-
박사과정 4명, 학술지에 초청 논문 게재
〈 이상엽 교수 연구팀 〉
우리 대학 생명화학공학과 네 명의 박사과정 학생들(지도 : 이상엽 특훈교수)이 시스템대사공학(Systems metabolic engineering) 전략을 주제로 초청 리뷰논문을 게재했다.
이상엽 교수의 지도 아래 최경록, 신재호, 조재성, 양동수 네 명의 학생이 주도한 이번 논문은 미생물 분야 학술지 ‘에코살 플러스(EcoSal Plus)’ 10일자 온라인 판에 게재됐다.
이번 논문은 학술 및 산업적으로 널리 연구되고 활용되는 대장균의 시스템대사공학 연구 전략을 총망라했다. 시스템대사공학은 이상엽 특훈교수가 창시한 과학기술 분야로 기존 대사공학에 시스템생물학, 합성생물학, 진화공학 등을 융합한 학문이다.
이번 리뷰 논문에서는 ▲시스템대사공학에서 활용하는 다양한 실험 기법 ▲시스템대사공학 연구 전략 ▲시스템대사공학 전략을 적용해 대량생산 및 산업화에 성공한 바이오리파이너리 사례를 다룬다.
대사공학은 미생물의 대사 흐름을 조절해 화합물을 생산할 수 있는 세포 공장 구축을 목표로 한다. 바이오매스 등 재생 가능한 탄소원을 먹이로 삼아 미생물을 배양해, 다양한 산업 및 의약 물질을 생산하는 바이오리파이너리 분야의 핵심 요소로 평가받는다.
특히 기존 대사공학에 시스템대사공학 전략을 적용하면 물질을 대량생산할 수 있는 고성능 균주를 효과적으로 구축할 수 있어 비용 절감을 기대할 수 있다.
또한 균주가 대규모 바이오리파이너리 공정에 적합하도록 지속적으로 최적화하는 과정도 포함돼 미래에는 석유화학 산업을 대체할 수 있을 것으로 기대된다.
에코살 플러스는 두 번에 걸쳐 출판된 ‘대장균과 살모넬라(Escherichia coli and Salmonella: Cellular and Molecular Biology)’ 책자를 전신으로 하는 온라인 리뷰 학술지이다.
생물학 연구에서 중요한 대장균 등의 미생물에 관련한 유전, 생화한, 대사 등 모든 분야를 다뤄 생물학 전반 연구의 주요 지침서로 알려져 있다.
이 교수는 “이번 초청 리뷰는 최경록, 신재호, 조재성, 양동수 네 명의 박사과정 학생들이 세계적 수준의 전략 제시 능력을 갖췄음을 증명한 것이다”며 “생명공학분의 바이블로 불리는 에코살 플러스에 논문을 게재한 학생들이 매우 자랑스럽다”고 말했다.
2016.03.30
조회수 12179
-
은(銀)으로 덮은 종이 크로마토그래피 개발
〈 정 기 훈 교수 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속나노입자를 증착시켜 저렴하면서도 정교한 결과를 내는 크로마토그래피용 종이를 개발했다.
이번 연구는 광학분야의 국제 학술지 ‘빛: 과학과 응용(Light: Science and Applications)’지 1월 15일자 온라인 판에 게재됐다.
크로마토그래피는 특정 용매를 이용해 혼합물을 분리하는 기술이다. 가장 전통적인 종이 크로마토그래피를 비롯해 박막, 가스 등 다양한 방법을 이용한 크로마토그래피가 존재한다.
그 중 종이 크로마토그래피는 종이를 용매에 살짝 담근 후 종이 내 혼합 물질의 성분과 종이의 인력 차이에 의해 물질이 나아가는 정도가 달라지는 것을 이용한 혼합물 분리 방법이다.
종이 크로마토그래피는 저렴하고 다수의 성분을 동시에 검출할 수 있어 광합성 산물 및 다양한 생체 혼합물의 분리, 검출에 응용된다.
크로마티그래피 기술로 혼합물을 분리하고 나면 다음 단계로 물질의 성분을 파악하기 위해 물질에 빛을 조사한다.
