본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%8B%A8%EB%B0%B1%EC%A7%88
최신순
조회순
건강한 망막혈관 생성을 유도하는 치료방법 개발
- 향후 당뇨망막병증 치료방법으로 적용 기대 우리 학교 연구진이 실명으로 이어질 수 있는 망막혈관 질환치료의 실마리를 찾아냈다. 혈액공급이 잘되지 않는 망막 부위로 건강한 망막혈관이 생성되도록 하여 망막신경을 보호하는 혈관생성단백질을 찾아낸 것. 향후 당뇨망막병증*과 미숙아망막병증**의 치료방법 개선을 위한 연구의 단초가 될 것으로 기대된다. 이번 연구결과는 국내에서 전문적인 기초과학 교육을 받고 있는 안과 전문의 연구원에 의해 이루어진 대표적인 중개연구의 결과여서 더욱 주목받고 있다. * 미숙아망막병증 : 망막 혈관의 발달이 완성되지 않은 시기에 출생한 미숙아에서 발생하는 망막 혈관질환으로 소아실명의 가장 흔한 원인 질환이다. * 당뇨망막병증 : 당뇨병의 합병증으로 망막조직으로의 불충분한 혈액공급으로 생기는 망막 혈관질환으로 성인실명의 중요한 원인 질환이다. 우리 학교 의과학대학원 이준엽 연구원이(안과 전문의, 지도교수: 고규영,유욱준) 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)의 지원으로 수행되었고, 연구결과는 사이언스 중개의학(Science Translational Medicine) 표지논문(9월 18일자)으로 소개되었다. 이 학술지는 임상의학과 기초과학을 연계하는 중개의학 분야 권위지로 사이언스지 자매지이다. (논문명 : Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy) 당뇨망막병증의 치료에는 망막조직을 파괴하는 레이저광응고술이나혈관증식과 혈액누출을 억제하는 항체치료제*가 적용되고 있다. 항체치료제는 망막신경을 파괴하지 않는 장점이 있지만 한시적으로 혈관증식을 억제할 뿐, 근본적인 해결이 아니어서 반복적인 치료가 필요하다는 한계가 있었다. * 항체치료제 : 비정상적인 혈관증식과 혈액누출을 선택적으로 억제하기 위하여 개발된 항체로서, 현재 혈관내피세포성장인자 (VEGF)를 저해하는 아바스틴 (Avastin) 과 루센티스 (Lucentis) 가 대표적인 항체치료제이다. 연구팀은 개체의 발달과정에서 혈관의 생성과 안정화에 필수적이라고 알려진 안지오포이에틴-1* 단백질이 망막혈관의 생성과정에도 중요한 역할을 함을 동물실험을 통해 규명해냈다. 망막출혈에 의한 시력상실의 근본 원인이 되는 망막허혈**을 개선하고 망막신경을 보호하는 단백질을 알아낸 것이다. 망막조직으로 충분한 혈액을 공급해 망막신경의 기능을 보존하는 방식의 근본적인 치료방법 개발의 실마리가 될 것으로 기대된다. * 망막허혈 : 망막 조직에 충분한 혈액 공급이 되지 않는 상태 * 안지오포이에틴-1(Angiopoietin-1) : 건강한 혈관의 생성을 유도하고 생성된 혈관의 안정화를 유지하는 데 중요한 성장인자. 실제 안지오포이에틴-1을 망막병증 생쥐모델의 안구에 투약한 결과 건강한 망막혈관의 생성이 촉진되어, 망막허혈에 따르는 비정상적인 혈관증식이나 망막출혈, 시력상실이 예방되었다. 이준엽 연구원은 “이번 연구는 안지오포이에틴-1이 망막혈관의 생성과 안정화에 중요한 인자라는 사실을 새롭게 규명함으로써 혈관생성을 억제하는 현재의 치료법에서 건강한 혈관을 생성하고 혈관의 기능을 강화하는 방식의 치료법으로 패러다임이 전환될 것을 기대한다”고 연구 의의를 밝혔다. 그림 1. 망막병증 생쥐모델에서의 안구 내 투여한 Angiopoietin-1의 역할 대조군에 비해 VEGF-Trap 치료군과 Angiopoietin-1 (Ang1) 치료군은 병적인 혈관의 증식을 유의하게 억제함 (아래), 추가적으로 Ang1 치료군은 망막 중심부의 무혈관부위(망막허혈)를 향하여 혈관이 생성되었고, 이러한 현상은 VEGF-Trap 치료군에서는 관찰되지 않음 (위). 그림 2. Angiopoietin-1에 의한 망막허혈과 망막 출혈의 감소 및 혈관의 정상화 (좌) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막허혈부위 면적(화살표)을 유의하게 감소시켰으며, 망막 출혈의 양도 Ang1 치료에 의해 감소함. (우) Ang1 에 의해 새롭게 형성된 혈관은 정상 망막 혈관과 같이 혈관주위세포에 의한 지지를 받는 구조적으로 안정된 혈관임. 