가 가지는 물리적 제약을 따라야 하며, 소재 데이터의 재료적 특징을 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 이번에 개발한 인공지능 훈련 방법론은 훈련을 위해 생성되는 데이터가 물리적 제약을 공유하도록 위상 필드 시뮬레이션을 활용해 기초 데이터를 형성하고 소재 데이터가 가지고 있는 실제 측정 과정에서 발생하는 다양한 잡음, 입자의 분포 정보 및 입자의 경계를 모사해 크기가 작은 소재 데이터의 한계를 해결했다. 기존에 수작업으로 작성한 소재 데이터를 활용한 인공지능과의 상 분리 성능을 비교했으며, 생성된 데이터의 모사 요소가 상 분리에 영향을 미치는 영향을 파악했다.
아울러 이번 연구에서 제시하는 소재 데이터 생성을 활용한 인공지능 훈련 방법은 기존의 수작업으로 훈련 데이터를 준비하는 시간을 크게 단축할 수 있으며, 인공지능의 전이 학습 및 다양한 물리적 제약을 바탕으로 하는 위상 필드 시뮬레이션 활용을 바탕으로 다양한 소재 데이터에 빠르게 적용할 수 있는 장점이 있다.
< 그림 1. 시뮬레이션을 활용해 훈련한 인공지능의 이미지 상 분리 결과 >
< 그림 2. 합성 훈련 데이터의 변형과 그에 따른 인공지능 네트워크의 상 분리 성능 비교 >
홍승범 교수는 "인공지능은 분야를 막론하고 다양한 영역에서 활용되고 있으며, 소재 분야 역시 인공지능의 도움을 바탕으로 신소재 개발을 더욱 빠르게 완료할 수 있는 세상을 맞이할 것이다ˮ라며, "이번 연구 내용을 신소재 개발에 바로 적용하기에는 데이터 합성 측면에서의 여전히 보강이 필요하지만, 소재 데이터 활용에 큰 문제가 됐던 훈련 데이터를 준비하는 긴 시간을 단축해 소재 데이터의 고속 분석 가능성을 연 것에 연구의 의의가 있다ˮ고 말했다.
신소재공학과 염지원 연구원, 노스웨스턴(Northwestern) 대학의 티베리우 스탄(Tiberiu Stan) 박사가 공동 제1 저자로 참여한 이번 연구는 노스웨스턴 대학의 피터 부리스(Peter Voorhees) 교수 연구실과 함께 진행됐으며 연구 결과는 국제 학술지 `악타 머터리얼리아(Acta Materialia)'에 게재됐다. (논문명: Segmentation of experimental datasets via convolutional neural networks on phase field simulations)
한편 이번 연구는 KAIST 글로벌특이점 연구 지원으로 수행됐다.
우리 대학은 대전 본원에서 대한상공회의소와 공동으로 ‘AI 미래세대와의 토크콘서트’를 개최했다. 이번 행사는 재계 · 학계 리더와 KAIST 출신의 AI 분야 창업자 및 청년 연구자들이 모여 AI가 연구 생태계와 산업 구조에 가져온 빠른 변화와 그 미래 방향성에 대해 자유롭게 소통하는 자리로 마련되었다. 이광형 총장과 최태원 대한상공회의소 회장의 인사로 막을 열었으며, 정송 김재철 AI대학원장이 좌장을 맡아 KAIST 출신 대표 AI 분야 창업자 및 청년 연구자 4인의 열띤 패널토론을 진행했다. 현장에는 KAIST 구성원 200여 명이 참석하여 다양한 인사이트를 공유하였다. AI 운영을 간소화할 수 있는 ML옵스 플랫폼*과 컨설팅을 제공하는 기업인 베슬AI의 안재만 대표는 미국 시장에서의 AI 기술을 활용한 창업 경험을 공유하며, 미국 시장에서의 성공요인으로 네트워킹과 세일즈 역량을 강조했다. *ML옵스 플랫폼 : ML(머신러닝)과 운영(
2025-04-03학부 1, 2학년으로만 구성된 4인 학생 팀의 논문이 인공지능 분야 국제 학술대회인 ‘International Conference on Learning Representations (ICLR) 2025’의 ‘Advances in Financial AI Workshop’에 채택됐다. 이번에 채택된 논문 “Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems”은 김현준, 김세종, 송현서, 서현우 학생(모두 공동 1저자)이 함께 작성했으며, 김현준 학생이 교신저자를 겸했다. 특히 모든 팀원이 논문 작성 경험이 전혀 없는 학부 저학년 학생들로만 구성되어 그 의미가 더욱 크다. 이 연구는 대규모 언어 모델(LLM)이 금융 질의응답 시스템에서 활용될 때 필요한 정보를
2025-04-01우리 대학이 2024년에 176건의 미국 특허를 등록해 미국에서 특허를 가장 많이 등록한 대학으로 세계 10위, 3년 연속 국내대학 1위를 달성했다고 25일 밝혔다. 미국 NAI(National Academy of Inventors, 국립발명학술원)에서 2013년부터 매년 발행하는 Top 100 Worldwide Universities 순위는 매년 미국 특허를 부여받은 상위 100개 대학의 순위를 매긴다. Top 100 Worldwide Universities 순위는 특허가 대학 연구와 혁신을 전환하는 데 중요한 역할을 하며, 대학이 혁신 생태계에서 하는 중요한 역할을 한다는 것을 강조한다. Top 100 Worldwide Universities 순위는 미국 특허청(USPTO)에 등록된 특허정보를 사용하여 정해진다. KAIST는 직무발명을 디바이스, 디지털, 모빌리티, 화학, 바이오/메디컬 등 5개 기술 분과로 분류하여 분과별 변리사, 기술이전 전문가(Technolo
2025-03-25우리 대학 항공우주공학과에서는 대전 본원에 위치한 항공우주공학과 우주동(N7-5)의 증축을 완료하고 19일 오후 준공식을 개최했다. 이번 증축은 2022년 5월 사업 승인을 받아 2023년 8월 착공했으며 올해 1월 완공되었다. 보다 쾌적한 연구 환경 조성과 우주분야 협력 강화를 위해 기존 3층 건물을 5층으로 확장하였으며, ▲ 4층에는 한국항공우주산업(KAI)의 대전연구센터가 입주하고, ▲ 5층에는 교원 및 학생연구실, 다목적홀 및 이희중 우주갤러리가 마련되었다. 오후 3시부터 약 1시간 30분간 진행된 준공식에는 이균민 교학부총장님을 비롯한 100여 명의 교직원과 학생이 참석하였으며, 입주자대표로 KAI 강구영 사장 및 이희중 작가의 유가족도 참석하였다. 또한, 이날 KAI와의 협력 강화를 위한 MOU 체결식과 발전기금 전달식이 진행되었다. 양 기관은 이번 협약을 통해 인재 양성, 연구개발, 전략적 거점 확대 등 상호 협력을 강화할 계획이다. 이균민 교학부총장은
2025-03-20우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deep
2025-03-20