-
연어 DNA를 활용해서도 위조방지 가능
30년이 걸린 천경자 화백의 미인도 관련 위작 스캔들을 보면 알 수 있듯이, 복제방지 분야에 문외한일 가능성이 큰 예술창작자에게 추가적인 짐을 지우고 있다. 이를 해결하기 위한 전자적 방식보다는 광학적 방식으로 예술가에게 친화적인 방식인 브러시로 바르는 즉시 형성되는 물리적 복제 방지 기능(PUF)의 위조 방지 플랫폼 기술이 필요하다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(Soft material)의 자기조립(Self-assembly) 시 발생하는 무작위 패턴을 이용해 보안․인증 원천기술을 개발했다고 23일 밝혔다.
최근 사물인터넷의 발달로 다양한 전자기기 및 서비스가 인터넷으로 연결되어 신기능 창출이 가능하게 되는 동시에 개인의 프라이버시를 침해하는 위조 기술도 발달되어 그 피해를 입는 사례가 빈번하게 보고되고 있다. 그에 따라 더욱 강력하고 높은 보안성을 갖춘 위조 방지 기술에 대한 요구가 꾸준히 증가하고 있다.
연구팀이 개발한 이번 연구는 두 종류의 연성 소재가 자기조립되는 과정에서 자발적으로 발생하는 무작위 패턴을 활용해 사람의 지문과 같이 복제 불가능한 보안 기능을 할 수 있다는 것으로, 보안 분야의 전문가가 아니라도 마치 그림을 그리듯이 위조 방지 기술을 구현할 수 있다는 측면에서 큰 의의를 갖는다. 연구팀은 두 가지 방법을 개발했다.
첫 번째 방법은 액정물질을 이용한 것이다. 액정물질이 패턴 기판 속에 갇혀있을 때, 자발적으로 구조체의 대칭 파괴가 발생해 미로와 같은 구조체가 형성된다(그림 1). 오른쪽으로 트인 구조를 0(파랑), 왼쪽으로 트인 구조를 1(빨강)으로 정의하면, 이를 머신러닝을 이용한 객체 인식을 통해 디지털 코드(0과 1)로 변환돼 지문과 같은 역할을 할 수 있다고 연구팀은 확인했다. 본 연구의 경우 기존의 복잡한 반도체 패턴이 필요하지 않고, 핸드폰 카메라 정도의 해상도로 관찰할 수 있기에 비전문가도 사용할 수 있는 획기적인 기술이다. 이들은 기존의 반도체 칩을 이용한 방법에 비해 쉽게 정보를 재구성할 수 있다는 특이점을 가지고 있다.
두 번째 방법은 연어에서 추출한 DNA를 이용한 것이다. 추출된 DNA를 물에 녹여 붓으로 바르게 되면 좌굴 불안정성(Buckling instability)이 발생해 얼룩말의 무늬와 같은 무작위 패턴을 형성하게 된다. 이때, 무작위한 패턴들은 지문의 특징인 능선 끝 (Ridge Ending)과 분기점 (Bifurcation)이 나타나며 이 또한, 0, 혹은 1로 정의하여, 머신러닝을 통해 디지털화를 할 수 있다. 연구팀은 기존에 널리 사용되고 있는 지문 인식 기술을 이 패턴에 적용해 인공지문과 같이 사용했다. 이 방법은 쉽게 붓으로 제작 가능하며 다양한 색을 혼입시킬 수 있으므로 새로운 보안 잉크로 사용될 수 있다.
연구팀이 개발한 보안기술은 간단한 유기 물질만 사용하고 공정이 단순해 저비용으로 쉽게 보안 코드를 제작할 수 있다. 또한, 제조자의 목적에 따라 원하는 모양 및 크기대로 만들 수 있을 뿐만 아니라 같은 방법으로 제작하더라도 형성되는 무작위 패턴은 모두 다르므로 높은 보안 기능을 가능하게 함으로써 무궁무진한 시장성과 잠재력을 가지고 있다.
