-
강정구, 김용훈 교수, 태양광 이용 이산화탄소로 메탄올 변환 성공
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다.
이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다.
이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다.
매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다.
경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다.
식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다.
하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다.
연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다.
이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다.
또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다.
이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다.
연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다.
강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정
그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
2016.05.26
조회수 15028
-
달걀 모방한 세포보호 및 분해기술 개발
특정 미생물은 영양분이 부족한 환경에서 생존이 불리해지면 DNA 보존을 위해 세포외벽에 단단한 보호막인 내생포자를 형성한다. 이렇게 만들어진 내생포자가 생존에 적합한 환경을 만나면 다시 세포증식이 가능한 원래 상태로 돌아간다.
이 현상을 인공적으로 조절하는 기술이 국제 공동연구진에 의해 개발됐다. 달걀껍질처럼 하나의 세포를 감싸서 보존했다가 원하는 시기에 분해할 수 있어 세포기반 바이오센서·세포 치료제·바이오촉매 등에 활용될 것으로 기대된다.
우리 학교 화학과 최인성·이영훈 교수는 호주 멜버른대학교 화학공학과 프랭크 카루소(Frank Caruso) 교수와 공동으로 나노미터 스케일의 필름으로 단일 세포를 코팅해 세포의 생존을 유지하다가 원하는 시간에 분해할 수 있는 기술을 개발했다.
연구결과는 화학분야 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition) 11월 10일자 속표지(frontispiece) 논문으로 소개됐다.
세포피포화(細胞被包化)는 세포의 생존을 최대한 유지하면서 각각의 세포를 단단한 캡슐로 포획하는 기술이다. 세포를 기반으로 한 응용 분야에서 당면한 문제인 세포 안정도 유지와 세포분열제어를 위해 중요성이 높아지고 있다.
기존 세포피포화 방법은 유기박막 혹은 유기박막을 주형으로 만들어진 무기물 캡슐을 이용했다. 이들은 세포표면에 단단하게 형성됐으나 잘 분해되지 않아 활용하기가 어려웠다.
연구팀은 효모세포를 가지고 탄닌산 수용액과 철이온 수용액을 섞어 세포를 하나씩 금속-폴리페놀박막으로 감싸는 데 세계 최초로 성공했다.
탄닌산은 참나무껍질이나 포도껍질에서 추출한 천연물질로 세포친화도가 높아 철이온과 만나면 10초 이내로 금속-폴리페놀박막이 만들어진다. 이 박막으로 피포화된 세포들은 높은 생존율을 보였으며 박막 형성시간이 짧고 간단해 효율적으로 많은 양의 피포화 세포를 얻을 수 있었다.
이와 함께 연구팀은 금속-폴리페놀박막이 중성 pH(수소이온지수)에서는 안정하지만 약한 산성조건에서 빠르게 분해되는 특성을 이용해 원하는 시간에 세포를 피포화 전 상태로 복구해 세포분열을 조절할 수 있음을 밝혔다.
달걀껍질처럼 외부환경으로부터 내부 세포를 보호해주는 금속-폴리페놀박막은 △세포에 손상을 줄 수 있는 분해효소 △장시간의 자외선 처리 △은나노입자에 대한 방어기작을 가져 세포가 극한의 외부환경에 노출되더라도 높은 세포 생존도를 유지하는 결과를 나타냈다.
이영훈 교수는 이번 연구에 대해 “이 기술을 통해 피포화과정에서의 세포생존도를 유지함은 물론 극한의 외부환경에 대항하여 세포를 보호할 수 있다”며 “나아가 응답형 분해기작으로 원하는 때에 피포화된 세포의 분열시기를 조절할 수 있는 차세대 세포피포화기술”이라고 말했다.
최인성 교수는 “세포피포화기술은 아직 걸음마 단계지만 기술이 성숙함에 따라 세포조작기술의 응용가능성이 현실화될 것”이라며 “세포기반 응용분야에서 현실적으로 당면한 문제들을 해결할 맞춤형 대안이 될 것”이라고 덧붙였다.
미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업과 글로벌연구실지원사업의 지원으로 수행된 이번 연구는 KAIST와 호주 멜버른대학교 국제 공동 교수진의 지도아래 KAIST 화학과 박지훈·김경환 석사과정 학생이 주도했다.