그림 3. Angiopoietin-1에 의한 망막 신경 보호 효과 (위) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막 중앙부 와 주변부의 신경세포의 세포자멸사를 유의하게 억제함. (아래) 이러한 Ang1에 의한 망막 신경 보호 효과는 전기 생리학적 검사인 망막전위도 검사를 통해 확인됨. 그림 4. Angiopoietin-1 이 망막 혈관 생성을 유도하는 기전 Angiopoietin-1은 망막 혈관의 내피세포 (Endothelial cell) 에 작용하여 혈관의 안정성 유지에 중요한 역할을 할 뿐만 아니라 망막의 별아교세포 (Astrocyte) 의 integrin 수용체를 통하여 fibronectin 이라는 세포외기질의 생성을 증가시켜 망막 조직 내로의 혈관 생성의 경로를 안내하는 역할을 함.
2013.09.22
조회수 20545
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 - 우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다. 스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다. 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다. 지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다. 연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다. 이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다. 이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다. 윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다. 한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다. (a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다. (b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 17549
세포 내 단백질분해 복합체 조립과정 규명
- 바이오 투과전자현미경을 사용한 고해상도 3차원 구조분석 성공 - - “신규 항암제 개발에 커다란 도움 될 것” -- 네이처(Nature) 5월 5일자 게재 - 단백질분자도 전자현미경을 이용해 관찰하고, 고해상도 3차원 구조를 분석하는 것이 가능해졌다. 우리 학교 의과학대학원 김호민 교수가 바이오 투과전자현미경을 이용해 세포 내 단백질의 분해를 담당하는 프로테아좀(proteasome) 복합체의 고해상도 구조를 규명했다. 이번 연구는 세계 최고 권위 학술지 ‘네이처(Nature, IF= 36.28)’ 5월 5일자 온라인판에 게재됐다. 우리 몸은 단백질의 생성과 소멸을 통해 세포 내 여러 가지 작용을 조절하고, 항상성을 유지한다. 프로테아좀 복합체는 폐기물 처리시설처럼 세포 내부에 있는 필요 없는 단백질들을 적절한 시기에 없애주면서 생체 조절의 핵심기능을 맡고 있다. 그러나 프로테아좀 복합체에 돌연변이가 생기면 사람에게 발생하는 주요 질병인 암, 퇴행성 뇌질환, 면역질환 등으로 이어질 수 있다. 현재 혈액암의 일종인 다발성 골수종의 치료제로 사용되고 있는 벨케이드(Velcade)가 바로 이 프로테아좀의 기능을 억제해 암세포 분열을 억제하는 항암제인데, 보다 더 약효가 좋고 부작용이 적은 항암제 및 질병치료제 개발을 위해 프로테아좀 복합체 관련 연구가 20년 이상 꾸준히 진행되고 있다. 30여개의 단백질이 모여서 만들어진 프로테아좀 복합체의 경우 크기가 매우 크고 구조가 복잡하기 때문에 기능을 이해하기 위한 3차원 구조 분석에 많은 어려움을 겪어왔다. 연구팀은 기존에 널리 사용되던 단백질 구조분석기술인 단백질결정학 기술 대신, 바이오 투과전자현미경 안에 얼려진 단백질샘플을 넣고 수백 장의 사진을 찍은 후 여러 각도에서 찍힌 단백질 사진을 고성능 컴퓨터를 이용해 분석함으로써 프로테아좀 복합체의 3차원 구조를 규명하는데 성공했다. 이 기술은 단백질결정학을 이용한 방법 보다 적은 단백질 샘플로 분석이 가능하며, 크기가 아주 큰 복합체 분석에 용이하다는 장점이 있다. 김호민 교수는 이번 연구에 대해 “프로테아좀 복합체 조립과정 이해 및 3차원 구조 규명은 생체 내 단백질 소멸 조절 과정에 대한 이해를 높일 뿐 아니라 이를 활용한 신약 개발이 활발히 이루어 질 것”이라고 말했다. 