윤동기 교수는 “이번 연구들은 자기조립 시 발생하는 자연의 무작위성을 있는 그대로 받아들여 제조자조차 복제할 수 없는 인간의 지문과 같은 역할을 하는 패턴을 제작한 것ˮ이라며, “이러한 아이디어는 자연계에 존재하는 수많은 무작위성을 보안 시스템에 적용할 수 있는 기술의 초석이 될 수 있다ˮ고 설명했다.
한편, 두 연구는 모두 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “1Planar Spin Glass with Topologically-Protected Mazes in the Liquid Crystal Targeting for Reconfigurable Micro Security Media”와 “2Paintable Physical Unclonable Function Using DNA”의 이름으로 5월 6일과 5일 자에 각각 게재됐다.
1박건형, 최윤석, 권석준*, 윤동기* / 2박순모†, 박건형†, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 멀티스케일 카이랄 구조체 연구센터, BRIDGE융합연구개발사업, 함께달리기사업, 삼성미래기술육성사업 등의 지원을 받아 수행됐다.
2023.05.23
조회수 9321
-
인공지능으로 코로나19 치료제 팍스로비드와 기존 약물간 반응 예측 고도화
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다.
※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs
※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명
연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다. 딥디디아이2는 기존 딥디디아이가 예측하는 86가지 약물 상호작용 종류보다 더 많은, 총 113가지의 약물 상호작용 종류를 예측한다.
연구팀은 딥디디아이2를 이용하여 코로나19 치료제인 팍스로비드*의 성분(리토나비르, 니르마트렐비르)과 기존에 승인된 약물 간의 상호작용 가능성을 예측하였다. 연구팀은 코로나19 환자 중 고위험군인 고혈압, 당뇨병 등을 앓고 있는 만성질환자가 이미 약물을 복용하고 있어, 약물 상호작용 및 약물 이상 반응이 충분히 분석되지 않은 팍스로비드를 복용 시 문제가 될 수 있다는 점에 착안해 이번 연구를 수행했다.
* 팍스로비드 : 팍스로비드는 미국 제약사인 화이자가 개발한 코로나19 치료제로, 2021년 12월 미국 식품의약국(FDA)의 긴급사용승인을 받았다.
연구팀은 팍스로비드의 성분인 리토나비르와 니르마트렐비르가 2,248개의 승인된 약물과 어떤 상호작용을 하는지, 딥디디아이2를 이용해 예측했다. 예측 결과 리토나비르는 1,403개의 승인된 약물과, 니르마트렐비르는 673개의 승인된 약물과 상호작용이 있을 것으로 예측됐다.
또한, 연구팀은 예측 결과를 활용해, 약물 상호작용 가능성이 높은 승인 약물에 대해, 동일 기전을 갖되 약물 상호작용 가능성이 낮은 대체 약물들을 제안했다. 이에 따라, 리토나비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 124개와 니르마트렐비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 239개를 제안했다.
이번 연구 성과를 통해 약물 상호작용을 정확하게 예측할 수 있는 인공지능 모델을 활용하는 것이 가능해졌으며, 이는 신약 개발 및 약물 처방 시 유용한 정보를 제공함으로써, 디지털 헬스케어, 정밀의료 산업 및 제약 산업에서 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 "이번 연구 결과는 실험과 임상을 통해 검증된 것은 아니므로 100% 의존해서는 안된다“고 강조하면서 ”팬데믹과 같이 긴급한 상황에서 신속하게 개발된 약물을 사용할 때, 예측된 약물 상호작용 유래 약물 이상 반응결과를 전문의가 미리 검토하여 약을 처방할 때 도움을 줄 수 있다는 점에서 의미가 있다"고 말했다.