그림 1. 앙게반테 케미 속표지
배경 : 금속-폴리페놀박막(붉은색으로 염색)이 형성된 효모세포가 생존을 유지하고 있음(초록색으로 염색-생존도를 가지고 효소활성을 나타냄)을 보여줌.
앞쪽그림 : 각 피포화 단계의 효모세포 왼쪽아래 : 세포는 피포화하기전 상태, 붉은색 화살표를 따라가면 보라색 금속-폴리페놀박막이 형성되어 보라색으로 나타나는 효모세포, 초록색 화살표를 따라가면 약 산성 pH에서 금속-폴리페놀박막이 표면에서 분해되는 것을 형상화했다.
그림 2. 금속-폴리페놀박막을 이용한 세포피포화(細胞被包化) 모식도
(위)피포화하기전 효모세포
(중간) 금속-폴리페놀 나노캡슐(Tannic Acid-Fe(III) Nanoshell)으로 피포화된 효모세포-피포화된 효모세포는 세포분열이 pH에 따라 조절(Cell-Division Control)되고, UV-C, 분해효소와 은나노입자에 대한 저항성을 가진다. (아래) 원하는 시간에 pH 조절로 금속-폴리페놀박막이 분해되는 것을 형상화
2014.11.18
조회수 15007
-
배추 절이는 원리로 광결정 미세캡슐 개발
- “반사형 컬러 디스플레이 소자 및 인체 주입 바이오센서에 응용가능” -- 콜로이드 및 유체역학 분야의 대가 故 양승만 교수에게 연구결과 헌정 -
우리 학교 생명화학공학과 김신현 교수 연구팀이 하버드대와 공동으로 삼투압 원리를 이용해 차세대 광학소재로 주목받는 광결정의 미세캡슐화 기술을 개발했다.
연구결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
남미 열대림에서 서식하는 몰포(Morpho)나비의 날개는 파란 색으로 보이지만 색소가 없다. 날개 표면에 있는 규칙적인 나노 구조로 인해 파란색 파장의 빛만을 반사하기 때문에 우리 눈에는 파란 색으로 보이는 것이다.
이처럼 물질의 광구조가 특정 파장의 빛만 반사하고 나머지는 통과하는 배열을 갖도록 만들어낸 물질을 ‘광결정’이라고 한다.
광결정은 빛의 파장 절반 수준에서 굴절률이 주기적으로 변하는데 특정 파장의 빛만을 제어할 수 있는 특성과 다양한 응용가능성을 갖고 있어 ‘빛의 반도체’라고도 불린다.
1987년 미국 벨연구소 이론 물리학자 엘리 야블로노비치(Eli Yablonovitch)와 프린스턴대학 사지브 존(Sajeev John)이 광결정 개념을 최초로 보고한 이래 지난 27년 동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해왔다. 그러나 반사색이 대부분 고정된 구조에 의해 발현돼 색을 바꾸는 것이 불가능하고 제조 공정이 까다로워 상용화가 어려웠다.김 교수 연구팀은 △액체 상태의 광결정을 잉크처럼 캡슐화하고 △광결정을 덩어리 형태가 아닌 머리카락 굵기(약 100나노미터) 수준의 미세캡슐형태로 제조해 제작의 공정성을 높였으며 △고무재질의 캡슐막을 적용해 모양을 자유자재로 바꿀 수 있도록 제작했다.
연구팀은 배추를 소금물에 절일 때 발생하는 ‘삼투압현상’을 활용했다. 배춧잎은 물 분자만을 투과시키는 반투막으로 이뤄져있는데 배추가 소금물에 잠기면 높은 삼투압을 갖는 소금물이 배춧잎 내부의 물 분자를 반투막 밖으로 꺼내고 배춧잎은 부피가 줄어드는 원리를 이용한 것이다.
연구팀은 이 현상을 나노입자를 담은 미세 물방울에 적용했다. 삼투압현상에 의해 물방울의 부피가 줄어듦에 따라 나노입자가 스스로 규칙적인 구조로 배열돼 캡슐막 내부에 액상의 광결정을 만들었다. 이 과정에서 머리카락 굵기 수준의 작은 통로를 구현한 미세유체소자를 활용해 광결정 미세캡슐을 균일한 크기로 제조하는데 성공했다.
