< (왼쪽부터) 이준철 박사과정, 송채연 박사, 최명철 교수 >
우리 대학 바이오및뇌공학과 최명철 교수 연구팀이 나노소재의 기초물질로 활용할 수 있는 단백질을 새롭게 발굴했다고 30일 밝혔다. 연구팀이 몸속에서 미세소관을 구성하는 `튜불린(Tubulin) 단백질'을 나노공학의 측면에서 재조명해 거둔 성과다.
바이오및뇌공학과 이준철 박사과정과 송채연 박사(現 아모레퍼시픽 R&D 센터)가 공동 제1 저자로 그리고 최명철 교수가 교신저자로 참여한 이번 연구결과는 국제학술지 `스몰(Small)'에 지난 9월 17일 字 표지논문(Back Cover)으로 게재됐다. (논문명: Tubulin Double Helix: Lateral and Longitudinal Curvature Changes of Tubulin Protofilament)
자연계와 산업계의 나노소재들은 놀라울 정도로 크고 복잡한 구조를 가진다. 이 구조들의 기본 형성원리는 작고 단순한 단위체들의 고유 형태가 전체구조를 결정한다는 원리다. 일반적으로 다양한 곡면 구조를 만들려면 서로 다른 모양을 가지는 최소 두 종류의 분자들을 이어 붙여야 한다. 예를 들어, 세포막의 경우 발아와 융합 과정에서 막의 곡률이 역동적으로 변하는데, 이는 형태가 다른 여러 종류의 인지질 분자들이 혼합돼 있어 가능한 특성이다.
최 교수 연구팀은 생명 현상의 중요한 역할을 담당하는 *미세소관의 특이한 성질에 주목했다. 바로 미세소관이 성장과 붕괴 과정에 필요한 다양한 곡면을 오직 한 종류의 단위체인 튜불린 단백질만으로 구현하기 때문이다.
☞ 미세소관 (Microtubule): 튜불린 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. 물질 수송의 고속도로, 세포 분열 과정의 분자기계 역할을 수행한다.
연구팀은 튜불린이 수직한 두 방향으로 접히는 독특한 성질에 핵심이 있다고 판단, 튜불린의 형태 변형을 인공적으로 제어하겠다는 점에 아이디어를 얻은 후 곧장 연구를 시작했다. 튜불린 단백질의 접힘을 제어하는 분자스위치를 찾고자 한 것이다.
튜불린이 강한 음전하를 띤 단백질이라는 점을 감안해 양전하 중합체인 폴리라이신(poly-L-lysine)이 미세소관의 구조를 변형하는 과정을 관찰했다. 가속기 X선 산란장치를 이용해 옹스트롱(Å, 100억 분의 1미터)의 정확도로 측정하자 DNA 이중나선 구조의 결정적 증거가 된 로절린드 프랭클린의 *`포토 51'과 유사한 결과를 확인했다.
☞ 포토 51 (photo 51): 로절린드 프랭클린이 촬영한 DNA의 엑스선 회절 이미지로, 프랜시스 크릭과 제임스 왓슨이 DNA 이중나선 구조를 밝히는데 결정적인 증거가 되었다.
이 결과는 튜불린들이 꼭 두 줄씩 길게 늘어선 `튜불린 이중나선' 구조의 형성을 의미하는 것으로 연구팀은 튜불린을 두 방향으로 접을 수 있는 분자스위치를 찾아낸 것이다.
분자스위치의 크기와 개수를 조절함에 따라, 최 교수 연구팀은 단일 벽 나노튜브에서 이중벽 나노튜브로 변환하거나 이중나선의 간격을 자유자재로 조절이 가능한 성과를 거둘 수 있었다.
< 그림 1. 두 방향으로 접히는 튜불린 단백질을 이용한 튜불린 이중나선의 형성 >
연구팀 관계자는 "우리 몸속 세포물질을 그대로 이용하되, 자연의 설계를 뛰어넘어 혁신적인 나노건축물을 구현해낸 것ˮ이라고 의미를 부여했다. 최 교수 연구팀의 이번 연구 결과는 튜불린 단백질을 나노소재의 기초물질로 활용하게 해줄 핵심 전략을 제시했다는 점에서 의미가 있다.
최명철 교수는 "이 논문을 계기로 튜불린을 나노소재로 활용하는 연구들이 본격적으로 시작될 것ˮ 이라면서 "새로운 바이오-나노기술의 특이점이 될 선도적 연구ˮ라고 이번 연구에 대한 의미를 부여했다.
최 교수는 이어 "나노미터 크기의 광학/전기/의료 소재를 개발하는 플랫폼으로는 물론 모터 단백질 키네신과 결합해 분자기계를 개발하는 등 활용 가능성이 무궁무진하다ˮ고 강조하면서 "향후 다양한 형태와 특성을 가진 나노소재를 만들어낼 `튜불린 나노공학'의 발전 기반 조성과 함께 이번 연구를 통해 발견한 분자스위치는 알츠하이머병 등 뇌질환의 새로운 치료 전략으로 활용될 것ˮ이라고 기대감을 내비쳤다.
< 그림 2. 국제 학술지 Small 표지 이미지 >
앞서 연구팀은 이 분자스위치를 이용한 튜불린 나노소재의 의료적 가치를 입증한 바 있다. 튜불린 나노튜브를 항암 약물의 일종인 미세소관 표적 치료제의 만능 전달체로 활용할 수 있다는 결과를 지난 8월 20일 字 `어드밴스드 머티리얼스(Advanced Materials)'誌에 표지논문으로 발표했다.