또 “국내 처음으로 도입된 바이오 투과전자현미경을 이용한 고해상도 단백질 구조분석은 기존의 단백질 결정학 기술로 접근이 어려웠던 매우 큰 단백질 복합체의 구조 분석을 가능케 할 것”이라며 “단백질결정학 기술과 바이오 투과전자현미경기술을 상호보완적으로 사용한다면 향후 여러 단백질복합체 3차 구조 연구에 큰 시너지효과를 가져올 수 있을 것으로 기대된다”고 말했다. 이번 연구는 KAIST 김호민 교수가 미국 캘리포니아대학 샌프란시스코 캠퍼스에서 박사 후 연구원으로 있을 당시부터 수행해 온 연구로 이판 쳉(Yifan Cheng) 교수의 지도를 받았으며, 하버드대, 콜로라도대와 공동으로 수행됐다. 그림1. 바이오 투과전자현미경으로 찍은 얼려진 상태의 단백질 샘플(프로테아좀 복합체) 사진 그림2. 바이오 투과전자현미경 이미지 분석을 통한 단백질 3차 구조
2013.05.06
조회수 15282
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 - 우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다. 연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다. 단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다. 이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다. 핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다. 특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다. 연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다. 연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다. 이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다. 연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다. 김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다. 그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상 그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 16005
금 알갱이로 항암백신을 만들다
- 앙게반테 케미지 발표,“백신 위치를 추적할 수 있으면서 효능도 탁월한 나노항암백신 개발” 매우 작은 금 알갱이(금 나노입자, 지름이 10억분의 1미터)를 이용해 위치를 추적할 수 있으면서 암을 예방‧치료할 수 있는 효능도 탁월한 항암백신기술이 국내 연구진에 의해 개발되었다. 우리 학교 전상용 교수(42세)가 주도하고 이인현 박사(제1저자) 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 △선도연구센터 △신기술융합형성장동력 △바이오의료기술개발 사업의 지원으로 수행되었고, 연구결과는 독일화학회가 발간하는 화학분야의 권위 있는 학술지인 ‘앙게반테 케미(Angewandte Chemie)’지 7월호(7월 29일)에 게재되었다. 특히 이번 성과는 상위 5%이내 논문에만 수여하는 VIP(Very Important Paper)로 선정되는 영예를 얻었다. (논문명 : Imageable Antigen-Presenting Gold Nanoparticle Vaccines for Effective Cancer Immunotherapy In Vivo) 암은 현대의학이 정복하지 못한 대표적인 난치성 질환 중 하나이다. 전 세계적으로 연간 3천만 명의 암 환자가 발생하고 있고, 특히 우리나라에서는 매년 사망원인 1위를 차지하고 있다. 암을 효과적으로 치료하기 위해서 부작용(정상세포까지 죽이는 세포독성)을 최소화하면서도 효과를 극대화할 수 있는 면역치료법(백신)이 전 세계적으로 각광받고 있다. 지금까지 백신은 독감에서부터 난치성 질환인 백혈병에 이르기까지 인류의 다양한 질병을 예방‧치료하는데 활용되어왔다. 그러나 기존 대부분의 항암백신은 몸 밖에서 환자의 암 조직 파편 등으로 사람의 면역세포를 활성화한 후, 다시 그 면역세포를 몸속에 넣어 항암 면역반응을 유도함으로써 암을 치료하는 기술이다. 