한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2023.03.16
조회수 7740
-
99% 실시간 가스를 구별하는 초저전력 전자 코 기술 개발
우리 대학 기계공학과 박인규 교수, 윤국진 교수와 물리학과 조용훈 교수 공동 연구팀이 `초저전력, 상온 동작이 가능한 광원 일체형 마이크로 LED 가스 센서 기반의 전자 코 시스템'을 개발하는 데 성공했다고 14일 밝혔다.
공동 연구팀은 마이크로 크기의 초소형 LED가 집적된 광원 일체형 가스 센서를 제작한 이후 합성곱 신경망 (CNN) 알고리즘을 적용해 5가지의 미지의 가스를 실시간으로 가스 종류 판별 정확도 99.3%, 농도 값 예측 오차 13.8%의 높은 정확도로 선택적 판별하는 기술을 개발했다. 특히 마이크로 LED를 활용한 광활성 방식의 가스 감지 기술은 기존의 마이크로 히터 방식 대비 소모 전력을 100분의 1 수준으로 획기적으로 절감한 것이 특징이다.
이번 연구에서 개발된 초저전력 전자 코 기술은 어떠한 장소에서든지 배터리 구동 기반으로 장시간 동작할 수 있는 모바일 가스 센서로 활용될 것으로 기대된다.
타깃 가스의 유무에 따라 금속산화물 가스 감지 소재의 전기전도성이 변화하는 원리를 이용한 반도체식 가스 센서는 높은 민감도, 빠른 응답속도, 대량 생산 가능성 등 많은 장점이 있어 활발히 연구되고 있다. 금속산화물 감지 소재가 높은 민감도와 빠른 응답속도를 보이기 위해서는 외부에서 에너지 공급을 통한 활성화가 필요한데 기존에는 집적된 히터를 이용한 줄 히팅 방식이 많이 사용됐다. 고온 가열 방식의 반도체식 가스 센서는 높은 소모전력과 낮은 선택성 등의 한계점이 있었다.
한편, 이번 연구에서 연구팀은 자외선 파장대의 빛을 방출하는 마이크로 크기의 LED를 제작한 후 바로 위에 산화인듐(In2O3) 금속산화물을 집적함으로써 광활성 방식의 가스 센서를 개발했다. 광원과 감지 소재 사이의 거리를 최소화한 광원 일체형 센서 구조는 광 손실을 줄임으로써 μW(마이크로와트) 수준의 초저전력 가스 감지를 실현할 수 있었다. 또한, 연구진은 광 활성식 가스 센서의 반응성을 극대화하기 위해 금속산화물 표면에 금속 나노입자를 코팅해 국소 표면 플라즈몬 공명(Localized surface plasmon resonsance, LSPR)* 현상을 활용했고 이를 통해 센서의 응답도가 향상되는 것을 확인했다.
* 국소표면 플라즈몬 공명에 의해 생성된 핫 전자들이 금속산화물로 이동(Hot electron transfer)해 타깃 가스와의 산화-환원 반응을 촉진하는 원리
그 후, 공동 연구팀은 앞서 설명한 반도체식 가스 센서의 낮은 선택성 문제를 해결하기 위해서 마이크로 LED 가스 센서에 서로 다른 감지 소재를 집적해 센서 어레이를 제작하고 합성곱 신경망의 딥러닝 알고리즘을 적용하여 각 타깃 가스가 만들어내는 고유한 금속산화물의 응답 패턴(저항 변화)을 포착하고 분석했다. 그 결과, 개발된 전자 코 시스템은 총 소모전력 0.38mW(밀리와트)의 초저전력으로 5가지 가스(일반 공기, 이산화질소, 에탄올, 아세톤, 메탄올)를 실시간으로 선택적 판별할 수 있었다.
