-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14429
-
대장균 이용 농·의약품 및 나일론 전구체 제작 원천기술 개발
<이 상 엽 특훈교수>
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 11일 세계 최초로 미생물을 이용한 1,3-다이아미노프로판(원, 쓰리-다이아미노프로판) 생산에 성공했다.
이번 연구결과는 사이언티픽 리포트(Scientific Reports) 11일자에 게재됐다.
1,3-다이아미노프로판은 에폭시 수지의 가교제와 의약 및 농약제품 제작에 이용되는 핵심 화학물질이다. 또한 중합반응을 통해 의료용 접착제, 엔지니어링 플라스틱 등으로 이용되는 나일론(폴리아마이드)을 제작할 수 있다.
이 1,3-다이아미노프로판은 현재 석유를 통해 생산된다. 그러나 기후변화와 환경문제를 유발하고 한정자원인 석유화학공정을 이용한다는 한계가 있어 연구팀은 지속가능한 친환경 바이오화학공정으로 재편에 힘쓰고 있다.
이상엽 교수 연구팀은 세계 최초로 대장균을 이용한 1,3-다이아미노프로판 생산에 성공해 지속가능한 자원인 바이오매스로부터 생산 가능성을 열었다.
연구팀은 자체적으로 1,3-다이아미노프로판을 생산할 수 없는 대장균의 문제점 해결을 위해 시스템 대사공학을 이용했다. 시스템 대사공학은 세포전체 대사회로를 정량, 정성적 분석 후 시스템 수준에서 총체적으로 조작해 원하는 화합물을 대량생산하는 기술이다.
연구팀의 생산 과정은 ▲외래 미생물의 1,3-다이아미노프로판 생산 대사회로를 컴퓨터 가상 세포에 도입해 가장 효율적인 대사회로를 결정한 후 ▲이 대사회로를 실제 대장균에 도입해 1,3-다이아미노프로판 생산 ▲마지막으로 추가적인 시스템 대사공학을 통해 약 21배 이상 생산량을 증가시켜 최종 발효를 통해 배양액 1 리터당 13그램의 1,3-다이아미노프로판 생산에 성공했다.
이 기술로 재생 가능 비식용 바이오매스를 이용한 1,3-다이아미노프로판 생산이 가능해져 기존 석유기반 화학 산업을 바이오리파이너리(Bio-refinery)로 대체할 수 있을 것으로 기대된다.
이 교수는 “이번 연구는 세계 최초로 KAIST 연구실에서 바이오리파이너리를 통해 1,3-다이아미노프로판 생산 가능성을 제시한 점에서 의의를 갖는다”며 “더 많은 연구를 통해 생산량 및 생산성을 증산할 계획이다”고 말했다.
이번 연구는 미래창조과학부의 기후변화대응 기술개발사업의 지원을 받아 수행됐고, KAIST 채동언(박사과정) 학생이 제 1저자로 참여했다.
□ 그림 설명
그림 1. C4 대사회로를 이용하여 1,3-다이아미노프로판을 생산하기 위한 대사공학 전략들
그림 2. 최종적으로 엔지니어된 대장균들의 발효 프로파일
2015.08.11
조회수 11494
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14014
-
신경세포 연결해주는 접착단백질 결합구조 규명
국내 연구진이 신경세포 연결을 주관하는 시냅스접착단백질**의 3차원 복합체 구조를 규명함으로써, 시냅스* 형성초기 기전을 제시하였다. 시냅스 이상으로 인한 강박증이나 조울증 등 다양한 뇌질환의 발병기전 규명과 치료제 개발에 활용될 것으로 기대된다.