이렇게 하면 여러 단계의 백신 제조과정을 거치게 되고, 치료비도 비싼 것이 단점이다. 또한 몸속에 주입한 백신이 원하는 곳에 얼마나 도달했는지 추적할 수 없어, 치료효과를 예측하고 가늠할 수 없었다. 전상용 교수 연구팀은 기존 항암백신과는 달리 일반적인 근육주사로 면역세포들이 많이 모여 있는 국소 림프절을 통해 금 나노입자 백신을 효과적으로 전달하여, 항체를 생산하고 항암 면역반응을 유도함으로써 암을 예방‧치료하는데 이용할 수 있는 핵심원천기술을 개발하였다. 또한 병원에서 진단용으로 많이 사용하는 엑스레이 등의 영상기기를 이용해 주입한 금 나노입자 백신을 추적하여, 백신이 목표하는 곳에 제대로 도달하였는지를 직접 확인할 수 있어 향후 개발될 새로운 백신의 효과를 예측할 수 있다는 점이 큰 특징이다. 전 교수팀은 우선 금 나노입자 표면에 모델 암 항원(RFP 단백질)을 화학적으로 결합한 후, 추가적으로 면역보조제(DNA 단편)도 결합하여 금 나노백신 원천기술을 개발하였다. 이 금 나노백신을 몸에 넣으면 국소 림프절로 선택적으로 이동하여 해당 암에 특이적인 항체 생산을 촉진하고, 암세포를 제거할 수 있는 항암 면역세포도 활성화시켜 우수한 항암 효능을 나타낸다. 또한 연구팀은 동물실험을 통해 금 나노백신이 암을 예방할 뿐만 아니라, 이미 존재하는 암의 성장과 전이도 효과적으로 막을 수 있음을 증명하였다. 전상용 교수는 “이번 연구는 금 나노입자를 이용하면 몸속에 투여한 백신을 쉽게 추적할 수 있고, 기존의 백신에 비해 복잡한 과정 없이도 쉽게 면역세포를 활성화할 수 있어 효과적으로 암을 치료할 수 있는 가능성을 보였다. 특히 이 원천 기반기술은 각종 암뿐만 아니라 현재 임상적으로 치료가 어려운 다양한 바이러스성 질환에도 폭넓게 이용될 수 있을 것으로 기대된다”고 연구의의를 밝혔다.
2012.08.16
조회수 16542
고용량 분자 저장기술 개발 성공
- KAIST EEWS 대학원 Yaghi 교수팀, 고용량의 단백질 저장체 개발 성공해 사이언스(Science)지 5월호에 실려 - - “선택적으로 반응하는 신약 개발에 도움될 것” - 다양한 종류의 단백질 물질을 고용량으로 저장할 수 있는 기술이 KAIST 연구진에 의해 개발됐다. 우리대학 EEWS대학원 오마르 야기(Omar M. Yaghi)교수 연구팀이 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보하는데 성공했다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 5월호(25일자)에 실렸다. 이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다. 이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 크게 도움이 될 것으로 예상된다. 금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1그램당 축구장과 같은 크기의 표면적을 가지고 있으며 고용량의 물질 저장 능력과 빠른 물질 이동특성을 가지고 있다. 따라서 많은 양의 물질을 내부에 저장할 수 있어 최근 다양한 종류의 차세대 저장체 연구에 필수적인 장비로 사용되고 있다. 그러나 지금까지의 금속유기골격구조체는 7.0Å(옴스트롬·100억분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었으며 고용량 가스 저장체로서의 가능성만 입증된 상태였다. 게다가 기존의 금속유기골격구조체의 경우 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했다. 야기(Yaghi) 교수 연구팀은 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발해 이러한 문제들을 해결하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰하기도 했다. 연구팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 내 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했다. 야기(Yaghi) 교수는 “이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술”이라며 “고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대된다”고 말했다.
