-
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”-
지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다.
*) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체
우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다.
이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water)
정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다.
일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다.
특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다.
정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 17643
-
생체모방 탄소나노튜브 섬유 합성기술 개발
- 재료분야 저명 국제학술지 ‘어드밴스드 머티리얼스’ 표지 논문 게재- 강도가 3배 이상 향상된 차세대 초경량 초고강도 전도성 신소재 개발
홍합을 지지하고 있는 섬유형태의 족사는 강한 파도가 치는 해안가와 같은 다른 생물이 살기 어려운 환경에서도 바위에 단단히 붙어서 생존한다. 이러한 특성은 홍합 족사의 독특한 구조와 고강도 접착성 때문이다.
우리학교 신소재공학과 홍순형 교수와 화학과 이해신 교수, 생명과학과 故 박태관 교수로 구성된 공동연구팀이 자연계의 홍합 족사 구조를 모방해 탄소나노튜브를 기반으로 한 초고강도 전도성 섬유 제조 원천기술개발에 성공했다.
탄소나노튜브는 1991년 일본의 이지마 교수(현 성균나노과학기술원장)에 의해 발견된 이후 우수한 전기적, 열적, 그리고 기계적 특성으로 차세대 신소재로 각광 받았으나 길이가 수 나노미터 수준으로 미세해 산업용 제품으로 응용하는 데 한계가 있었다.
KAIST 연구팀은 이러한 난제를 자연계의 홍합 족사 구조에 착안해 해결했다.
홍합 족사에는 콜라겐 섬유와 Mefp-1 단백질이 가교 구조(cross-linking structure)로 결합되어 있다. 이 Mefp-1 단백질속에는 카테콜아민이라는 성분이 있어 콜라겐 섬유끼리 강하게 결합한다.
연구팀은 고강도 탄소나노튜브 섬유가 콜라겐 섬유 역할을, 고분자 구조 접착제가 카테콜아민과 같은 역할을 하도록 했다. 그 결과 길이가 길고 가벼우면서도 끊어지지 않는 초경량 초고강도 탄소나노튜브 섬유를 개발했다.
KAIST 홍순형 교수는 “개발된 탄소나노튜브 섬유는 기존의 구조용 탄소강에 비해 강도가 3배 이상 향상된 차세대 초경량 초고강도 고전도성 신소재”라며 “향후 방탄소재, 인공근육소재, 방열소재, 전자파 차폐소재, 스텔스소재 및 스페이스 엘리베이터 케이블 등 다양한 산업계에 응용이 가능하다”고 말했다. 아울러 “새로운 나노융합 소재 산업의 기술혁신을 이룰 수 있을 것”이라고 홍 교수는 덧붙였다.
이번 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 5월 3일자 표지 논문으로 선정됐으며, 최근 국내 및 국외에 4건의 특허 출원 및 등록이 결정됐다.
한편, 이번 연구는 교육과학기술부 21세기 프론티어 연구개발 사업단, 세계수준의 연구중심대학(WCU) 육성사업, KAIST 나노융합연구소 등으로부터 지원받아 수행됐다.
2011.05.11
조회수 27198
-
연필심에서 배터리까지 탄소의 무한 변신
- “차세대 이차전지나 태양전지, 디스플레이 개발을 위한 기술적 진보 이뤄”
- 그래핀과 탄소나노튜브를 새로운 3차원 형태로 조립에 성공
-‘어드밴스드 펑셔널 머티리얼즈’ 특집기획 초청논문 게재
연필심의 원료인 흑연이나 다이아몬드등과 같이 순수하게 탄소로만 이루어진 물질들이 우리주변에서 다양한 소재나 부품으로 널리 쓰이고 있다. 특히 최근에는 탄소나노튜브나 그래핀과 같이 나노미터 크기를 갖는 탄소나노소재들이 새롭게 발견돼 학계와 산업계로부터 많은 관심을 끌고 있다.
꿈의 신소재로 불리는 그래핀과 탄소나노튜브는 탄소원자가 2차원적 평면상에 벌집 모양으로 결합된 화학구조로 되어있다. 이로 인해 다이아몬드보다 강도가 높으면서 잘 굽혀질 수 있고, 투명하면서도 전기가 잘 통하는 등 기존의 다른 소재들이 갖지 못한 우수한 특성들을 가지고 있다. 그러나 자연 상태에서는 이들이 뭉쳐있거나 층층이 쌓여 흑연을 이루고 있어 개별적으로 분리해내기에 어려운 문제점이 있었다.