분자는 각자 다른 성질을 갖고 있어 빛을 받은 후 분출하는 파장이 모두 다르다. 파장의 차이를 분석하면 혼합물에 어떤 분자가 포함됐는지 파악이 가능하다. 사람의 지문과 같은 역할을 하는 것이다.
그러나 이 과정에서 문제가 발생한다. 현존하는 종이 크로마토그래피 기술은 가격이 저렴한 대신 혼합물 분리의 정교성이 떨어지고, 혼합물 내 분자의 농도가 낮을 경우 빛을 조사해도 성분 검출이 잘 되지 않는 등의 한계가 있다.
분자를 검출하기 위해 형광 표지(label)을 붙여 빛을 조사하는 방법도 있지만 형광 표지로 인해 분자의 본래 특성이 변하게 되는 문제가 발생한다.
연구팀은 문제 해결을 위해 나노플라즈모닉스 특성을 갖는 은 나노섬을 종이 표면에 균일하게 증착했다. 나노플라즈모닉스 기술은 금속 나노구조 표면에 빛을 집광시키는 기술로 신경전달물질, 유전물질, 생체 물질 검출 등 다양하게 응용 가능하다.
은과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 가져, 연구팀은 종이의 특성을 유지하면서 기판 표면에서의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀은 개발한 종이에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목해 별도의 표지 없이 혼합물을 분리하고 피코몰(10-12M) 수준의 극 저농도 물질도 측정하는 데 성공했다.
이 기술은 검출가능한계를 최고 수준으로 향상시켜 진단의학, 약물 검사 등 특정 성분의 분리 검출이 요구되는 다양한 분야에 응용 가능할 것으로 예상된다.
연구팀은 “진공증착, 저온 열처리 등 일반적인 반도체공정을 이용해 정밀하고 대면적 양산이 가능한 금속나노구조를 제작했다”며 “기존 기술의 단점인 비싼 가격, 셀룰로스의 특성 변화 등의 문제를 해결할 수 있을 것이다”고 밝혔다.
정 교수는 “이번 결과를 바탕으로 향후 저비용 무표지 초고감도 생체 분자 혼합물의 분리 및 분석이 가능해질 것이다”며 “또한 신약 개발용 약물 스크리닝, 환경 지표 검사, 생리학적 기능 연구 등에 크게 기여할 것이다”고 말했다.
□ 그림 설명
그림1. 크로마토그래피용 금속나노입자를 갖는 종이의 단면 주사전자현미경 사진
그림2. 크로마토그래피용 금속나노입자를 갖는 종이의 주사전자현미경 사진
그림3. 각종 크로마토그래피용 종이 광학사진
그림4. 비타민 혼합물의 분리 및 무표지 검출
2016.02.02
조회수 12269
-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14431
-
미세 입자의 3차원 영상 촬영기술 개발
우리 대학 물리학과 박용근 교수 연구팀은 CT촬영의 원리와 비슷한 광회절 단층촬영법을 이용해, 광학 집게로 포획한 입자의 3차원 위치를 고속으로 측정할 수 있는 기술을 개발했다.
이 기술로 광학 집게를 사용한 세포 단계의 수술 작업을 실시간 촬영할 수 있어 세포의 반응, 수술 예후 등을 모니터링 할 수 있게 됐으며, 기존에는 어려웠던 세포 내부 성분 및 총량에 대한 정확한 수치 측정이 가능해졌다.
연구 결과는 미국 광학회지 ‘옵티카(Optica)’ 4월 20일자 온라인 판 표지 논문으로 선정됐다.
광학 집게는 빛을 이용해 미세 입자를 포획해 힘을 가하거나 3차원 위치를 자유자재로 움직일 수 있는 기술이다.
렌즈를 이용해 레이저 빔을 머리카락의 수백분의 일 크기의 초점으로 모으면 자석에 철가루가 끌려오듯 주변의 미세입자들이 달라붙는다. 초점의 위치를 옮기거나 힘을 가해서 미세 입자의 3차원 위치를 조절하는 것이 광학 집게의 원리이다.