2012.05.29
조회수 16028
단백질 분해조절 효소 정보 담은 바이오마커 발굴 시스템 개발
- Mol Cell Proteomics지 게재, “바이오마커 개발의 새로운 패러다임 제시” - 단백질의 분해를 조절하는 효소와 기질에 대한 관계정보를 담은 바이오마커* 발굴 시스템(E3Net)이 국내 연구진에 의해 개발되어, 고부가가치의 새로운 바이오마커 개발에 가능성이 열렸다. ※ 바이오마커(Biomarker) : 유전자, 단백질 등에서 유래된 특이한 패턴의 분자적 정보로, 유전적․후천적 영향으로 발생한 신체의 변화를 감지할 수 있는 생물표지인자 우리학교 바이오및뇍 이관수 교수(49세)가 주도하고, 한영웅 박사과정생, 이호동 박사 및 박종철 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 선도연구센터지원사업(NCRC), 신기술융합형성장동력사업 및 교육과학기술부의 KAIST 미래형 시스템 헬스케어 연구개발사업의 지원으로 수행되었고, 단백질체 연구 분야의 권위 있는 학술지인 ‘Molecular and Cellular Proteomics"지 4월호(4월 1일자)에 게재되었다. (논문명: A system for exploring E3-mediated regulatory networks of cellular functions)이관수 교수 연구팀은 전 세계 바이오 관련 DB(데이터베이스)와 논문(약 2만 편)으로부터 정보를 추출해 단백질 분해를 조절하는 효소(E3 효소)와 기질*들 간의 네트워크를 집대성하여, 이와 관련된 세포의 기능과 질병을 분석하는 ‘E3Net’ 시스템을 개발하였다. ※ 기질(substrate) : 효소와 특이적으로 결합하여 화학반응을 일으키는 분자로, 소화작용은 우리의 몸속에서 일어나는 효소와 기질간의 반응의 대표적인 사례 세포는 시시각각 변하는 환경에 대응하여 필요한 단백질들을 생산, 폐기 및 재활용하는 정교한 시스템을 가지고 있는데, 만일 이 과정에서 오류가 생기면 ‘질병’으로 이어질 수 있다. 따라서 단백질 분해를 조절하는 E3 효소와 기질 간의 관계를 파악하면 관련 질병을 치료하거나 예방할 수 있게 된다. 특히 E3 효소는 단백질 분해의 80%를 담당하는 것으로 알려져 수많은 질병이 관련되어 있을 것으로 예측되고 있다. 그러나 E3 효소와 기질 간의 정보들이 개별 논문과 DB에 흩어져 있어, 단백질 분해 조절과 관련된 세포의 기능과 질병의 특성을 종합적․체계적으로 분석할 수 없었다. 이 교수팀은 모든 E3 효소(2,201개)와 기질(4,896개) 및 그 조절관계(1,671개)에 대한 정보를 통합하여 E3 효소 조절 네트워크 내에 존재하는 관련된 세포의 기능과 질병을 시스템적으로 분석할 수 있는 E3Net을 구축하는데 성공하였다. 이 네트워크는 지금까지 구축된 조절정보를 모두 합친 것보다 무려 10배에 이르는 방대한 양으로, E3 효소가 독자적으로 또는 협력해서 조절하는 세포의 기능과 관련 질병을 정확히 파악할 수 있는 토대가 마련된 첫 사례로서 의미가 크다. 연구팀은 E3Net을 이용하면 각각의 질병과 관련된 단백질들의 분해조절을 담당하는 E3 효소들을 찾을 수 있고, 분해조절 원리와 세포기능 네트워크를 함께 파악하여 질병의 발생 원인이나 환자에 적합한 맞춤형 치료방법을 제공할 수 있는 바이오마커를 발굴할 수 있을 것으로 기대한다. 실제 연구팀은 E3Net을 활용해 암, 뇌심혈관 질환 및 당뇨병 등 현대인의 대표적 질환과 관련된 E3 바이오마커 후보 수십 개를 새롭게 발견하는 등 눈에 띄는 성과를 거두었고, 현재 이를 검증할 후속 연구를 계획하고 있다. 이관수 교수는 “이번 연구결과로 E3 효소와 관련된 단백질 분해조절의 네트워크가 구축되고, 이 네트워크에 존재하는 세포의 기능과 질병의 특이성을 시스템적으로 분석할 수 있게 됨에 따라, E3 효소와 관련된 세포의 기능 연구와 질병 연구에 새로운 전기가 마련되었다”고 연구의의를 밝혔다.