김신현 교수는 “미세 광결정 잉크캡슐은 상용화 가능한 수준으로 향후 구부리거나 접을 수 있는 차세대 반사형 컬러 디스플레이 소자 및 인체 내로 주입 가능한 바이오센서 등을 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 이번 연구 의의를 설명했다.
KAIST 및 하버드 연구진들은 이번 연구 결과를 지난해 9월 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 KAIST 생명화학공학과 교수)에게 헌정했다고 전했다.
한편, 이번 연구는 산업통상자원부에서 지원하는 선진기술국가 국제공동기술개발사업으로 진행됐다.
□ 용어설명- 광결정 (Photonic crystals): 빛의 파장의 절반 수준에서 굴절률이 규칙적으로 변하는 물질로써 특정 에너지를 갖는 광자가 물질 내에 존재할 수 없는 광밴드갭 (photonic bandgap)을 갖는 물질을 말함. 광밴드갭에 해당하는 파장이 가시광선 영역에 있을 때, 외부에서 입사하는 백색광 중 광밴드갭에 해당하는 파장의 빛이 선택적으로 반사되어 금속 광택과 흡사한 느낌의 색깔을 보임.
- 미세유체소자(Microfluidic device) : 머리카락 굵기 수준의 미세한 유로를 집적화함으로써 유체 흐름을 매우 정교하게 제어할 수 있게 해주고, 균일한 크기와 구조의 이멀젼(emulsion) 을 생성시킬 수 있는 소자.
□ 그림설명
그림1. 삼투압 차에 따른 캡슐 크기 감소를 보여주는 모식도
그림2. 균일한 크기의 광결정 캡슐을 제조할 수 있는 미세유체소자
그림3. 초록색 및 파란색 반사색을 보이는 광결정 캡슐의 광학현미경 사진
그림4. 광결정캡슐의 변색 및 변형을 보여주는 광학현미경 사진
그림5. 자연계에 존재하는 광결정의 예: 오팔보석, 공작새 깃털, 극락조의 날개
2014.01.15
조회수 25698
-
부작용 없는 간경변 치료법 개발
- 환자 중 70% 증상 호전돼, 간이식 외 치료법이 없던 간경변 치료길 열려 -- KAIST 의과학대학원, 연세대학교 의과대학과 공동으로 기초와 임상을 연계한 중개연구의 쾌거 -
새로운 방식의 간경변 치료법이 개발됐다. 환자 중 70%가 증상이 호전되는 것을 발견했으며, 자신의 골수를 이용하기 때문에 간이식이 어려운 중증 간질환자들에게 시도해 볼 수 있는 치료가 가능해 질 것으로 기대된다.
우리 학교 의과학대학원 정원일 교수와 연세대학교 의과대학 김자경 교수 연구팀이 공동으로 자가골수세포를 이용해 부작용 없는 간경변 치료법을 개발했다.
간경변증은 간염바이러스 또는 알코올 등에 의한 간 손상시 간성상세포들이 비정상적으로 콜라겐을 분비해서 간이 딱딱해지는 것을 말한다.
이 질병은 전 세계적으로 높은 사망률을 보이는 질환으로써 치료약이 개발돼 있지 않다. 따라서 환자들은 간 이식을 통해 수명을 연장할 수 있으나 이식할 수 있는 간의 부족, 높은 수술비용, 그리고 면역억제제 부작용 등의 어려움이 있었다.
연구팀은 자가골수세포를 투여한 간경변 환자들이 24시간 이후부터 혈중 인터류킨-10이라는 생체물질이 증가하는 것을 관찰했다. 인터류킨-10은 간성상세포들의 콜라겐 분비를 억제하고, 염증을 억제하는 조절 T세포를 증가시켜 결과적으로 간기능을 호전시켰다.
임상연구결과 간경변 환자 15명 중 10명의 증상이 호전되는 것을 관찰해 간경변 환자들을 치료 할 수 있는 길이 열리는 근거를 제시했다.
자가골수세포를 이용한 간경변 치료는 면역부작용이 없고, 환자 자신의 몸에서 쉽게 얻어낼 수 있고, 현재 한 번의 시술만으로도 그 효과를 볼 수 있는 게 커다란 장점이다.
또한, 기존에 실시해오던 간이식과 같은 시술법보다 훨씬 더 저렴하기 때문에 환자들의 부담도 크게 감소될 것으로 전망된다.