* 시냅스 : 신경전달물질의 분비와 흡수가 일어나는 1,000억 여 개에 달하는 신경세포의 접합부위로 학습과 기억, 감각, 운동 등을 조절하는 뇌 활동의 기본단위이다. ** 시냅스접착단백질 : 벨크로처럼 두 개의 신경세포를 단단하게 연결해 시냅스 형성을 돕는 신경세포막에 존재하는 단백질
우리 학교 의과학대학원 김호민 교수와 연세대 생화학과 고재원 교수 (이상 교신저자)가 주도하고, 연세대 엄지원 연구교수, KAIST 김기훈 석사과정 연구원 및 을지대 박범석 교수(이상 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 지원하는 신진연구자지원사업, 중견연구자지원사업(핵심연구) 및 교육부 학문후속세대양성사업의 지원으로 수행되었고 자연과학 분야 국제학술지 네이처 커뮤니케이션스(Nature Communications)지 온라인판 11월 14일자에 게재되었다. (논문명 : Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion)
신경세포막에 존재하는 단백질 슬릿트랙*은 다른 신경세포의 막에 존재하는 단백질 LAR-RPTP**와 복합체를 이뤄 초기 시냅스 형성과 신경세포의 흥분과 억제간의 균형 유지에 관여하는 것으로 알려져 있었다.
* 슬릿트랙(Slitrk) : 뇌의 중추신경계에서 강하게 발현되는 단백질. 이 유전자가 결핍된 형질전환생쥐의 경우 다양한 뇌질환 표현형을 나타냄. 최근 LAR-RPTP와 결합하여 시냅스 형성을 조절하는 시냅스접착단백질임이 밝혀짐
** LAR-RPTP : 신경세포의 초기 발달과정에서 중요한 역할을 하는 단백질 군. 최근 시냅스 형성에 관계된 주요 기능들이 조금씩 밝혀지면서 새롭게 주목 받기 시작한시냅스접착단백질
이들 두 단백질의 이상은 시냅스의 기능이상을 유발해 자폐증, 정신분열증, 간질, 강박증 및 조울증 같은 다양한 신경·정신질환을 유발하는 것으로 알려져 있지만 두 단백질의 결합구조와 구체적인 작용기전이 규명되지 않아 치료제 개발에 한계가 있었다.
연구팀은 단백질 결정학기술과 바이오투과전자현미경을 활용해 두 시냅스접착단백질(슬릿트랙(Slitrk)과 LAR-RPTP)이 결합된 3차원 구조를 밝혀내고 이들 상호간의 결합의 핵심이 되는 부위를 찾아냈다.
나아가 두 시냅스접착 단백질이 결합한 후 클러스터를 형성하면서 시냅스 생성이 유도된다는 것을 규명하였다.
김호민 교수는 “시냅스접착단백질의 기능 이상으로 나타나는 다양한 뇌질환의 발병기전 이해에 큰 밑거름이 될 것. 특히, 단백질 구조생물학과 신경생물학의 유기적인 협력연구를 통하여 우수한 성과를 거둔 대표적 사례가 될 것”이라고 밝혔다. 고재원 교수는 “시냅스접착단백질 분자기전을 이해함으로써 시냅스 형성 관련 연구의 새로운 방향을 제시할 것”이라고 연구의의를 밝혔다.
그림 1. 시냅스접착단백질 결합체 구조 및 슬릿트랫 바이오투과전자현미경 이미지
(위) 시냅스접착단백질 슬릿트랙(Slitrk)과 LAR-RPTP 결합체 분자구조
단백질결정학을 통해 시냅스접착단백질 결합체 분자구조를 분석한 결과 두 시냅스접착단백질의 결합에 중추적인 역할을 하는 핵심적인 아미노산을 도출할 수 있었다.
특히 LAR-RPTP 단백질에 위치한 선택적 접합(Alternative splicing) 부위(붉은색 화살표)가 슬릿트랙 (Slitrk)과 선택적으로 결합하기 위한 분자코드임을 규명하였다.
(아래) 슬릿트랙의 바이오투과전자현미경 이미지 단백질결정학으로는 규명이 어려운 전체 슬릿트랙 단백질 구조(세포막 바깥쪽부위)를 바이오투과전자현미경을 사용하여 분석하였다. 그림에서 보듯 전체 슬릿트랙은 땅콩처럼 생긴 비슷한 두 개의 단백질 모듈(푸른색, 노란색 화살표)로 구성되어 있고, 이들 중 한 부분(파란색 화살표)만 LAR-RPTP와 결합하게 된다는 것을 규명하였다.
그림 2. 시냅스접착단백질 결합에 의해 유도되는 시냅스형성 분자기전
전시냅스의 LAR-RPTP과 후시냅스의 슬릿트랙(Slitrk)의 결합이 단순한 결합에 그치는 것이 아니라 결합 이후 신경세포 막에서의 배열변화를 통해 단백질 클러스터 형성을 유도할 수 있음을 보였다.