연구책임자인 기계공학과 박인규 교수는 "마이크로 LED 기반의 광 활성식 가스 센서는 상온 동작이 가능하고 고온 가열 줄히팅을 하는 기존의 반도체식 가스 센서에 비해 소모전력이 100분의 1 수준으로 초저전력 구동이 가능해 대기오염 모니터링, 음식물 부패 관리 모니터링, 헬스케어 등 다양한 분야에서도 응용될 수 있는 기반 기술이 될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 기계공학과 이기철 박사과정 학생이 제1 저자로 참여하고 한국연구재단의 지원으로 수행된 이번 연구 결과는 나노 과학 분야의 저명한 국제 학술지 `ACS 나노 (ACS Nano)'에 2023년 1월 10일 字 정식 게재됐다. (논문명: Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning)
2023.02.14
조회수 8574
-
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다.
연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.
모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.
연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.
*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술
연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.
연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다.
물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.
바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다.
연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data)
한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 7440
-
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다.
조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다.
특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.
우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states)
암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.
*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계
조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.
암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다.
조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 9626
-
‘라이보’ 로봇, 해변을 거침없이 달리다
우리 대학 기계공학과 황보제민 교수 연구팀이 모래와 같이 변형하는 지형에서도 민첩하고 견고하게 보행할 수 있는 사족 로봇 제어기술을 개발했다고 26일 밝혔다.
황보 교수 연구팀은 모래와 같은 입상 물질로 이루어진 지반에서 로봇 보행체가 받는 힘을 모델링하고, 이를 사족 로봇에 시뮬레이션하는 기술을 개발했다. 또한, 사전 정보 없이도 다양한 지반 종류에 스스로 적응해가며 보행하기에 적합한 인공신경망 구조를 도입해 강화학습에 적용했다. 학습된 신경망 제어기는 해변 모래사장에서의 고속 이동과 에어 매트리스 위에서의 회전을 선보이는 등 변화하는 지형에서의 견고성을 입증해 사족 보행 로봇이 적용될 수 있는 영역을 넓힐 것으로 기대된다.
기계공학과 최수영 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 1월 8권 74호에 출판됐다. (논문명 : Learning quadrupedal locomotion on deformable terrain)
강화학습은 임의의 상황에서 여러 행동이 초래하는 결과들의 데이터를 수집하고 이를 사용해 임무를 수행하는 기계를 만드는 학습 방법이다. 이때 필요한 데이터의 양이 많아 실제 환경의 물리 현상을 근사하는 시뮬레이션으로 빠르게 데이터를 모으는 방법이 널리 사용되고 있다.
특히 보행 로봇 분야에서 학습 기반 제어기들은 시뮬레이션에서 수집한 데이터를 통해서 학습된 이후 실제 환경에 적용돼 다양한 지형에서 보행 제어를 성공적으로 수행해 온 바 있다.
다만 학습한 시뮬레이션 환경과 실제 마주친 환경이 다른 경우 학습 기반 제어기의 성능은 급격히 감소하기 때문에, 데이터 수집 단계에서 실제와 유사한 환경을 구현하는 것이 중요하다. 따라서, 변형하는 지형을 극복하는 학습 기반 제어기를 만들기 위해서는 시뮬레이터는 유사한 접촉 경험을 제공해야 한다.
연구팀은 기존 연구에서 밝혀진 입상 매체의 추가 질량 효과를 고려하는 지반 반력 모델을 기반으로 보행체의 운동 역학으로부터 접촉에서 발생하는 힘을 예측하는 접촉 모델을 정의했다.
나아가 시간 단계마다 하나 혹은 여러 개의 접촉에서 발생하는 힘을 풀이함으로써 효율적으로 변형하는 지형을 시뮬레이션했다.
연구팀은 또한 로봇의 센서에서 나오는 시계열 데이터를 분석하는 순환 신경망을 사용함으로써 암시적으로 지반 특성을 예측하는 인공신경망 구조를 도입했다.
학습이 완료된 제어기는 연구팀이 직접 제작한 로봇 `라이보'에 탑재돼 로봇의 발이 완전히 모래에 잠기는 해변 모래사장에서 최대 3.03 m/s의 고속 보행을 선보였으며, 추가 작업 없이 풀밭, 육상 트랙, 단단한 땅에 적용됐을 때도 지반 특성에 적응해 안정하게 주행할 수 있었다.