이와 함께 효능이 없는 나머지 30%의 환자들은 빠른 시간 내에 간이식과 같은 다른 치료법으로 유도할 수 있는 큰 장점을 가지고 있다.
정원일 교수는 “증가하는 지방간과 C형간염 환자 및 비정상적인 음주문화로 인한 간질환이 심각한 문제로 다가오고 있지만 간이식 외에 마땅한 치료법이 없다”며 “이번 연구결과를 기반으로 미래를 준비한다면 막대한 사회적 및 경제적 파급효과가 있을 것으로 예상 된다”고 말했다.
또 유욱준 KAIST 의과학대학원 책임교수는 “이번 연구는 기초와 임상연구를 접목한 대표적 중개연구로 ‘기초 의과학 연구를 통해 의과대학을 졸업한 의사학생들을 훌륭한 박사로 성장시킨다’는 학과의 설립취지와 맞물리는 성공적인 사례”라고 말했다.
한편, 2009년부터 보건복지부 중개연구 및 교육과학기술부 핵심공동연구 사업 등의 일환으로 지난 3년간 수행된 이번 연구는 간 치료 분야에서 권위 있는 학술지인 ‘헤파톨로지(Hepatology, IF=10.885)’ 온라인판에 4월 27일자로 게재됐다.
붙임 : 보충자료, 그림설명
□ 보충자료
【기초와 임상을 연계한 중개연구】이번 연구는 기초와 임상 연구를 접목한 대표적인 중개연구(translational research)로써 ‘기초 의과학 연구를 통해 의과대학을 졸업한 의사학생들을 훌륭한 M.D.-Ph.D.로 성장시킨다’는 카이스트 의과학대학원의 설립취지와 맞물리는 성공적인 사례이다.
본 연구의 제일 저자인 ▲ 서양권 학생(2009년 입학)은 연세대학교 의과대학을 졸업하고 세브란스 병원에서 전문의 수련을 받은 후 본 카이스트 의과학대학원의 박사과정으로 입학한 학생으로 3년간의 고된 연구과정을 모범적으로 수행하여 왔으며 카이스트 의과학대학원 ▲ 정원일 교수는 수의사이자 동물실험 전문가로서 임상적 결과와 동물실험의 결과를 접목해 비교 및 분석을 실시하였으며 본 연구를 주도하였다.
▲ 연세대학교 의과대학 김자경 교수팀은 환자의 자가골수세포 치료를 한국에서 유일하게 수행중인 팀으로써 지난 3년간 환자의 선별, 시술 및 임상적 자료를 수집하고 분석하는 실험을 실시하여 왔다.
따라서 본 연구결과는 이들의 연구가 삼위일체되어 수행된 성공적인 중개연구로써 이러한 결과들을 활용하여 앞으로 본격적인 임상시술 및 추가 연구가 수행될 것으로 예상된다.
【경제적 가치 및 파급효과】우리나라에서 간질환의 사회적 경제적 지출액은 연간 약 2조 6,000억원 정도이며, 요양급여 지출액은 년간 약 3,550억원, 그 수혜자들은 166만명에 다다른다. 여기에 반해 아직까지 마땅한 치료법이 없어 환자들 스스로가 민간치료법에 의존하거나 간이식을 받는 것이 대부분이다.
현재 국내에서는 B형간염 예방접종에 따라 앞으로 B형간염유래 간경변증은 점차 줄게 될 것이나, 증가하는 C형간염 및 비정상적인 음주문화로 인한 간질환은 향후 20-30년 이후에 가장 심각한 문제가 될 것이라 예상된다.
따라서 본 연구결과의 가시적인 성과들을 기반으로 하여 미래를 준비할 수 있다면 막대한 사회적 및 경제적 이익이 있을 것으로 예측된다.