광학 집게로 움직인 미세 입자의 위치를 측정하기 위해서 광학 현미경을 이용하는데, 입자의 2차원 움직임은 미세 입자에 의해 산란된 빛의 정보를 측정함으로써 쉽게 알 수 있었다.
하지만 다른 물체가 시선 방향의 미세 입자를 가로막아 산란된 빛의 정보가 왜곡되거나, 생물 세포처럼 복잡한 형상인 경우에는 3차원 위치의 정확한 측정이 어려웠다.
연구팀은 병원의 CT촬영 원리와 비슷한 광회절 단층촬영법을 이용해 입자의 3차원 영상화에 성공했다. 다각도로 CT 영상을 찍어 환자 몸 내부를 들여다보듯이, 광학 집게로 포획한 미세 입자에 레이저 빔을 여러 각도로 입사해 촬영한 뒤 이를 분석하는 방식이다.
2 마이크로미터 크기의 유리구슬을 광학 집게로 집어 백혈구 세포 위에 얹은 뒤 백혈구의 반응을 1초당 60장의 속도로 영상화했다. 앞쪽에 위치한 백혈구가 구슬을 가려 기존의 기술로는 촬영이 어려웠지만, 연구팀의 광회절 단층촬영법으로 구슬의 3차원 위치 뿐 아니라 백혈구 내부의 물질 분포도 측정이 가능했다.
박 교수는 “포획한 입자의 3차원 위치와 내부 구조를 별도의 표지 없이 빠른 속도로 측정 가능한 기술이다” 며 “향후 물리학, 광학, 나노기술 및 의학 등의 다양한 분야에 응용될 것으로 기대한다”고 말했다.
김규현 학생(제1저자)은 "물리적, 화학적 자극에 따른 세포 반응을 단일 세포 단계에서 관찰하는 것이 중요하다"며, "이 방법을 이용해 부유 입자와 세포, 조직 등의 다양한 시스템에 광학 집게로 힘을 가하고 이를 3차원으로 실시간 영상화하는 실험을 수행할 예정이다"고 말했다.
□ 그림 설명
그림 1. 광집게로 집은 유리구슬을 백혈구 세포에 얹은 모습
그림2. 일반 현미경 관찰 영상과 광회절 단층촬영법 관찰 영상 비교
2015.04.21
조회수 11324
-
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다.
우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다.
이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다.
사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다.
하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다.
또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다.
공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다.
액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다.
공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다.
그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다.
이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다.
임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다.
문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. iCVD 공정의 모식도
(i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성
그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자
그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17058
-
이효철 교수, 분자 결합 과정 실시간 관측 성공
이효철 교수 연구팀 (좌 : 김경환 박사, 중 : 이효철 교수, 우 : 김종구 박사과정 학생)
우리 대학 화학과 이효철 교수 연구팀이 세계 최초로 원자가 결합해 분자를 이루는 순간을 실시간으로 관측하는 데 성공했다.
2005년 분자결합이 끊어지는 과정을 밝혀 사이언스지에 논문을 게재했던 이효철 교수는, 10년 만에 분자의 결합과정까지 관측함으로써 화학반응의 시작과 끝을 밝혀냈다.
이번 연구 결과는 세계 최고권위 저널 네이처지 2월 18일자에 게재됐다.
연구진은 화학결합의 순간포착을 위해 평소에는 가까운 곳에 흩어져 있다가 레이저를 쏘면 반응해 화학적으로 결합하는 성질의 금 삼합체를 실험모델로 삼았다.
화학결합이 이뤄지는 1조분의 1초의 찰나를 관측하기 위해 펨토초(1천조 분의 1초) 엑스선 펄스라는 특수 광원을 이용했다. 이를 통해 광반응에 따른 금 삼합체 원자의 구조 변화를 엑스선 회절 이미지로 구현해 냈다.
연구진은 모든 화학반응의 근본이 되는 원자 간 결합을 관측하기 위해 특수한 광원과 화합물을 이용했다.
원자의 지름은 1옹스트롬(1억 분의 1센티미터)이고 화학결합의 순간은 1조 분의 1초 정도여서 원자를 감지하려면 빛의 파장이 원자 수준으로 짧아야 한다. 또 빛의 시간 길이는 원자간 결합의 순간보다 짧아야 하는 데 이를 만족하는 광원이 엑스선 자유전자 레이저에서 얻어지는 펨토초 엑스선 펄스이다.