또한, 에어 매트리스에서 1.54 rad/s(초당 약 90°)의 회전을 안정적으로 수행했으며 갑작스럽게 지형이 부드러워지는 환경도 극복하며 빠른 적응력을 입증했다.
연구팀은 지면을 강체로 간주한 제어기와의 비교를 통해 학습 간 적합한 접촉 경험을 제공하는 것의 중요성을 드러냈으며, 제안한 순환 신경망이 지반 성질에 따라 제어기의 보행 방식을 수정한다는 것을 입증했다.
연구팀이 개발한 시뮬레이션과 학습 방법론은 다양한 보행 로봇이 극복할 수 있는 지형의 범위를 넓힘으로써 로봇이 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다.
제1 저자인 최수영 박사과정은 "학습 기반 제어기에 실제의 변형하는 지반과 가까운 접촉 경험을 제공하는 것이 변형하는 지형에 적용하는 데 필수적이라는 것을 보였다ˮ 라며 "제시된 제어기는 지형에 대한 사전 정보 없이 기용될 수 있어 다양한 로봇 보행 연구에 접목될 수 있다ˮ 라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.01.26
조회수 8437
-
약물 상호작용 예측하는 美 FDA 수식, 틀렸다
여러 약물을 동시에 복용하면, 약물간의 상호작용에 의해 약효가 달라질 수 있다. 우리 대학 수리과학과 김재경 교수 연구팀(기초과학연구원 수리 및 계산 과학 연구단 의생명 수학 그룹 CI)은 채정우‧김상겸 충남대약대 교수팀과 공동으로 미국 식품의약국(FDA)이 사용을 권장하는 약물 상호작용 예측 수식이 부정확했던 원인을 규명하고, 정확도를 2배 이상 높인 새로운 수식을 제시했다.
체내 흡수된 약물은 간을 비롯한 여러 장기의 효소에 의해 대사되어 체내에서 사라진다. 두 가지 이상의 약을 함께 복용할 경우, 하나의 약이 다른 약의 대사를 변화시켜 체외 배설을 촉진하거나 억제할 수 있다. 목표로 한 치료 효과를 내지 못하거나 부작용이 발생할 가능성이 있다. 이를 ‘약물 상호작용(DDI)’이라고 한다.
약물 상호작용에 따라 약물의 제거 속도를 정확하게 예측하는 것은 의약품 처방 및 신약 개발에 있어 매우 중요하다. 의료진은 약물을 복합처방할 때 의약품 사용설명서에 명시된 약물 상호작용 정보를 토대로 처방을 내린다. 신약 개발 과정에서도 약물 상호작용을 필수로 연구하여 표시하도록 되어 있다.
FDA는 약물 상호작용을 평가하고, 다약제 복용 과정의 부작용을 최소화하기 위한 가이던스(Guidance‧지침서)를 1997년 처음 발행했다(2020년 1월 개정). 신약 개발과정에서 신약 후보물질과 시판된 모든 약물의 상호작용을 모두 평가하는 것이 현실적으로 불가능하기 때문에 FDA는 가이던스에서 제시한 수식을 활용해 약물 상호작용을 간접적으로 평가하도록 권고하고 있다.
문제는 이 수식의 정확도가 떨어진다는 점이다. FDA가 제시하는 수식은 효소의 반응속도를 설명하는 ‘미카엘레스-멘텐 식’을 기반으로 한다. 이 수식은 약물 대사에 관여하는 체내 효소의 농도가 낮다는 것을 전재로 한다. 연구진은 실제 간에서 약물 대사에 관여하는 효소 농도는 예측에 사용돼온 값보다 1000배 이상 높은 것으로 확인함으로써 기존 FDA 수식이 부정확한 원인을 찾았다.