□ 그림설명
그림 1. 혈관으로 주입된 골수세포(녹색)가 간 내로 이동하여 간성상세포(붉은색)를 억제하는 것이 관찰됨(간조직 사진)
그림 2. 세포배양 실험에서도 간성상세포와 골수세포를 공동배양 시 강력하게 밀착하여 작용하는 것을 관찰(좌측 골수세포 주입직후, 우측 12시간 경과후)
그림 3. 간성상세포와 결합한 골수세포들이 IL-10을 분비하고 (좌측) 이들 세포들의 모양을 관찰한 바 우측에서와 같이 CD11b와 Gr1을 발현하는 미성숙 골수세포임을 확인함
그림 4. 골수에 들어있는 여러 종류의 골수세포들 중 특정 세포마커(CD11b와 Gr1)를 발현하는 골수세포들이 간으로 이동을 하게 된 후, 인터류킨-10이라는 물질을 분비함으로써 간경변을 유발시키는 간성상세포를 직접적으로 억제하거나 수여자 몸속에 존재하는 조절 T 세포의 활성을 유도하여 간접적으로 간성상세포의 활성을 억제하여 간경변을 치료하는 기전임.
2012.05.23
조회수 15991
-
고규영 교수, 만성 신장질환 치료 새 가능성 열어
전북대 의대 박성광 교수팀, KAIST 생명과학과 고규영 교수팀 공동 연구,
혈관형성촉진제 콤프앤지원, 신장병에도 획기적 치료 가능성 입증
세계 최고 신장 관련 학술지 미국신장학회지 9월호 게재 예정
전북대 의대 박성광(朴聖光, 51) 교수팀과 KAIST 생명과학과 고규영(高圭永, 48) 교수팀의 신장질환 치료제 가능성 개발 연구 결과가 세계 최고의 신장 관련 학술지인 미국신장학회지 (Journal of American Society of Nephrology) 9월호에 게재된다.
"일측 요관폐쇄 동물모형에서 신반흔에 대한 콤프앤지원의 개선 효과(COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model)"라는 제목의 이 연구결과는 그 중요성을 감안, 8월 3일 인터넷판에 먼저 공개했다.
신장병 환자가 조기에 치료되지 못하고 투석이나 신장 이식단계까지 가게 되는 이유는 마땅한 치료법이 없기 때문이다. 朴 교수팀과 高 교수팀은 신장의 모세혈관 손상이 신장질환 진행의 주요 원인이 될 수도 있다는 점에 주목했다. 두 연구팀은 高 교수와 바이오벤처기업 제넥셀이 개발 중인 혈관형성촉진제 콤프앤지원(COMP-Ang1)을 신장병 생쥐에 투여했다. 이 실험에서 콤프앤지원은 놀랍게도 병든 신장의 모세혈관들을 대부분 재생시켰을 뿐만 아니라, 신장의 염증 반응과 섬유화 반응을 억제, 신장병 진행을 막는데 성공했다. 콤프앤지원이 족부궤양 뿐만 아니라 신장병 치료에도 획기적인 약이 될 수 있는 가능성을 증명한 것이다.
신장은 우리 몸의 노폐물을 걸러내 소변을 만드는 기관이다. 신장병은 일단 어느 정도까지 진행되면 회복되지 못하고 계속 악화되어 만성신부전에 도달한다. 이렇게 되면 우리 몸에 노폐물이 축적되어 요독증이 발생하고 결국 투석이나 신장 이식을 받아야 한다. 투석이나 신장이식을 언론보도에서도 자주 접할 만큼 신장병은 흔하면서도 심각한 질환이다. 만성신부전은 국민건강보험공단에서 지급되는 요양급여 중 가장 많은 비중을 차지하고 있다. 지속적으로 혈액투석을 받고 있거나 신장이식 시술을 받은 만성 신부전 환자는 국내에서만도 2002년말 기준 3만4천2백명 정도인 것으로 보고된 바 있으며, 매년 그 수가 10% 씩 증가하고 있다. 미국 신장학회(ASN)의 최근 자료 (www.asn-online.org)에 의하면, 미국의 경우 20세 이상의 만성 신장질환 환자는 2천만 명 이상에 달하며, 이들 중에서 투석이나 신장이식이 필요한 말기 환자만도 39만 명에 달한다. 미국 연방정부의 의료보험인 메디케어(Medicare)는 말기 만성신부전 환자 처치를 위해 2005년도에만 14조 원을 지출한 바 있다.
공동 연구자인 고규영 KAIST 교수는 “현재 제넥셀에서 임상시험용 샘플의 공정 개발이 진행되고 있다. 준비가 되는대로 전북대 박성광 교수팀과 협력, 신장병 환자를 대상으로 한 임상 시험의 가능성을 상의할 계획이다.”고 밝혔다.