분자조립 나노기술의 세계적 연구그룹인 KAIST(총장 서남표) 신소재공학과 김상욱 교수 연구팀은 꿈의 소재라 불리는 그래핀과 탄소나노튜브를 3차원 형태로 조립하는 새로운 원천기술을 개발했다.
연구팀은 그동안 오랜 연구역량을 축적해 온 분자조립 나노기술을 이용해 그래핀과 탄소나노튜브를 입자 단위로 분리한 후 새로운 3차원 형태로 조립하는 데 성공했다. 또한, 이 과정에서 값싼 천연 흑연으로부터 단일층의 그래핀 유도체를 매우 높은 순도로 얻어내는 데 성공했다.
김상욱 교수는 “이번 연구로 그래핀계 탄소소재가 가진 넓은 표면적, 우수한 전기전도성, 기계적 유연성 등의 우수한 물성을 차세대 이차전지나 태양전지, 디스플레이 등에 이용하기 위해 필요한 중요한 기술적 진보를 이뤘다”며 “이번 논문 게재로 연구팀이 탄소소재 연구에서 세계적 선도그룹으로 인정받고 있음을 다시 한 번 확인했다”고 말했다.
김 교수는 이번 연구내용으로 4월말 미국 샌프란시스코에서 개최되는 국제재료학회(Materials Research Society)에서 초청 강연을 할 예정이다.
한편, 이번 연구결과는 신소재분야 세계적 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 22일자에 특집기획 초청논문(Invited Feature Article)으로 발표됐다. 논문이 소개된 ‘어드밴스드 펑셔널 머티리얼즈’의 특집초청논문은 세계적인 연구그룹의 최신 연구동향을 엄격한 심사를 통해 선별, 초청하는 기획논문이다.(끝)
※용어설명그래핀: 육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재
탄소나노튜브: 육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재
2011.04.25
조회수 15440
-
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다.
이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다.
반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다.
이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다.
유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다.
이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다.
그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다.
이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다.
KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다.
또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다.
이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다.
김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세
대 에너지개발을 위한 연구에 노력하겠다”고 말했다.
이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 21035
-
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다.
이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다.
반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다.
이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다.
張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다.
* 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법.
(그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조.
(그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 21488
-
우성일교수 연구팀, 친환경 고체산화물 연료전지 시스템 개발
-바이오디젤 생산과정의 부산물인 글리세롤을 이용한 고체산화물 연료전지 시스템
-10월 14일 앙게반테 케미 자매지, "켐서스켐(ChemSusChem)" 온라인판에 게재
생명화학공학과 우성일(58)교수 연구팀은 바이오디젤(bio-diesel) 생산과정의 부산물인 글리세롤을 연료로 이용한 고체산화물연료전지 구동기술을 개발하는데 최근 성공했다.
우교수팀은 이번 연구를 통해 글리세롤을 연료로 고체산화물연료전지를 조업하여 발전시 생성되는 이산화탄소의 발생량을 석탄 및 석유에 비해 각각 40%, 26% 가까이 줄이는 결과를 얻었다. 석탄 및 석유를 이용하는 화력발전을 통한 전기 1kWh 생산시 발생하는 이산화탄소는 각각 991g, 782g이다. 반면 글리세롤은 585g이다. 또한 기존 수소를 연료로 이용했을 때의 80%에 달하는 효율을 얻을 수 있었다.
이번연구에 사용한 바이오매스로부터 얻은 글리세롤 개질과정의 이산화탄소는 바이오매스를 생산하는데 재사용함으로써 저탄소, 녹색성장에 획기적으로 기여할 수 있을 것으로 예상된다.
이 연구결과는 지난 14일 앙게반테 케미(Angewandte Chemie)의 자매지인 "켐서스켐(ChemSusChem)" 온라인판에 게재됐으며 관련기술은 국내특허 출원중이다.
연구팀 관계자는 “이번 연구결과는 고체산화물 연료전지에 바이오매스로부터 바이오디젤을 생산할 때 얻어진 글리세롤 연료를 사용함으로써 기존 화석연료보다 이산화탄소의 배출량을 줄이고 배출된 이산화탄소는 바이오매스 생산에 재사용할 수 있어 지구 온난화 방지에 기여할 수 있다”고 말했다.