채정우 충남대약대 교수는 “연구자들은 과학적인 근거가 부족한 인위적인 수를 곱하는 식으로 FDA의 수식을 보정해서 사용해왔다”며 “과거의 과학자들이 당시의 정설이던 천동설을 기반으로 행성의 움직임을 설명하기 위해 복잡한 궤도를 도입했던 것과 유사한 상황”이라고 말했다.
연구진은 수학-약학 협력연구를 통해 약물 상호작용을 설명할 수 있는 새로운 수식을 개발했다. 의심 없이 사용돼 온 기존 식 대신 효소의 농도에 상관없이 정확하게 약물의 대사 속도를 예측할 수 있는 새로운 수식을 유도했다.
이후, 새로 쓰인 수식을 이용해 약물 상호작용을 예측하고, 실제 실험으로 측정된 값과 비교했다. 그 결과, 인위적인 보정 없이도 예측 정확도가 2배 이상 증가한 것으로 확인됐다. 기존 FDA 수식은 약물 상호작용을 2배의 오차범위 내에서 예측한 비율이 38%인데 반해, 수정된 식은 80%에 달했다.
생물학적 제제를 제외한 대부분의 의약품은 FDA 가이던스에 따라 약물의 상호작용을 평가한다. 이 결과는 약효와 부작용에 직결된다. 정확한 수식을 활용한 약물 상호작용 연구 및 약물 처방이 필요한 이유다.
김상겸 충남대약대 교수는 “약물 상호작용 예측 정확도의 개선은 신약개발의 성공률과 임상에서의 약물 효율을 높이는데 기여할 것”이라며 “임상약리학 분야 최고의 저널에 논문을 발표한 만큼, 이번 연구결과에 따라 FDA 가이던스가 수정될 것으로 기대한다”고 말했다.
김재경 교수는 “수학과 약학의 협력 연구 덕분에 당연히 정답이라고 생각했던 수식을 수정하고, 인류의 건강한 삶을 위한 단서를 찾을 수 있었다”며 “미국 FDA 가이던스에 ‘K-수식’이 들어가길 꿈꿔본다”고 말했다.
이번 연구결과는 2022년 12월 15일(한국시간) 임상약리학 분야 권위지인 ‘임상약리학 및 약물치료학(Clinical Pharmacology and Therapeutics, IF 7.051)’ 온라인 판에 실렸다.
※ 논문명: Beyond the Michaelis-Menten: Accurate Prediction of Drug Interactions through Cytochrome P450 3A4 Induction
2023.01.09
조회수 8106
-
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다.
대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다.
* 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식
** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체
이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org)
KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다.
* ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로
** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로
기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다.
3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다.
기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다.
* ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음
또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다.
3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다.
따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다.
이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다.
모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다.
PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다.
한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 7984
-
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다.
양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다.
이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다.
이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다.
이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다.
기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 9014
-
스핀 소자 기반 물리적 복제방지 보안기술 개발
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다.
박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다.
PUF를 이용한 하드웨어 기반 보안 소자는 동일한 공정 과정을 통해 제작해도 공정 편차에서 발생하는 제어되거나 예측할 수 없는 반도체소재/소자 간의 차이를 이용해 보안용 인증키를 형성하는 기술이다. 이는 기존 소프트웨어 기반 보안시스템과 다르게 외부 공격에 대해 높은 저항성을 지니는 장점이 있기에 최근 증가하고 있는 사물인터넷 기기 해킹 등의 보안 위협을 해결할 기술로 주목받고 있다.
하지만 기존에 주로 연구됐던 상보적 금속 산화물 반도체(complementary metal oxide semiconductor, CMOS) 소자 기반 물리적 복제방지기술은 외부 환경 변화에 민감하며 반복 동작 시 신뢰도가 낮아지는 문제점이 있다. 이에 반해 자성메모리(magnetic random-access memory, MRAM)를 포함한 자화를 이용해 정보를 저장하는 스핀트로닉스 기반 소자는 높은 내구성 및 안정성을 지니고 있고 환경 변화에 비교적 민감하지 않다. 따라서 이러한 특성을 이용해 물리적 복제방지기술을 개발한다면 현행 반도체 공정 기술과 호환이 가능하며 보안인증 등 다양한 활용 범위를 가지는 비휘발성 메모리 기반 보안 기술 개발을 기대할 수 있다.