2006.08.07
조회수 17778
-
신약개발 원천기술 사이언스지에 발표
자석 이용 신약 개발, 마술같은 기술 "MAGIC" 명명
살아있는 세포내에서 다양한 물질결합 실시간 측정
생명과학과 김태국(金泰國, 41) 교수팀이 (주)씨지케이(CGK, 대표이사 정연철)와 공동으로 개발한 새로운 신약개발 원천기술이 7월1일(금)자 사이언스 誌에 발표됐다.
“살아 있는 세포에서 분자 간 상호작용을 검출하는 자성 나노프로브 기술(A magnetic nanoprobe technology for detecting molecular interactions in live cells)“이라는 제목으로 발표된 이 연구결과는 마술과 같은 기술이라 하여 "MAGIC"으로 명명됐다.
물질의 한쪽 끝에 자성체를 붙여 세포에 넣어준 뒤 자석을 대면 결합된 다른 물질이 같이 끌려나온다는 평범한 원리를 세포내에 적용한 이 기술은 살아있는 세포 내에서 다양한 물질의 결합을 실시간으로 측정 가능해 곧바로 신약개발에 응용될 수 있다. 이미 병원에서도 면역억제제로 사용하고 있는 약물에 같은 실험을 수행하여 사람 세포 내에서 이 약물에 결합한다고 알려진 단백질이 매우 선택적으로 자석에 딸려오는 현상을 실시간으로 확인했다.
金 교수는 "MAGIC 기술은 기존에 생체 내에서의 역할이 명확히 밝혀지지 않은 다양한 약물의 표적 분자를 쉽게 찾을 수 있을 뿐만 아니라, 사람 세포내에서 계속 조절 변화되는 바이오프로그램을 실시간으로 모니터하고 유익하게 재프로그래밍도 할 수 있는 혁신적인 기술"이라며, "특히 신약개발이라는 망망대해에서 더 이상 그물을 치고 기다릴 필요가 없는 셈"이라며 이 기술의 의미를 함축적으로 설명했다.
함께 연구에 참여한 CGK 정연철 대표는 "MAGIC 기술은 그간 발표된 어떤 기술보다 신약개발을 혁신적으로 앞당길 수 있는 상업화에 가장 근접한 기술"이며, "이미 항암제를 포함한 두 종의 신약 후보물질을 찾은 상태이다. 내년까지는 동물 실험을 마칠 것"이라는 계획을 발표했다. 또한 "이미 미국의 회사로부터 이 기술의 사업화를 위한 조인트벤처 설립을 제안 받았으며, 내부적으로 검토중"이라고 밝혔다.
金 교수는 "최근 황우석 교수의 줄기세포 치료법와 더불어 신약 치료법의 원천기술을 국내에 확보하여 확고한 바이오기술의 토대를 확립했다는 것이 무엇보다 의미 있다" 며, "MAGIC 원천기술을 비롯해서 앞으로도 기초연구와 바이오산업을 보다 효과적으로 접목, 국내 산업의 성장동력을 마련하기 위해 열심히 노력 하겠다"는 각오를 밝혔다.
2005.07.01
조회수 18831
-
인체 감염 44종의 원인균 동시 진단용 DNA 칩 개발
KAIST, 연세대 의대, 메디제네스㈜ 공동연구 결실벤처회사와 공과대학이 DNA칩 제작, 의대에서 임상실험하는 바람직한 협력연구의 성과로 평가
사람의 생명을 위협하는 감염질환의 원인균 44종을 동시에 진단할 수 있는 DNA 칩이 국내 공동연구진에 의해 세계 최초로 개발되었다. 메디제네스 ㈜ (대표이사 이진, 李津, 39)는 KAIST 생명화학공학과 이상엽(李相燁, 41, LG화학 석좌교수)교수팀, 연세대 의대 감염내과 김준명(金俊明, 52) 교수팀(김준명, 장경희, 최준용 박사)과의 공동연구를 통해 감염질환에 자주 나타나는 주요 원인 균주 44종을 신속하게 동정(실체를 밝히는 것)할 수 있는 DNA칩을 개발했다고 9일 밝혔다.