그림 3. 시냅스 및 시냅스접착단백질 개요
시냅스는 1000 억여 개에 달하는 신경세포들의 접합 부위인 뇌기능의 기본단위로서 신경세포 간 교환되는 신경전달물질들에 의하여 학습 및 기억, 감각, 운동 등이 원활히 조절된다. 시냅스에는 약 1,000여종 단백질이 존재하며, 이들 중 신경세포 막에 존재하며 벨크로처럼 두 개의 신경세포를 단단하게 연결하여 시냅스 형성을 돕는 단백질을 시냅스접착단백질이라 한다. 현재 불과 10여개의 시냅스접착단백질만이 밝혀져 있고, 이중 최근에 주목받기 시작한 시냅스접착단백질이 슬릿트랫과 LAR-RPTP이다.
2014.11.20
조회수 17669
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21519
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 22949
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 17451
-
세계 최고 수준의 초신축성 전극소재 개발
- 정렬된 3차원 다공성 나노구조를 이용한 새로운 개념을 도입해 네이처 커뮤니케이션스(Nature Communications)지 6월호 실려 -
돌돌 말리는 전자책이나 유연한 디스플레이, 옷처럼 입을 수 있는 컴퓨터 등 차세대 전자 소자를 구현하는 핵심 부품인 유연한 신축성 전극을 국내 연구진이 개발했다.
우리 학교 신소재공학과 전석우 교수 연구팀이 정렬된 3차원 다공성 나노구조를 이용하여 세계 최고 수준의 초신축성 소재를 개발하는데 성공했다.
이번 연구 결과는 세계 최고 권위의 과학전문지 네이처(Nature)의 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)"지 6월 26일자 온라인판에 리서치 하이라이트로 공개됐다.
특히 이번 연구결과는 국내 연구진이 주축이 되어 일궈낸 값진 세계적인 성과로써 큰 의미가 있다.
전석우 교수팀은 연구팀이 보유한 세계 최대 면적의 3차원 나노 패터닝 기술을 이용하여 1인치 이상의 면적에 머리카락 굵기의 1/10에 해당하는 10마이크로미터의 두께를 가지는 정렬된 3차원 나노기공 구조를 제작했다.
연구팀은 제작된 나노기공 구조를 주형으로 활용하여 기공에 탄성중합체를 침투시킨 후에 주형을 제거하는 방법으로 역상의 3차원 신축성 나노소재를 제작하였고, 이 소재 내부에 액상의 전도성 물질을 침투시켜 초신축성 유연 전극을 개발하였다.
이렇게 개발한 전극을 200% 이상 늘어난 상태에서도 전기전도도의 저하 없이 발광다이오드(LED) 램프를 켤 수 있다.
기존에는 소재에 주름을 잡아 아코디언처럼 늘였다 줄였다 할 수 있게 만들거나 평면에 그물처럼 구멍을 뚫어서 신축성을 향상하는 방법을 사용했다. 하지만 이러한 방식은 신축성 향상이 제한적인데다 100%만 늘어나도 전기 전도도가 크게 저하되는 단점이 있었다.
전석우 교수는 “차세대 전자소자인 유연소자 개발에서 세계 최고 수준의 신축성 전극을 국내 기술로 개발함으로써 시장우위를 선점할 수 있을 것”이라고 말했다.
한편, 이번 연구는 KAIST 신소재공학과 전석우 교수(교신저자)의 지도아래 박준용 박사과정(제 1저자)이 주도적으로 진행하였고, KAIST 신소재공학과 김도경 교수, 미국 노스웨스턴대 후앙 교수, 미국 일리노이대 로저스 교수가 공동으로 참여했다.
그림 1. A는 3차원 나노패터닝 기술을 통해 제작된 다공성 고분자 주형. B는 A의 주사전자현미경(SEM) 이미지. C는 탄성중합체 침투 및 고분자 주형 제거를 통해 제작된 초신축성 3차원 소재.
그림 2. A는 3차원 초신축성 소재를 전극으로 이용하여 발광다이오드(LED) 소자를 구현하는 개념도이다. B는 220%까지 늘어난 후에도 밝기의 변화 없이 성공적으로 구동된 신축성 전자 소자이다.