고체산화물연료전지는 고체산화물을 전해질로 사용하는 연료전지로서 에너지 효율이 ~50%에 달하는 가장 발전된 형태의 연료전지이다. 연료로 쓰이는 수소를 생산하기 위해 탄화수소를 개질하게 되는데 이 과정에서 이산화탄소가 발생하게 된다.
바이오디젤은 브라질, 미국, EU등을 중심으로 고유가에 대응하기 위하여 생산을 확대해오고 있으며, 최근에는 일본, 중국, 인도 등이 후발국으로 참여하여 그 규모가 점차 커지고 있다. 2009년 바이오디젤의 생산량은 78억톤에 달할 것으로 예상되고 있으며 2010년에는 104억톤으로 증가할 것으로 예상된다.
글리세롤은 바이오디젤 1 톤을 생산할 때 0.1 톤 정도 부산물로 생산되는 물질로서 바이오디젤의 공급증가에 따른 잉여의 글리세롤이 생성된다. 고체산화물 연료전지에 잉여의 글리세롤을 연료로 사용하였을 경우 저탄소 녹색 성장에 크게 이바지 할 수 있을 것으로 기대된다.
또한 최근에는 지구온난화 주범인 이산화탄소의 양을 줄이기 위하여 국제적으로 탄소배출권 거래제도에 대한 관심이 집중되고 있는 실정이다.
탄소배출권 거래제도는 전 세계의 온실가스 배출총량을 정하고 이를 국가나 기업별로 할당하는 제도로서 할당량보다 많이 배출하려는 국가나 기업은 할당량보다 적게 온실가스를 배출한 곳으로부터 배출권을 사야한다.
바이오디젤의 경우 1톤을 생산할 때 이산화탄소 2.2 톤의 배출량을 감면받게 되므로 바이오디젤의 부산물인 글리세롤을 이용하여 고체산화물 연료전지를 조업할 경우 탄소배출권을 획득할 수 있어 부가가치를 창출할 수 있다.
이번 연구는 초미세화학공정연구센터(ERC), 에너지, 환경, 물, 자원의 지속 가능성(EEWS) 및 세계수준의 연구중심대학(WCU) 사업의 지원을 받아 생명화학공학과 박사과정 원정연(元正淵)연구원이 주도적으로 진행했다.
켐서스켐(ChemSusChem) Paper Link :
http://www3.interscience.wiley.com/journal/114278546/home
2009.10.27
조회수 23666
-
김상욱,이원종,이덕현 연구팀, 질소가 도핑된 전도성 탄소나노튜브의 고효율 제조공정 개발
- 세계적 학술지 나노 레터스지 3.13(금)일자 온라인판 발표
신소재공학과 김상욱(金尙郁, 37, 교신저자), 이원종(李元鐘, 52, 교신저자) 교수와 박사과정 이덕현(李德睍, 29, 제1저자) 연구팀이 분자조립(molecular self-assembly) 나노기술을 이용하여 질소가 도핑(doping)된 높은 전기전도성의 탄소나노튜브(Carbon Nanotube : CNT)를 탄소벽의 개수를 원하는 대로 조절하며 매우 빠른 속도로 합성할 수 있는 새로운 공정을 개발했다.
이 연구결과는 나노기술분야의 세계적 학술지인 나노 레터스(Nano Latters)지 최신호(3.13, 금) 온라인 판에 게재됐다.
탄소나노튜브는 전기적, 물리적 성질이 매우 우수하여 플렉서블 전자소자 등 다양한 미래기술에 적용될 것으로 예상된다. 그러나 탄소나노튜브를 이용한 나노소자를 실용화하기 위해서는 탄소나노튜브의 전기 전도도를 높이고, 물리적 특성을 결정짓는 탄소나노튜브의 직경과 탄소벽의 개수를 원하는 대로 조절할 수 있는 기술의 개발이 필요하다. 일반적으로 탄소나노튜브의 전기 전도도를 향상시키기 위해서는 실리콘 등의 반도체 물질에 이용되는 방법과 같이 붕소(B)나 질소(N) 등의 소량의 불순물을 첨가시키는 도핑 기술이 필요하다. 또한 탄소나노튜브의 직경 및 탄소벽의 개수는 합성에 이용되는 금속 촉매의 크기에 의해 결정되므로 형태가 균일한 나노튜브를 대량으로 성장시키기 위해서는 균일한 크기의 촉매입자를 기판위에 대면적으로 제조할 수 있는 나노패턴 공정이 필요하다.