레이저 기술과 엑스선 회절법 기술을 결합한 펨토초 엑스선 회절법을 이용하면 빠른 분자의 움직임을 정확한 위치 정보와 함께 측정할 수 있고, 이 방법을 이용해 금 삼합체 내부의 금 원자들 사이에서 화학결합이 형성되는 순간을 실시간으로 관측할 수 있었다.
연구진은 펨토초 엑스선 회절법을 통해 단백질의 탄생 순간과 단계별 구조 변화를 밝힐 계획이다. 향후 단백질 반응의 제어, 질병 치료, 신약 개발 등에 필요한 기초정보 제공이 가능할 것으로 기대된다.
이효철 교수는 “펨토초 엑스선 회절법을 통해 이번 연구 결과 외에도 분자의 진동, 회전 등을 관측할 수 있을 것”이라며, “축적한 기술과 경험을 토대로 국내 연구진이 세계 과학계의 흐름을 주도하길 바란다”고 말했다.
2015.02.23
조회수 14326
-
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다.
이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다.
그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다.
최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다.
이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다.
최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다.
이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다.
연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝.
그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진
그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’
그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀
그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15188
-
종이 한 장으로 구제역 조기 진단 가능해진다
지난 2010년 11월 말 경북 안동에서 시작돼 이듬해 4월 초까지 전국으로 퍼졌던 구제역파동은 직접적인 피해액만 3조원으로 추산되며 경제 전반에 미친 파급효과는 5조원 이상이라는 분석도 있다.
구제역과 같은 전염성 강한 질병을 현장에서 즉시 진단할 수 없기 때문에 피해가 확산될 가능성이 높다. 의심신고가 들어오면 시료를 채취해 전문기관에서 분석하는 데만 2~3일 걸린다. 그 사이 바이러스는 걷잡을 수 없이 퍼진다.
구제역, 조류독감, 신종플루 등 전염성이 강한 질병 진단을 위한 바이오센서를 저렴한 가격에 만들 수 있게 됐다.
우리 학교 생명화학공학과 정기준·임성갑(41) 교수 공동연구팀은 종이나 비닐 등 다양한 물질에 항체를 고정하는데 성공해 보급형 바이오센서개발에 필요한 원천기술을 확보했다.
연구결과는 세계적 학술지 ‘폴리머 케미스트리(Polymer Chemistry)’ 후면 표지논문(7월 7일자)으로 게재됐다.
바이오센서의 기판은 안정성이 높은 금이나 유리를 주로 사용한다. 그러나 가격이 비싸고 휴대성이 떨어지기 때문에 현장에서 쓰기 어렵다.
게다가 항원 진단을 위해 사용되는 항체의 높은 생산 단가로 인해 진단시스템의 가격이 비싸 축산농가 등에 보급이 어려웠다.
연구팀은 기존에 있던 두 가지 핵심기술을 보급형 바이오센서 개발에 활용했다.
연구팀은 바이오센서의 제조단가를 획기적으로 줄이는 동시에 휴대성을 높이기 위해 초기 화학적 진공증착법(iCVD, Initiated chemical vapour deposition)으로 종이나 비닐에 고분자 박막을 증착했다. 또 박막과의 화학적 반응을 통해 항체 단백질을 안정적으로 고정하는데도 성공했다.
이와 함께 가격이 비싸고 고온에 견디지 못했던 기존의 항체 대신, 미생물을 기반으로 만들어 저렴하면서도 70℃의 높은 온도에서도 뛰어난 안정성을 보여주는 ‘크링글도메인’이라는 유사항체를 활용했다.
그 결과 연구팀은 기존 진단시스템의 고비용·불안정성 문제를 동시에 해결했다.
이번 연구를 주도한 정기준 교수는 “기판을 종이나 비닐로 대체하고 유사항체를 활용해 지금보다 훨씬 저렴하면서도 안정성 높은 바이오센서를 만드는 것이 핵심기술”이라고 설명했다.