신소재공학과 이수길 박사와 강재민 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드벤스드 머티리얼스(Advanced Materials)'에 11월 10일 字 온라인 게재됐다. (논문명 : Spintronic physical unclonable functions based on field-free spin-orbit torque switching)
연구팀은 교환결합이 형성된 다층박막을 제작해 고온에서 교류 자기장 인가를 통해 교환결합의 방향의 좌우로 50:50의 비율을 갖는 무작위한 분포 생성했다. [그림1(a)] 이때 생성된 교환결합의 방향이 상부 강자성체의 무자기장 스위칭 부호를 결정하는 성질을 이용해 무작위한 분포 방향을 전기적으로 0과1의 이진법분포로 바꿔 출력했으며 이를 보안키로 활용하는 물리적 복제 방지 기술을 개발했다. [그림1(b) 및 1(c)]
연구팀이 개발한 스핀 기반 물리적 복제방지 기술은 50,000번 이상의 반복 동작 시에도 에러가 발생하지 않는 높은 내구성을 보이며 반도체소자가 기본적으로 요구하는 -100℃부터 125℃까지 넓은 온도 범위에서도 안정적으로 작동한다. 또한 무작위성의 원천으로 교환결합의 방향을 이용했기 때문에 자성체 기반 소자임에도 불구하고 외부 자기장을 이용해 저장된 무작위분포를 바꾸지 못하는 것을 확인했다.
공동 제1 저자인 이수길 박사와 강재민 연구원은 "이번 연구는 차세대 MRAM의 주요 기술인 스핀-궤도 토크 기반으로 보안소자 기술을 개발할 수 있다는 것을 제시한 것에 의미가 있으며 향후 유력한 차세대 메모리인 MRAM에 보안 소자 기술을 접목하는 연구가 활발히 이뤄질 것으로 예상 된다ˮ고 밝혔다.
한편 이번 연구는 현대자동차 및 과학기술정보통신부 PIM인공지능반도체핵심기술개발 사업과 중견연구자지원 사업 연구과제의 지원을 받아 수행됐다.
2022.12.02
조회수 7410
-
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다.
하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다.
연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다.
제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다.
이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode)
한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 9700
-
전기차 노면 소음과 모터 소음을 동시에 차단하는 초경량 차음 메타패널 개발
우리 대학 기계공학과 전원주 교수 연구팀이 전기차의 저주파 대역 노면 소음과 고주파 대역 모터 소음을 동시에 차단할 수 있는 신개념 음향 메타물질 기반 초경량 차음 메타패널을 개발했다고 18일 밝혔다.
음향 메타물질은 자연계에 존재하지 않는 음향학적 유효 물성(음의 질량, 음의 강성 등)을 갖도록 인공적으로 설계된 구조물로, 음향 은폐, 고투과-고집속, 완벽 차음/흡음 등 기존 재료로는 구현이 어려운 성능을 달성할 수 있는 특징이 있다.
내연기관을 대신해 전기모터를 동력원으로 사용하는 전기차는 기존의 내연기관 자동차에서 시끄럽다고 느끼던 엔진 소음이 더는 발생하지 않는다. 하지만, 엔진 소음에 의한 마스킹 효과가 사라지면서 오히려 저주파 대역의 노면 소음이 상대적으로 더 크게 들리거나 엔진을 대신하는 전기모터의 고주파 소음이 또렷하고 거슬리게 들리기도 한다.