金 교수 연구팀은 고분자의 분자조립 나노패턴기술을 통해 탄소나노튜브의 성장에 필요한 금속 촉매의 크기를 대면적에서 수 옹스트롱 수준으로 균일하게 조절하고 이를 이용하여 탄소나노튜브의 직경 및 탄소벽의 개수를 원하는 대로 조절하는데 성공하였다. 또한, 질소가 도핑되어 높은 전기 전도도를 보이며, 화학적인 기능화가 용이한 탄소나노튜브를 분당 50마이크로미터의 높은 속도로 성장시키는데 성공하였다.
金 교수 연구팀은 그동안 ‘고분자 자기조립 나노기술’에 관련된 일련의 연구 결과들을 네이처지와 사이언스지 그리고 어드밴스드 머티리얼스지 등에 발표해 왔다. 이번 연구 결과로 고분자소재뿐만 아니라 유/무기 혼성소재공정 분야에서도 우수한 역량을 보여주게 됐다. 이번 연구는 金 교수와 李 교수의 공동 지도하에 박사과정 이덕현 씨가 진행했다.
<용어설명>
- 탄소나노튜브(carbon nanotube): 나노미터 수준의 직경을 가지는 일차원적 구조의 탄소소재로 높은 전하이동도와 전하 축척도를 가지며, 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다.
- 분자조립(molecular self-assembly): 분자들이 외부의 도움 없이 스스로 정렬되어 정형화된 구조를 형성하는 현상을 의미하며, 초미세 나노패턴구조를 형성시킬 수 있는 원리로 많은 관심을 모으고 있다.
2009.03.17
조회수 21269
-
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정
최성민 교수팀의 탄소나노튜브에 대한 연구성과
미국 화학학회의 Research Highlight 로 선정
KAIST 원자력 및 양자공학과 최성민 교수팀은 탄소나노튜브의 산업적 응용에 필수적인 수용액 및 유기용매에의 안정적인 분산기술을 개발하였으며, 중성자 산란기법을 이용하여 그 분산특성을 규명하였다. 이 연구결과는 재료과학 분야 최고권위지인 Advanced Materials (19, 929, 2007)에 게제되었으며, 미국 화학학회의 Research Highlight로 선정되어 ‘Heart Cut" 5월 7일자에 소개되었다.
탄소나노튜브의 산업기술적 응용을 위한 다양한 프로세싱을 위해서는 탄소나노튜브를 수용액 또는 유기용매에 분산할 필요가 있다. 이를 위하여 그간 계면활성분자, DNA 등을 이용한 탄소나노튜브 분산기술이 사용되어 왔으나, 건조 등 프로세싱 과정에서 분산이 쉽게 파괴되는 단점이 있었다. 최성민 교수팀은 이를 극복하기 위하여 계면활성분자를 이용한 탄소나노튜브 수용액 분산을 얻은 후 탄소나노튜브 표면에 흡착된 계면활성분자를 in-situ 상태에서 중합반응시킴으로써 친수성의 안정된 표면 분자막을 갖는 탄소나노튜브를 개발하였다. 이렇게 얻어진 기능성 탄소나노튜브는 냉동건조 등 프로세싱 이후에도 수용액 및 유기용매에 아주 쉽게 분산되는 특성을 갖고 있어 탄소나노튜브 응용기술 개발에 크게 기여할 것으로 기대된다. 과학기술부 원자력연구개발사업의 지원으로 수행된 이 연구에는 박사과정 김태환씨와 도창우씨가 중추적으로 참여하였으며, 관련기술을 특허출원 하였다.