이와 함께 “최근 국내에서 발병해 국민경제에 커다란 피해를 유발했던 구제역처럼 급속한 전파력을 갖는 바이러스성 질병을 현장에서 신속하게 진단할 수 있을 것”이라며 “향후 포스트잇 또는 책자 형태로 바이오센서를 만들어 축산농가에 보급되면 전수조사가 가능해져 무조건적인 살처분을 막고 샘플링검사로 인한 부정확성을 줄일 수 있을 것”이라고 말했다.
한편, 이번 연구는 미래창조과학부 신기술융합형 성장동력사업(바이오제약) 및 글로벌프론티어사업(차세대바이오매스연구단)의 지원을 받아 수행됐다.
그림1. 종이 비닐 등 다양한 표면 물질 위에 단백질을 고정화하는 기술의 모식도
그림2. 비닐(a)과 종이(b)에 고정화된 비항체 단백질 골격을 이용한 바이오센서
그림3. 고분자 박막 증착 기술에 기반한 단백질 고정화 시스템 이미지
2014.07.16
조회수 14336
-
단분자 수준 단백질 상호작용 측정 성공
- 하나의 분자 수준에서 두 단백질 상호작용 실시간 관찰 성공 -- 면역침강 기법의 측정한계와 시간분해능 십만 배 향상 -
우리 학교 물리학과 윤태영 교수 연구팀이 하나의 분자 수준에서 실시간으로 두 단백질 사이의 상호작용을 관찰하는 기술을 개발한 연구 결과가 ‘네이처 프로토콜스 (Nature Protocols)’ 10월 호에 초청 논문으로 게재됐다.
윤 교수 연구팀은 먼저 하나의 분자까지 관찰할 수 있는 형광현미경을 개발했다.
연구팀은 분자생물학에서 단백질 상호작용 분석에 전통적으로 사용되는 ‘면역침강기법’을 개발한 현미경과 접목함으로써 ‘실시간 단분자 면역침강기법’을 개발해냈다. 이를 통해 연구팀은 순간적으로 상호작용이 반복되는 두 단백질의 반응을 수십 밀리 초 단위에서 정밀하게 관측하는데 성공하였다.
기존의 면역침강기법은 두 단백질 사이의 상호작용을 검출하기 위해 최소 1일 이상의 시간이 소요되었다. 이로 인해 약한 상호작용이나 순간적인 작용을 검출해 내는데 있어 그 한계가 있었다. 또한 결과로 나타난 그림이 단백질 밴드의 세기로 측정되므로 정량적인 분석이 어렵고, 실시간 관측이 불가능한 단점이 있었다.
연구팀은 이러한 기존 방법을 대폭 개량함과 동시에 단분자 수준에서 정밀한 기법을 개발해 내고자 하였다. 새롭게 개발된 기술을 사용하면, 1시간 이내에 원하는 단백질 사이의 상호작용을 관측할 수 있게 된다. 또한 두 단백질의 상호작용을 실시간으로 측정할 수 있으므로 상호작용의 현상을 보다 심도있게 측정하고, 계량할 수 있는 것이다.
또한 실험에 사용되는 모든 프로그램을 연구팀에서 직접 제작, 배포하여 본 기법에 대한 원천기술을 확보함과 동시에, 세계적인 인프라를 구축하는데 있어 토대를 마련하기도 하였다.
윤태영 교수는 “이번에 개발한 기술은 별도의 단백질 발현이나 정제과정을 필요로 하지 않아 매우 미량의 단백질 샘플만 주어져도 그 상호작용을 단분자 동역학 수준에서 매우 정밀하게 분석할 수 있다”며 “암 환자 조직에서 얻어진 발암 단백질도 정확히 분석할 수 있어 향후 맞춤형 항암제 개발을 위한 플랫폼을 마련할 수 있다”고 전했다.
그림1. 기존의 면역침강법과 새로이 개발된 실시간 단분자 면역침강법의 비교 모식도
2013.11.25
조회수 16920
-
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” -
우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다.
연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다.
이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다.
기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다.
따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다.
연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다.
이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다.
이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다.
여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다.
여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다.
여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다.
붙임 : 그림설명
그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질
그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질
그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자
그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18244
-
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” -
우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다.