미래 모빌리티의 한 축을 담당하고 있는 전기차가 단순히 하나의 운송 수단을 넘어 이동 중 휴식이나 레저 및 업무 활동 등 탑승자에게 필요한 맞춤형 서비스를 제공하는 개념으로 나아가고 있다는 점에서 전기차의 실내 정숙성을 확보하는 것이 매우 중요하다. 특히, 전기차 노면 소음과 모터 소음은 각각 저주파와 고주파로 나뉜 서로 다른 주파수 대역에서 나타날 뿐만 아니라 각각의 대역도 광대역이기 때문에, 이와 같은 소음을 동시에 효과적으로 차단할 수 있는 기술의 개발과 적용이 필요한 시점이다.
현재 상용화된 전기차에서는 소음 차단을 위해 폴리에스터, 열가소성 고무, EVA(에틸렌초산비닐 공중합체) 시트, 금속판 등의 전통적인 흡·차음재가 사용되고 있다. 하지만, 전통적인 흡·차음재의 성능은 재료 자체의 열/점성 소산 특성이나 질량 법칙(투과 손실 6dB(데시벨) 증가를 위해 질량 밀도가 2배 높아져야 함)에 의존하기 때문에 높은 차음 성능을 위해서는 재료의 무게 증가가 불가피하며, 이는 곧 전기차 배터리의 에너지 효율을 감소시키는 원인이 되고 있다.
따라서, 우수한 차음 성능을 발휘하면서도 경량화를 동시에 달성하는 것이 전기차 적용 측면에서 매우 중요한데, 기존의 음향학적 재료나 법칙의 한계를 넘어서야 한다는 점에서 학문적으로도 도전적인 문제였다.
전원주 교수 연구팀은 기존 기술의 한계를 극복함으로써 높은 차음 성능으로 전기차 노면 소음과 모터 소음을 동시에 차단할 수 있는 초경량 차음 메타패널을 개발했다.
연구팀이 개발한 메타패널은 저주파 대역(노면 소음)에서는 음의 유효 질량을 가지면서 고주파 대역(모터 소음)에서는 음의 유효 강성을 갖도록 설계됐으며, 면적밀도 1.51kg/m2의 매우 가벼운 무게로 100~1,750Hz의 넓은 주파수 대역에서 투과 손실 16.7dB(에너지 기준 98%) 이상 차단할 수 있음을 이론적으로 예측했고 제작과 실험을 통해 그 성능을 검증하는 데 성공했다. 이는 동일 차음 성능을 갖는 기존 기술과 비교해 20배 이상 가벼운 무게의 초경량화를 달성했다고 볼 수 있다. (그림 1 참고)
다중 스케일 격자 구조와 멤브레인(얇은 막)으로 구성된 차음 메타패널은 분리된 두 광대역에서 높은 투과 손실을 동시에 구현할 수 있다는 음향학적 특징이 있어, 전기차에 적용될 때 저주파 노면 소음과 고주파 모터 소음을 효과적으로 차단해낼 수 있을 것으로 기대된다. 특히, 메타패널의 기하학적 인자를 쉽게 조절함으로써 원하는 주파수 대역에서 높은 차음 성능을 달성할 수 있으므로, 전기차뿐 아니라 도심 항공 모빌리티(Urban Aerial Mobility, UAM) 등 다양한 미래 모빌리티에 적합하게 주파수 선택적 설계가 가능하다는 장점과 더불어 제작이 쉽다는 응용 측면의 장점도 갖고 있다.
우리 대학 기계공학과 김지완 박사과정(제1 저자), 최은지 박사과정(제2 저자)이 참여한 이번 연구 결과는 기계공학 분야 최상위권 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 8.934, JCR 상위 4/137(2.55%)'에 지난 8월 30일 字 온라인 게재됐다. (논문명: Lightweight soundproofing meta-panel for separate wide frequency bands)
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 글로벌프론티어사업-파동에너지극한제어연구단의 지원을 받아 수행됐다.
2022.10.18
조회수 9780