탄소나노튜브의 수용액 분산 및 흡착된 계면활성분자의 in-situ 중합과정과 냉동건조 후의 수용액 재분산 특성 비교 (사진: 중합하지 않은 탄소나노튜브(좌), 계면활성분자를 중합한 탄소나노튜브(우))
2007.05.09
조회수 23629
-
이흔교수, 온난화가스와 에너지가스 맞교환 원리 규명
“지구온난화 주범 이산화탄소를 천연 가스와 맞바꾼다”
- 천연가스 하이드레이트층에서 이산화탄소 저장과 천연가스 생산 동시에 일어나는 자연 현상적 메카니즘 이용
- 에너지 생산와 환경문제 해결 일거양득 효과 구현
- KAIST 이흔 교수팀, 미국 과학원 회보 최신호에 발표
해저에서 온난화 가스와 에너지 가스를 맞교환하여 에너지 생산과 환경 문제를 동시에 해결할 수 있는 획기적인 원리가 국내 연구진에 의해 실험적으로 입증됐다.
KAIST(총장 서남표) 생명화학공학과 이흔(李琿, 55) 교수팀과 한국지질자원연구원이 공동으로, 해저 천연가스 하이드레이트층에 이산화탄소나 배기가스를 직접 저장하고 동시에 천연가스를 생산할 수 있는 자연 현상적 맞교환 메커니즘을 규명, 그 연구결과가 저명 과학저널 미국 과학원 회보(PNAS) 8월 15일자 온라인판에 발표됐다.
지난 2003년 李교수는‘연료와 이산화탄소의 맞교환’이란 제목의 논문으로 이 기술을 처음 발표하였으며 또한 사이언스지 11월호에 리서치 하이라이트로 소개되어 세계적 주목을 받았다. 이후 3년여 연구 끝에 막연한 개념으로만 존재하던 지구 온난화가스의 대규모 해양 직접 저장 가능성을 실험적으로 입증했다. 즉, 모든 구조의 천연가스 하이드레이트층에 이 원리를 적용, 얼음 형태의 퇴적층으로부터 천연가스가 거의 대부분 회수될 수 있음을 이번 연구결과 밝혀낸 것이다.
이산화탄소 배출로 인한 지구온난화 문제는 최근 심각한 환경 문제를 야기하며 사회적 이슈로 대두되고 있다. 이러한 지구 온난화 문제를 해결하기 위해서는 발전소, 자동차 등 여러 배출원으로부터 나오는 이산화탄소를 줄이거나 없애는 방법 밖에 없다.
그동안 전 세계적으로 꾸준히 추진해온 산업구조 에너지 효율 향상이나 이산화탄소를 분리 처리하는 기술로는 지구온난화 문제를 적극적으로 대처하는데 극히 제한적일 수밖에 없었다. 따라서 대기권에 절대량으로 엄청나게 존재하는 이산화탄소를 지하나 바다 밑에 대규모로 저장하는 방법이 가장 현실성 있고 효과적인 대안으로 떠오르고 있다.
현재 바다 밑에는 천연가스 하이드레이트라고 하는 대규모 농축 메탄가스 퇴적층이 존재하는 것으로 확인되었다. 천연가스 하이드레이트의 매장량은 현 지구상 모든 화석 연료를 합친 것보다도 더 많은 것으로 알려져 있다. 이미 미국, 일본 캐나다, 러시아 등 세계 여러나라에서 이 미래 에너지원을 활용하기 위한 기술 개발 연구가 활발하게 진행되고 있다.
천연가스 하이드레이트는 불안정하기 때문에 깊은 바다 밑에 매장된 천연가스 하이드레이트를 채취할 때는 압력과 온도를 그대로 유지해야 한다. 李 교수팀은 이 천연가스 하이드레이트 상태를 유지하기 위해 이산화탄소가 포함된 혼합 배기가스를 주입, 천연가스와 배기가스를 맞교환시키는 방법을 개발했다. 이 맞교환 원리에 따라 해저 천연가스는 지상으로 끌어 올려져 에너지로 사용되고, 지상의 배기가스는 해저에 거의 반영구적으로 저장된다.
이번에 개발된 맞교환 원리 기술을 적용하면 ▲여러 종류의 성분들이 혼합된 배기가스를 바로 해저로 직접 투입 가능하기 때문에 지상에서 순수한 이산화탄소를 만들 필요가 없고 ▲광범위한 천연가스 하이드레이트층 개발은 심각한 해저 생태계 파괴를 가져올 수 있으나, 해저에서 맞교환을 일으키면 천연가스가 이산화탄소와 질소로 대체되기 때문에 본래 층의 골격은 파괴되지 않고 유지되어 환경 피해가 거의 없으며 ▲온난화 가스를 이용하여 해저의 천연가스를 90% 이상 대부분 회수할 수 있기 때문에 개발의 경제성을 높일 수 있다.