2012.05.01
조회수 22439
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”- 세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다. 이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다. 단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다. 예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다. 인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다. 이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다. 박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다. 연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다. 박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다. 연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다. 1. 세포의 단백질 생합성 기구 재설계 및 리모델링 ○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다. 2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산 ○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 14059
인체 세포에서 형광단백질을 이용해 레이저 만들어 내
우리 학교 나노과학기술대학원 윤석현 교수는 세계수준의 연구중심대학 육성사업(WCU)에 참여하는 해외학자로서 미국 하버드의대 맬트 개더(Gather) 박사와 함께 광학 분야 국제학술지인 ‘네이처 포토닉스(Nature Photonics)" 인터넷판 12일 자에 인체 세포에서 형광(螢光)단백질을 이용해 레이저를 만드는 데 성공했다. 네이처 포토닉스는 보도자료와 함께 별도 인터뷰 기사까지 게재했다. 레이저는 빛을 증폭시켜 직선으로 나가게 한 것이다. 50여 년 전 처음 개발되어 레이저 포인터나 바코드 리더처럼 일상생활에도 깊숙이 들어와 있다. 레이저는 대부분 반도체, 기체 등 무기물질을 가공하여 만들어졌다. 그러나 윤 석현 교수는 살아있는 사람 세포에서 레이저를 만드는 데 처음으로 성공하였다. 해파리에는 자외선을 비추면 초록빛을 내는 형광단백질이 있다. 연구진은 사람 세포에 형광단백질 유전자를 넣었다. 이 세포 하나를 용기에 넣고 좌우에 미세 거울을 설치했다. 세포에 빛을 쪼이자 형광단백질에서 푸른 형광이 나왔다. 이 빛은 거울 사이를 왕복하면서 증폭되다가 아주 짧은 순간 레이저가 됐다. 이번 연구는 세포를 관찰하는 현미경에 이용될 수 있다. 레이저는 한 방향으로만 나온다. 형광단백질이 있는 세포에 약한 빛을 쬐고 레이저가 어느 방향으로 나오는지 알면 세포가 어떤 방향으로 있는지 알 수 있다. 또한 형광으로는 세포를 3~4가지 색으로 표현할 수 있지만, 레이저는 1000가지 정도의 색을 나타낼 수 있다. 환자 치료에도 도움을 줄 수 있다. 레이저가 나오는 곳에서만 약효를 발휘하는 약물을 만들면 병든 세포만 골라 치료할 수 있다. 장기에 이식한 초소형 전자기기에서 정보를 보내는 데에도 세포 레이저가 이용될 수 있다고 연구진은 밝혔다. 윤 교수는 KAIST에서 물리학박사 학위를 받고 2005년 하버드 의대에 부임했으며, 현재 KAIST 나노과학기술대학원에 초빙교수로서 한국연구재단 WCU사업의 지원을 받아 이번 연구를 수행했다.
2011.06.14
조회수 19268
주의력결핍 과잉행동장애의 유전적 요인 규명