감염질환은 세균이 인체의 내외부에 침입하여 혈액, 체액 및 조직 내에서 자라면서 발병하는 질환으로, 세균의 정확한 진단 및 적절한 치료가 이루어지지 않을 경우, 생명을 잃을 수도 있는 질병이다. 더욱이 최근에는 항생제의 오남용으로 인해 세균의 배양률이 크게 낮아 배양 검사와 같은 기존의 감염질환 진단 방법들이 한계에 부딪치고 있어 항생제의 추가적인 남용 및 검사비용의 낭비 등을 야기할 뿐만 아니라, 적합한 항생제의 투여시기를 놓쳐 환자의 생명이 위협받고 있다.
이번에 메디제네스㈜ 가 개발한 감염질환 진단용 DNA칩은 임상적으로 가장 빈번하게 출현하여 심각한 질병을 일으키는 원인균 44종을 동시에 진단할 수 있다는 특징이 있다. 메디제네스㈜는 KAIST 이상엽 교수팀, 연세대 의대 김준명 교수팀과 공동으로 감염 균주들의 균체 특이성이 높은 DNA조각을 직접 염기서열을 결정하여 특허 출원하였고, 일부 알려진 균들에 대하여는 생물정보학 기법으로 특이한 염기서열 부분을 찾아내는 방식으로 DNA 칩을 제작 하였다. 이 DNA칩은 작은 유리판에 감염질환을 일으키는 균주의 특정 DNA 염기서열과 결합할 수 있는 DNA 조각을 심은 것으로, 균주에서 추출한 DNA와 칩에 심어진 DNA가 칩의 어느 위치에서 결합하는지에 따라 원인균을 쉽게 동정할 수 있도록 설계되어 있다.
이상엽 교수는 “이 DNA 칩의 핵심기술은 우리가 자체적으로 염기서열을 밝혀서 그 서열에 관한 특허를 확보하였고, 이들로 만든 DNA 조각을 이용하여 매우 효과적으로 감염균주들을 감별해 내는데 있다. 칩 자체의 제작도 중요하지만, 임상 시험이 매우 중요한데, 공과대학과 벤처회사가 DNA 칩을 만들고, 의과대학에서 임상시험을 하는 아주 바람직한 형태의 협력연구가 결실을 맺게 되어 기쁘다.”고 밝혔다.
따라서 이번에 개발된 DNA 칩을 이용하면 환자로부터 얻은 다양한 임상 샘플내에 어떤 세균이 존재하는지를 한번의 검사로 빠른 시간내에 정확하게 진단함으로써 가장 적합한 항생제를 투여할 수 있게 된다. 기존 검사법은 균주를 일일이 배양해서 확인했기 때문에 보통 3일 이상 심지어는 몇 주 이상 소요되고 배양률도 50% 이하인데 비해, 이 칩은 14시간 정도면 여러 균주를 동시에 검색할 수 있고, 정확도도 더 높일 수 있는 장점이 있다. 이 관련 기술들은 현재 특허 출원 중이고, 예비임상시험을 마친 후, 대규모 임상시험을 연세대학교 의과대학 김준명 교수팀에서 진행 중이다. 김준명교수는 “최근에 항생제 오남용으로 감염질환의 원인균 동정에 큰 어려움을 겪고 있는 현 실정에서 이러한 DNA칩을 통한 진단법 개발은 임상에서 빠른 시간 안에 원인균을 밝혀내고, 그로 인해 환자에게 꼭 필요한 항생제를 조기에 투여함으로써 환자의 생명을 구하는 획기적인 전기가 되리라 생각한다”고 말했다.
이 감염질환 진단용 DNA칩을 이용함으로써 감염질환 치료를 위해 과다하게 소요되는 항생제 비용을 대폭 절감(연간 약 5천억원)할 수 있을 뿐만 아니라, 보통 한 환자당 2-3번의 원인균 배양이 이루어지는 기존의 검사방법에서 탈피하여 한 번의 검사로 진단이 가능함으로써 감염질환 관련 검사 비용 연간 수백억원이 절감될 수 있을 것으로 예상된다. 메디제네스㈜ 이진사장은 “앞으로 추가 임상 시험 후 식품의약품안전청의 허가를 받은 후 내년에는 국내 각 병원과 연구소에 판매할 계획이며, 이 칩의 판매로 국내에서만 내년에 30억원, 향후 연간 100억원 이상의 매출을 올리고자 하며, 연간 약 2조원으로 추정되는 세계 시장 개척에도 적극적으로 대처하고자 한다.”는 계획을 밝혔다.