이는 2003년 당시의 순수 이산화탄소만 사용, 천연가스 회수율 64% 등의 제약 조건을 획기적으로 개선, 실용화로 직접 접근할 수 있는 연구결과로 평가받고 있다.
李 교수는 “이번 주요 연구 결과들을 우리나라, 미국, 일본 등에 이미 특허 출원했다”며 “확보된 원천 핵심 자료를 바탕으로 실제 공정이 구현될 경우, 지구온난화 문제와 새로운 에너지원 활용에 있어서 획기적인 성과를 거둘 것이다”라고 말했다.
<사진 1 : 맞교환 원리>
지상의 온난화 배기가스를 모아서 깊은 바다 밑에 있는 천연가스 하이드레이트층에 저장하고 동시에 맞교환을 일으켜 천연가스 하이드레이트층으로부터 천연가스를 회수한다.
<사진 2 : 천연가스 하이드레이트>
미국 오레곤 앞바다에서 끌어올린 천연가스 하이드레이트
<사진 3 : 해저 맞교환 현상>
깊은 바다 밑 천연가스 하이드레이트층에 존재하는 축구공과 같이 속이 빈 수많은 얼음 나노 공간 내에서 일어나는 천연가스와 배기가스가 맞교환되는 현상
2006.08.17
조회수 19132
-
신소재공학과 박종욱 교수팀, 신소재 이용 전기화학식 이산화탄소 계측기 개발
공기중 산화물 이용, 옥외의 열악한 환경에서도 사용 가능
기존 광학방식보다 가격 저렴, 정확한 이산화탄소 농도 측정
습도에 영향 적게 받아 농산물 재배 등에 광범위하게 활용
대덕밸리 창업경진대회 금상, 대한민국창업대전 국무총리상 수상
신소재공학과 박종욱(朴鍾郁, 50) 교수팀이 자체 개발한 신소재를 이용, 전기화학식 이산화탄소 계측기를 개발하는데 성공했다.
이 계측기는 대기 중에 있는 이산화탄소와 선택적으로 반응하는 신소재(전극 보조물질)를 이용, 전기 화학 반응으로 발생하는 전압 상태를 이산화탄소 농도(ppm)로 환산하는 독창적인 원리를 적용했다.
기존의 이산화탄소 계측기는 이산화탄소가 특정 파장(4.26㎛)의 적외선만을 흡수하는 성질을 이용하여 적외선의 흡수 정도를 측정하는 엔디아이알(NDIR / Non-Dispersive Infra red) 광학방식이 주로 사용되었다. 그러나 이 방식은 민감한 광학측정계가 오염에 취약해 옥외의 열악한 환경에서는 사용하기 어려웠으며, 고가로 인하여 대중적인 사용에도 제한이 있었다.
朴 교수팀이 개발한 이 계측기는 공기 중의 산화물을 이용하기 때문에 옥외의 열악한 환경(상대습도 90%)에서도 사용이 가능하며, 광학방식에 비해 가격이 저렴하고, 이산화탄소 농도를 정확히 측정할 수 있는 장점을 가지고 있다. 또한 간단한 부품의 교환만으로 측정 센서의 교정이 가능해 기존 계측기의 정기적이고 복잡한 측정 센서 교정과정을 대폭 개선했을 뿐만 아니라 초미세 화학공정, 나노 공정에 활용 가능성을 열었다.
이산화탄소 가스는 지구의 온실효과를 유발하는 주범이기 때문에 교토 의정서를 기초로 최근 세계 각국은 이산화탄소세를 신설하여 이산화탄소 총배출량을 규제하고 있다. 반면, 이산화탄소는 농식물 생식 작용과 밀접한 관계가 있어 이산화탄소의 양을 적절히 조절하면 농작물의 질이나 생산성을 혁신적으로 향상시킬 수 있는 장점도 가지고 있다. 예로서 버섯재배의 경우 800-1200 ppm의 이산화탄소를 유지시킬 경우 버섯의 질이나 생산성이 좋아지는 것으로 보고되고 있다.