미국 산타바바라 캘리포니아대와 공동으로 진행된 이번 연구는 한국연구재단 (중견연구, 방사선기술)과 한국원자력연구원·KAIST의 지원을 받았으며 포항 방사광 가속기의 소각 X선 산란 장치를 이용해 실험을 수행했다.
스마트 섬유(smart textile)는 기존의 섬유에 디지털 정보 기술이 결합된 신개념 미래형 섬유를 뜻한다. 현재까지 개발된 기능성 나노섬유 제조 공정은 다양한 물질로 제조가 어렵다는 한계점이 존재하여 고성능 스마트 섬유를 구현하기 위해서는 나노물질의 우수한 전기적 특성과 기계적 유연성이 확보된 기능성 금속/세라믹 나노섬유의 개발이 필수적이었다. 우리 대학 기계공학과 박인규 교수가 고려대학교 세종캠퍼스 안준성 교수, 한국원자력연구원 정용록 박사, 한국기계연구원 정준호 박사와 공동연구를 통해 `스마트 섬유용 금속/세라믹 나노리본 얀* 제조 기술'을 개발했다고 8일 밝혔다. *얀(yarn): 천연 또는 합성 섬유를 길이의 방향으로 나란히 해 꼬임을 주어서 긴 형태로 만든 연속적인 가닥 구조를 갖는 실을 뜻하며, 뜨개질, 직조 등에 사용되는 실에서 흔히 찾아볼 수 있음 기존의 섬유에 전도성 나노 물질을 코팅해 스마트 섬유로 발전시켜 왔지만 스마트 섬유의 응용 분야 다양성
2024-05-08생체 내 미세혈관 안에 흐르는 혈류의 여러 가지 혈류역학 정보는 관련된 장기들의 건강과 밀접하게 연결되어 있어, 이의 정확한 측정과 분석은 여러 질병 연구에 매우 중요하다. 이를 위해 가장 좋은 방법은 다양한 혈관들 안에 흐르는 혈구들을 직접 높은 시간해상도로 이미징하는 것이겠지만, 현재까지는 이러한 기술이 존재하지 않아 혈류속도와 상관관계가 있는 다른 값들을 측정해 간접적으로 유추하거나 일부 혈구들을 형광 염색한 후 주입해 이미징하는 방법 등이 사용되고 있다. 우리 대학 기계공학과/KI헬스사이언스연구소 오왕열 교수 연구팀이 세계 최초로 복잡한 3차원 혈관구조 안에서 흐르는 혈구들을 아무런 조영제 사용 없이 고속으로 이미징하는 기술을 개발했다고 1일 밝혔다. 현미경으로 생체를 이미징하면 혈구뿐만 아니라 조직으로부터도 반사 및 산란된 빛이 많기 때문에 혈구만을 선택적으로 이미징하기는 어렵다. 이번에 개발된 기술은 형광 조영제와 같은 외부 물질을 전혀 사용하지 않고 넓은 3차
2023-11-01망막의 세포 수준 해상도 이미징 기술은 질병의 조기진단과 망막질환에 대한 이해를 높이기 위해 필수적이다. 하지만, 복잡한 고가의 광학 시스템을 사용하고도 망막의 매우 좁은 영역과 단일 초점면에서 세포 수준 고해상도 이미징이 가능했던 기술을 뛰어넘어 간단한 표준적 광학 시스템을 사용하면서도 2.3초 이내에 한 번의 이미징으로 넓은 망막 영역의 3차원 모든 부분에서 세포 수준 고해상도 이미징을 제공하여 망막질환 임상 및 연구에 새로운 전기를 가져올 기술이 개발되어 화제다. 우리 대학 기계공학과/KI헬스사이언스연구소 오왕열 교수 연구팀이 세계 최초로 사람 망막의 넓은 영역에서 초점 위치뿐만이 아니라 초점에서 벗어난 위치에서도 세포 수준 고해상도 이미징이 가능한 기술을 개발했다고 3일 밝혔다. KI헬스사이언스연구소 이병권 박사가 제1 저자로 참여한 이번 연구 결과는 융합연구분야 선도 저널인 스몰(Small, JIF 15.153) 3월호에 게재됐다. (논문명: Wide-Field
2023-05-03암을 부작용 없이 효과적으로 치료하기 위해서는 약물을 암세포에 특이적으로 전달할 수 있는 기술이 필요하다. 단백질로 구성되어 있는 단백질 조립체는 암 치료를 위한 약물 전달에 널리 활용되고 있다. 단백질 조립체를 약물 전달에 이용하기 위해서는 암세포를 인식하는 단백질과 암세포를 사멸시키는 약물을 단백질 조립체에 효과적으로 접합시키는 기술, 즉 기능화(functionalization) 기술이 필수적이다. 그러나, 단백질 조립체의 경우 기능화 과정이 매우 복잡하고, 효율이 낮으며, 대부분 작은 크기의 화학 약물(chemical drug)의 적용에만 한정되어 실제 사용에 많은 제약이 있었다. 우리 대학 생명과학과 김학성 교수 연구팀이 암세포에 특이적으로 약물을 전달할 수 있는 클라트린 조립체를 개발했다고 14일 밝혔다. 생체 내 클라트린이라는 단백질 조립체는 세포 안에서 자가조립(self-assembly)되어 물질을 효율적으로 수송(endocytosis)한다. 클라트린 조립체는
2023-03-14우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다. 우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents) 우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tub
2020-08-25