연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다.
산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다.
하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다.
손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다.
인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다.
이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다.
지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다.
연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다.
이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다.
암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다.
최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다.
이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다.
그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조
그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상
그림3. 논문표지
2013.06.03
조회수 16614
-
메탄올 하이드레이트의 새로운 발견
- 가스 하이드레이트 생성 억제 물질인 메탄올의 새로운 역할 규명 -- 원유, 천연가스 수송에서 타이탄 등 태양계 천체 연구까지 다양한 분야에 파급효과 기대 -
원유, 천연가스 등을 심해에서 끌어올릴 때 고압, 저온 조건에서 발생하는 가스 하이드레이트 때문에 송유관이 막힐 수 있다. 이를 방지하기 위해 주입하는 메탄올을 주입하는데 오히려 메탄올 때문에 가스 하이드레이트가 더욱 잘 발생한다는 기존의 가설을 뒤집는 연구결과가 나왔다.
우리 학교 해양시스템공학전공 서유택 교수와 신규철 박사가 공동으로 대표적인 가스 하이드레이트 생성 억제제인 메탄올이 조건에 따라 하이드레이트 형성의 촉매 역할을 하는 메커니즘을 규명했다.
연구 결과는 세계적 학술지 ‘미국 국립과학원 회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)’ 5월 21일자에 발표됐다.
가스 하이드레이트는 고압, 저온 조건에서 가스 분자가 물 분자와 결합해 얼음 형태로 존재하는 고체화합물로 원유와 천연가스의 이송 파이프라인 안에서 막히는 현상을 유발해 심각한 사고를 일으킬 수 있다.
이를 방지하기 위해 메탄올은 수송관 내 원유에 약 20~30% 만큼 주입해 가스 하이드레이트 생성을 억제하기 위해 사용된다.
연구팀은 원유를 생산할 때 메탄올에 사용되는 비용을 줄이기 위해 원유대비 메탄올의 주입 비율을 바꿔가며 가스 하이드레이트의 억제 효과를 알아보기 위해 저온 기상증착법 등 다양한 실험을 수행했다.
이번 연구는 메탄올이 가스 하이드레이트 형성을 억제한다는 기존의 연구결과를 기반으로 수행한 것이다. 그러나 메탄올이 메탄 등 다른 가스들과 함께 물과 결합해 가스 하이드레이트가 형성되는 것을 세계 최초로 밝혀냈다.
게다가 메탄올이 오히려 원유대비 5~20% 만큼 주입되면 가스 하이드레이트 형성 속도를 급격히 증가시켜 파이프 이송라인이 더욱 쉽게 막힐 수 있다는 사실도 함께 밝혀냈다.
실제로 2006년 멕시코 만에서 운영 중이던 유전에서는 메탄올 주입량이 20% 미만으로 떨어져 파이프라인이 막혔다. 수 일 동안 생산이 중단되어 회사는 수백만 달러 이상의 손실을 입었지만 과학적으로 원인을 밝혀내지는 못했다. 이렇게 원인이 밝혀지지 않았던 가스 하이드레이트 사고 사례에 대해서도 과학적으로 입증한 것으로 향후 산업계에 미치는 파급효과가 매우 클 것으로 기대된다.
서유택 교수는 “이번 결과는 원유, 천연가스 등의 이송 과정에서 기존의 가설을 뒤집는 결과로 얼음, 메탄, 메탄올, 암모니아 등이 공존하는 태양계 천체들의 표면 성분을 밝히는 데도 응용될 수 있다”며 “다양한 분야에 미치는 파급효과가 클 것으로 예상돼 이에 대한 후속 연구를 진행할 계획”이라고 밝혔다.
한편, 이번 연구는 해양시스템공학전공 서유택 교수와 신규철 연구원이 캐나다 정부출연연구기관(National Research Council)과 공동으로 수행했다.
그림1. 단결정 X-선 회절 분석을 통해 밝힌 하이드레이트 얼음 격자 안의 메탄올 분자 (右)
그림2. 심해 파이프라인에서 발생한 하이드레이트 막힘 현상
2013.05.23
조회수 15003