그림 3. 이번 연구로 개발된 신소재의 개념도로써, 소재에 잡아당기는 힘이 작용했을 때 정렬된 3차원 나노기공 구조를 통하여 소재가 효과적으로 신축되는 모습을 형상화한 이미지이다.
2012.07.11
조회수 17041
-
스트레스에 의해 생긴 잔주름의 숨겨진 비밀을 밝혀내다
- Nature Materials 표지논문 선정, ‘자연을 닮은 구조물’ 제작에 새로운 가능성 열어-
신진 여성과학자가 스트레스에 의해 생긴 잔주름이 성장하면서 깊은 주름으로 발전하는 전 과정을 가시화하여 그 원인을 규명함으로써 표면주름 제어기술 개발에 새로운 전기를 마련하였다.
카이스트 김필남 연구교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 학문후속세대양성사업(박사후 국외연수)의 지원을 받아 미국 프린스턴 대학에서 수행되었고, 연구결과는 세계 최고 권위의 과학전문지 ‘네이처(Nature)’의 대표적인 자매지인 ‘Nature Materials" 12월호(12월 1일자)에 표지논문으로 선정되는 영예를 얻었다.
김필남 박사 연구팀은 얇은 박막이 극심한 스트레스를 받으면서 생기는 잔주름이 깊은 골짜기 형태의 접힌 구조물로 변형해가는 일련의 과정을 밝히고, 이를 통해 자연계에서 나타날 수 있는 다양한 복합 구조물을 모방해내는 기반기술을 개발하는데 성공하였다.
표면주름은 여러 개로 적층된 구조에서 그 중 어느 한 층이 극도로 빠른 팽창(또는 수축)이 일어날 때 그 불안정성으로 나타나는 구조이다. 이러한 불안정성을 갖는 적층구조는 동․식물의 표피(피부)와 같은 생물의 조직뿐만 아니라, 최근 활발히 연구되고 있는 구겨지는 플렉시블 디스플레이(또는 소자)에서도 흔히 나타난다.
특히 생체조직에서는 주름이 지속적으로 성장하는 과정을 겪는데, 지금까지 이러한 이차원적인 표면에서 잔주름의 성장이 만들어내는 삼차원적인 구조의 변형에 대해서는 밝혀진 바가 없다. 이번 연구를 통해서 김 박사팀은 주름(wrinkle)이 곡률이 극심한 접힘(fold)이라는 구조로 변형되어가는 메커니즘을 규명하였다.
또한 연구팀은 실시간 분석을 통해 잔주름 구조물이 일련의 자기조직화 과정*을 거쳐 궁극적으로 그물망 형태의 접힘 구조물로 변형된다는 사실을 밝혀냈다. *) 자기 조직화 과정 : 계층적 방식(Hierarchical process), 자발적 제어과정 (Self-regulation process), 연속적인 구획화(Subdivision process) 및 분지화(Branching process) 등
흥미롭게도 연구팀은 이 과정을 통해 만들어진 구조는 건조한 땅이 갈라지면서 만들어내는 균열구조와 매우 흡사하고, 나뭇잎에서 볼 수 있는 맥관구조 뿐만 아니라, 인체에서 볼 수 있는 혈관 네트워크와도 매우 흡사한 구조를 가지고 있다는 사실을 발견하였다.
이번 연구는 무생물뿐만 아니라 생물계에서 보여주는 다양하지만 일관된 구조(그물망 구조 등)의 발생 원리를 기계적․물리학적 입장에서 재해석할 수 있음을 보여주는 결과이다. 따라서 이번 연구 결과는 모든 발생과정을 볼 수 없는 생물계에서의 구조화, 패턴화를 이해하는데 크게 기여할 것으로 평가된다.
김필남 박사는 “이번 연구는 오랫동안 연구되어왔던 ‘주름 또는 접힘’이라는 생물학적, 자연발생적 구조물을 이해하고 직접 제어․조절하여 ‘자연을 닮은 구조물’을 보다 쉽게 만들어 낼 수 있는 새로운 가능성을 제시하였다”고 연구의의를 밝혔다.
2011.12.20
조회수 16952