- 네이처 메디신 온라인 판에 4월 18일 게재 - “새로운 주의력결핍 과잉행동장애 치료법 개발의 가능성 열어” 우리학교 생명과학과 김은준 교수와 강창원 교수의 공동연구팀이 주의력결핍 과잉행동장애(ADHD)가 뇌의 신경 시냅스 단백질(GIT1)이 부족해서 발생한다는 것을 세계 최초로 밝혔다. 전 세계 취학아동의 5% 정도가 겪고 있는 ADHD(Attention Deficit Hyperactivity Disorder)는 주의가 산만하고 지나친 행동을 하면서 충동적 성향을 보이는 성장기 아동의 뇌 발달 장애다. 연구팀은 이 증상이 있는 아동들과 없는 아동들의 유전자형을 비교하는 유전역학 연구를 통해 GIT1 유전자의 염기 한 개가 달라서, 이 단백질이 적게 만들어지는 아동들에서 ADHD의 발병 빈도가 현저히 높다는 것을 발견했다. 또한, 생쥐 실험에서 GIT1의 유전자를 제거해 이 단백질을 합성하지 못하게 하면 ADHD 증상을 보인다는 것을 동물행동 분석 및 신경과학 실험을 통해 밝힘으로써 GIT1과 ADHD의 인과관계를 뒷받침했다. GIT1 결핍 생쥐들이 사람의 ADHD처럼 과잉행동을 보이고, 학습능력이 떨어지며 비정상적인 특이 뇌파를 내는 것을 확인한 것이다. 아울러 이런 생쥐에 ADHD 치료약을 투여하면 ADHD 증상들이 사라지는 것도 확인됐다. ADHD 아동이 성인이 되면 과잉행동이 없어지는데, GIT1 결핍 생쥐도 2개월째에는 보이던 과잉행동이 7개월(사람의 20-30세에 해당)이 되면 사라지는 것을 확인했다. KAIST 생명과학과 김은준 교수는 “신경세포를 흥분시키는 기작과 진정시키는 기작이 균형을 이뤄야 하는데, GIT1이 부족하면 진정 기작이 취약해서 과잉행동을 억제하지 못하는 것으로 추정한다”고 말했다. 또한, 같은 학과의 강창원 교수는 “이번 연구 성과는 ADHD 발병기작을 연구하거나 신약을 개발하는 데 GIT1 결핍 생쥐를 모델생물로 사용할 수 있게 돼 새로운 ADHD 치료법 개발의 가능성을 열었다는 평가를 받고 있다”고 말했다. 이번 연구 성과는 의약학계 세계 최고 학술지인 네이처 메디신(Nature Medicine, Impact Factor 27.136)의 4월 18일자 온라인 판에 게재됐다. 특히, 이 학술지에 게재된 논문 중 그 중요성을 인정받아 전 세계 언론에 특별히 소개됐다. 한편, 이번 연구는 한국연구재단의 창의적연구진흥사업을 수행하는 김은준 교수 연구실의 원혜정, 마원 박사과정 학생과 핵심연구지원사업을 수행하는 강창원 교수 연구실의 김은진 박사가 주도했다. 이외에도 김대수(KAIST 생명과학과), 정재승(KAIST 바이오및뇌공학과), 조수철, 김재원(서울대병원 소아정신과), 최세영(서울대 치대 생리학교실) 교수의 연구팀들이 참여했으며, 신경생물학, 유전체학, 신경유전학, 신경생리학, 뇌공학, 소아정신과 등 여러 분야 전문가들이 협업해 성공한 모범적 사례다. ※ 그림 설명 GIT1 결핍 생쥐가 ADHD 아동처럼 어려서는 과잉행동을 보이다가 성장하면 정상이 되고, ADHD 치료약을 투여해도 정상이 된다.
2011.04.18
조회수 18726
‘인공포자’ 형성 기술 개발
- “세포 안정도 증가해 세포기반 바이오센서 개발의 핵심 기술이 될 것”- 화학분야 저명 학술지인 ‘미국 화학회지’ 3월호 표지논문 선정 질병이나 병원균 등 위험물질을 진단하는 데 획기적인 ‘바이오센서’ 개발을 위한 핵심기술이 국내 연구진에 의해 개발됐다. 우리학교 화학과 최인성 교수 연구팀이 살아있는 세포를 선택적으로 코팅해 ‘인공포자’를 형성할 수 있는 원천기술을 개발했다. 생물학 및 공학계에서는 차세대 바이오센서인 세포기반센서 개발을 위해 센서 기판상에서 세포를 오랫동안 분열 없이 살아있도록 하는 것이 오랜 난제였다. 세포를 몸 밖으로 빼내면 번식하거나 쉽게 죽기 때문이다. 최 교수 연구팀은 혹독한 환경에서 생명체가 번식 없이 버텨나가는 형태인 포자를 모방해, 껍데기가 없는 세포에 화학적으로 껍데기를 만들어 자연포자와 같은 기능을 하는 인공포자를 형성할 수 있는 원천기술을 개발했다. 이번 연구결과에 의하면, 홍합의 접착력에 기여하는 단백질을 모방한 화학 물질을 이용해 세포인 효모에 인공껍데기를 형성하면 물리적・생물학적 안정도가 증가했다. 아울러 껍데기의 두께를 조절함으로써 효모의 번식 속도도 조절할 수 있었다. 최인성 교수는 “연구팀에 의해 ‘인공포자’로 이름 붙여진 이 구조를 통해 세포의 안정도를 획기적으로 증가시킬 수 있으며, 원하는 기능을 손쉽게 세포에 도입할 수 있다”며 “이 기술은 단일세포기반 바이오센서 개발의 핵심 기술이 될 것이다”라고 말했다. 연구팀은 규조류의 구조를 이용해 효모에 유리껍데기를 입혔을 때 자연계에 존재하는 효모 대비 생존율이 세배 이상 증가한다는 연구 결과를 독일에서 발간되는 저명학술지인 ‘앙게반테 케미(Angewante Chemie)’지에 지난해 10월 발표하기도 했다. 양성호 박사를 주저자로 하고 KAIST 화학과 이해신 교수와 서울대학교 화학과 정택동 교수 연구팀과 공동으로 수행한 이번 연구는 화학분야 저명학술지인 ‘미국화학회지(Journal of the American Chemical Society)’ 3월 9일자 표지논문으로 선정됐다.