2005.06.10
조회수 18832
-
움직이는 단백질 구조 실시간 규명
단백질 동영상 촬영, 신약 개발에 큰 도움이효철 교수, 미국 국립과학원 회보(PNAS) 2일자 발표
KAIST 화학과 이효철(李效澈, 33) 교수가 움직이는 단백질의 구조를 실시간으로 규명하는데 성공했고 관련 논문이 세계적인 저널인 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science) 5월 2일자로 게재되고, 그 우수성을 입증받아 ‘이 주의 논문’으로도 채택됐다.
일반적으로 단백질의 삼차원 구조는 엑스선 결정법 (X-ray Crystallography)을 사용해서 밝혀내게 되는데 이 방법으로는 정지되어 있는 단백질의 안정적인 구조만을 볼 수 있다.
李 교수팀은 엑스선 결정법을 더욱 발전시킨 방식인 시간분해 엑스선 회절법이란 방식을 이용했다. 이는 정지되어 있는 단백질의 구조뿐 만 아니라 작동하고 있는 단백질의 동적인 구조까지도 밝혀낼 수 있는 획기적인 방식이다.
이 새로운 기술을 사용하면 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동기작을 밝히는 데에 중요한 도구가 될 것이며 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 보인다. 또한 이 기술은 단백질뿐 아니라 나노물질에도 응용 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 보인다.
이 연구결과는 미국의 아르곤 국립연구소의 APS 가속기와 유럽연합방사광가속기 (ESRF) 센터에서 측정되었으며 李 교수의 주도하에 이루어진 국제적인 공동연구의 결과라 할 수 있다.
2005.05.04
조회수 20045
-
뇌신경 보호유전자 세계 첫 발견
KAIST 생명과학과 김재섭 교수(43세)팀은 지나친 자극으로부터 신경세포를 보호하는 유전자를 세계 최초로 발견하고, 이 유전자를 열병을 뜻하는 파이렉시아(Pyrexia)라고 명명했다.
이 유전자는 채널 단백질을 만들며, 이 채널은 섭씨 39도 이상의 고온에 의해 작동된다. 특히 이제까지 온도에 의해 작동되는 채널 단백질들은 여러 종류 발견되었으나, 자극으로부터 신경을 보호하는 채널은 파이렉시아가 처음이다. 이 유전자는 신경세포가 고온에 대해 과민하게 흥분하여 스트레스성 반응을 보이고 이로 인해 기능이 손상되는 것을 방지한다.
또한 이 유전자의 기능이 약화되면 섭씨 40도 고온에서 수분 내에 신경기능이 마비되지만, 이 유전자의 기능이 강화되면 이러한 고온에서도 신경세포의 기능이 손상되지 않고 정상적으로 작동한다.
KAIST 김재섭 교수는 "파이렉시아 채널을 인위적으로 작동시키는 약(화합물)을 개발할 경우, 상습적 마약 복용 등으로 신경이 과도하게 자극되어 뇌기능이 손상되는 것을 방지할 수 있는 획기적인 길이 열릴 것이다"라고 말하면서 "이번 연구 결과는 독감을 비롯한 각종 열병에 의해 의식을 잃거나 뇌기능이 영구하게 손상되는 것도 방지할 수 있는 길을 열었다"며 그 의미를 밝혔다.
한편, 이 연구 결과는 미국에 국제특허 출원되었으며, 세계 최고의 유전학 및 인간질병 유전자 권위지인 네이처 제네틱스 (Nature Genetics) 3월호에 논문으로 계제될 예정이다. 또한 네이처 제네틱스는 이 발견의 중요성을 감안하여 이 논문을 1월 31일자로 인터넷 (http://www.nature.com/ng/)에 먼저 공개했다.
이 유전자는 KAIST 생명과학과와 제넥셀(주)가 공동으로 2003년에 완성한 세계 최초의 형질전환초파리 게놈검색시스템을 활용하여 발굴되었으며, KAIST 생명과학과와 제넥셀(주)는 "형질전환초파리 게놈검색시스템"을 활용하여 파이렉시아 이외에도 여러 종류의 인간질병 및 신경관련 유전자를 발굴하여 연구에 박차를 가하고 있다.
2005.01.31
조회수 21274