또한 최근 실내 공기의 질에 대한 인식이 점차 높아지면서 올해부터 우리나라도 빌딩 관리법에 의한 빌딩 내 이산화탄소 양을 1000ppm 이하로 낮추도록 규제하고 있다. 그러나 과도한 환기는 에너지의 낭비를 가져오기 때문에 여러 사람들이 모이는 공공장소나 학교 교실에 이산화탄소 계측기를 설치하여 실내 환기시스템을 효율적으로 운영하는 것이 필요하다.
朴 교수는 “대기오염감시나 실내공기청정화, 농작물 관리 등을 위하여 이산화탄소 계측기 수요가 급속하게 늘고 있으나 수입에만 의존하고 있어 국산화가 시급하다.”며 “이번에 개발한 전기화학식 이산화탄소 계측기는 기존 광방식에 비해 습도에 영향을 거의 받지 않아 농산물 재배 등에 광범위하게 활용될 수 있을 것이다.”고 말했다.
이 이산화탄소 계측기는 대덕 밸리 창업경진대회에서 금상을, 2005 대한민국 창업대전에서 국무총리상을 수상한 바 있다. 현재 국내 특허를 출원한 이 제품의 양산을 위한 실험실 창업을 추진 중에 있다.
2006.01.06
조회수 22326
-
전기화학식 이산화탄소 센서 개발
신소재공학과 박종욱(朴鍾郁, 49) 교수팀은 일본이나 독일제품보다 월등히 우수한 특성을 지닌 전기화학식 이산화탄소 센서 개발에 성공했다.
2001년부터 농림부 기술개발과제의 일환으로 시작된 센서 연구는 자체 개발한 전극 보조물질을 채용한 새로운 구조로, 수 ppm에서 수십% 범위의 이산화탄소 농도를 정확히 측정할 수 있다. 초기 동작시간도 10분 이내로 빠르고 보정 없이 2년 이상 사용할 수 있어, 일본(Figaro사)과 독일(Zirox사) 제품의 초기 동작시간이 각각 7일과 30분인데 비하면 월등히 우수하다.
공기 중 이산화탄소 양을 측정하는 방법은 광학적 방법과 전기화학적 방법이 있다.
현재 가장 많이 사용 중인 광학적 방법은 이산화탄소가 특정 파장(4.26 um)의 적외선(NDIR) 만을 흡수하는 성질을 이용, 적외선의 흡수정도를 측정함으로서 이산화탄소의 양을 계산한다.
정교한 광학계를 사용해야 하기 때문에 가격이 비싸고 열악한 환경에서는 광학계가 쉽게 더러워져 사용이 어렵다는 단점이 있다.
산화물 전해질을 사용하는 전기화학식 센서는 값이 싸고 더러운 환경에서도 안정적으로 작동하지만, 광학식에 비해 초기 동작시간이 길고 자주 보정해 주어야 하는 단점 때문에 사용이 제한적이었다.
이번에 개발된 朴 교수팀의 전기화학식 센서는 이러한 단점들을 극복하여 이산화탄소 센서 기술의 새로운 표준을 제시, 제품의 흐름을 바꿀 수 있는 혁신적 연구 성과로 평가할 수 있다.
한편, 이산화탄소는 물 햇빛과 함께 식물 발육을 좌우하는 3대 요소 중 하나. 선진국에서는 이산화탄소 양을 조절하여 농식물의 생산성을 높이고 보관기간을 늘리는 기술이 다양하게 개발되고 있다. 특히 심야의 악조건에서도 신뢰성 있게 작동되는 저렴한 이산화탄소 측정기의 필요성이 점점 증대되고 있다. 우리나라에서는 최근 "빌딩 증후군(sick building syndrome)" 방지를 위해 건물 내 이산화탄소 양을 1000ppm 이하로 낮추도록 관련 법령을 개정했다. 도심의 빌딩에서도 이산화탄소 양을 정확히 측정하여 과도한 환기를 줄이고 에너지 효율을 높이는 기술이 절실해지게 된 것이다.
박종욱 교수는 화학 센서 분야의 세계적인 권위자로, 2000년에는 산화물 반도체식 센서를 이용한 음주 측정기를 개발, 실험실 벤처회사 (주)CAOS를 설립했고, 음주측정기는 현재 세계 최대의 시장점유율을 갖는 명품이 됐다. 또한 작년에는 2편의 해외 저명 학술지(J. Materials Science)에 화학센서 특별기획을 편집하기도 했다.
2004.09.22
조회수 27337