2011.03.17
조회수 15176
인공 펩타이드를 이용한 3차원 자기조립 분자구조체 개발
- 조각품 같은 유기물 구조체 최초로 구현 - 유기물질로도 다양한 3차원 구조체를 합성할 수 있는 새로운 길이 열려, ‘기능성 인공단백질 개발’의 기초가 될 것으로 전망된다. 우리학교 화학과 이희승 교수팀은 분자의 자기조립 과정에서 서로 다른 세 방향(x, y, z)의 분자간 인력의 미세한 조절이 가능하도록 분자를 디자인하면, 이제까지 만들 수 없었던 다양한 모양의 3차원 유기물 구조체들을 자유자재로 합성할 수 있다는 가설을 실험적으로 구현하는데 성공했다고 28일 밝혔다. 이 연구결과는 생체적합성이 요구되는 의공학이나 재료과학에 광범위하게 응용 가능한 다양한 유기물 소자 개발에 기술적 전기가 마련된 것으로 평가받고 있으며, 미세한 분자기계 개발을 위한 빌딩 블록(building blocks)으로도 활용될 수 있다. 이 교수팀은 베타-펩타이드라는 비천연 펩타이드의 구조적 특징에서 착안한 새로운 자기조립 원리를 개발해 기존 방법으로는 불가능했던 풍차, 꽃잎, 사각막대와 같은 다양한 모양의 새로운 3차원 구조의 유기물 구조체를 합성했다. 아울러 마치 top-down 방식으로 깎아놓은 조각품과 같은 분자구조체들을 bottom-up 방식으로 자유자재로 만들어 낼 수 있는 새로운 길을 열고, 자기조립 과정을 자유자재로 조절할 수 있는 방법론을 확립해 같은 분자로부터 다양한 구조체를 합성할 수 있는 방법을 개발하는데 성공했다. 그동안 무기물 나노물질의 경우 다양한 크기와 모양의 구조를 만드는 방법들이 이미 잘 알려져 있지만, 펩타이드를 비롯한 유기물의 경우에는 자기조립체의 크기와 모양을 제어하는 일은 난제로 인식되어 왔다. 특히, 펩타이드의 경우 원형모양(구, 튜브, 원통형 막대 등)의 구조체 이외에는 만들 수가 없었다. 이 교수는 “이번 기초연구 결과를 바탕으로 기능성 인공 단백질 개발과 응용에 관한 연구를 계속 수행하고 있다”며, “분자기계를 설계하거나 자연계에서 일어나는 자기조립 현상에 대한 이해를 촉진할 수 있는 기폭제가 될 것으로 전망된다”고 말했다. 이번 연구는 한국연구재단(이사장 박찬모) 인터페이스 분자제어 연구센터(선도연구센터, 센터장 김세훈)와 일반연구자 지원사업의 공동지원을 받아 수행됐다. 또한, 연구초기에 KAIST의 고위험고수익(High Risk High Return) Project의 연구지원을 통해 연구초기 아이디어 검증이 가능했다는 점이 주목할 만하다. 한편, 화학과 이희승 교수와 권선범 박사과정 학생이 주도한 이번 연구결과는 화학분야의 세계적인 학술지인 ‘안게반테 케미(Angewante Chemie International Edition)’지 온라인 판 8월 23일자에 게재됐다. 또한, 연구의 중요성을 인정받아 표지논문 및 중요논문으로 동시에 선정됐으며, 미국화학회(American Chemical Society)에서 발간하는 ‘C&EN (Chemical & Engineering News)’지 9월 6일자에 연구결과가 소개됐고, 현재 특허출원 중이다.
2010.09.28
조회수 18638
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8