< (왼쪽부터) 생명화학공학과 이상엽 특훈교수, 채동언 박사 >
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `비식용 바이오매스를 여러 가지 짧은 길이의 일차 아민들로 전환하는 미생물 균주 개발'에 성공했다고 11일 밝혔다.
이번 연구결과는 국제적인 학술지인 `네이쳐 커뮤니케이션스(Nature Communications)'에 게재됐다.
※ 논문명 : Microbial production of multiple short-chain primary amines via retrobiosynthesis
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김동인(한국과학기술원, 공동 제1저자), 채동언(한국과학기술원, 공동 제1저자), 김현욱(한국과학기술원, 공동 제1저자), 장우대(한국과학기술원, 제4저자), 포함 총 5명
석유화학산업은 화석원료를 이용해 우리 생활 전반에 광범위하게 이용되는 범용화학물질들을 생산해왔다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로부터 발생하는 지구 온난화 등의 환경문제가 전 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에, 국제 유가 변동에 매우 취약한 실정이다. 이에 환경문제를 해결하면서 원유를 대체할 수 있는 지속 가능한 바이오리파이너리의 구축이 시급히 요구되고 있다.
바이오 리파이너리란 화석원료가 아닌 비식용 바이오매스를 원료로 사용해 미생물로 산업적으로 유용한 화학물질들을 생산하는 기술이다. 여기서 미생물은 원료인 바이오매스를 우리가 원하는 화학물질로 전환하는 세포 공장과 같은 역할을 한다. 이러한 미생물의 복잡한 대사회로를 효과적으로 조작할 수 있게 하는 시스템 대사공학은 바이오 리파이너리에서 핵심기술 중 하나다.
지금껏 석유화학 공정을 통해서 합성되던 화학물질 중에는 미생물 시스템 대사공학을 통해서 바이오 기반으로 생산되는 사례가 점차 늘고 있지만, 아직 의약품 및 농약품들의 전구체로 널리 사용되는 짧은 탄소 길이를 가진 일차 아민들의 생산은 보고된 바가 없었다.
이에 KAIST 이상엽 특훈교수 연구팀은 여러 가지 짧은 탄소 길이를 갖는 일차 아민들을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
지금까지 이러한 일차 아민들을 생산하는 균주들이 개발되지 못한 가장 큰 이유는 생합성 대사회로의 부재였다. 이러한 문제를 해결하기 위해 역 생합성 시뮬레이션을 통해 모든 가능한 대사경로들을 예측했다. 그 후 전구체 선택과정을 통해 가장 유망한 대사회로들을 선정했다.
이렇게 디자인된 신규 대사회로들을 실제 실험을 통해 검증했으며 이를 통해 10가지 종류의 다른 짧은 길이의 일차 아민들을 생산하는 대장균 균주들을 최초로 개발하는 데 성공했다.
또한 대표적인 일차 아민들을 선정해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용한 생산과 시스템 대사공학을 통한 생산량 증대를 보임으로써 바이오 기반 생산의 가능성을 보여줬다.
이번 연구에서 활용된 역 생합성과 전구체 선택과정을 같이 사용한 전략은 짧은 탄소 길이를 가진 일차 아민들 뿐만 아니라 다른 그룹의 여러 가지 화학물질들을 동시에 생산하는 대사회로들을 구축하는 데도 유용하게 쓰일 것으로 예상된다.
< 그림 1. 총 12가지 짧은 탄소길이의 일차 아민 생산을 위해 구축된 생합성 경로 >
이상엽 특훈교수는 “이번 연구는 지금까지 석유화학 산업 기반으로만 생산할 수 있었던 짧은 탄소 길이를 가진 일차 아민들을 재생 가능한 바이오 기반 화학산업을 통해 생산할 가능성을 세계 최초로 제시한 점에 의의가 있다”며 “앞으로 더 많은 연구를 통해 생산량과 생산성을 증대시킬 계획이다”라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다. 다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다. 그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분
2025-04-01브릴루앙 레이저(Brillouin laser)는 물질 내 빛과 음파의 상호작용을 통해 매우 안정적이고 잡음이 적은 레이저 빛을 만들어 내는 광원이다. 그동안 이 기술은 가시광선이나 근적외선 영역에서만 구현되었으며, 중적외선 영역에서는 기술 부족으로 구현이 어려웠다. 국제 공동 연구진이 초소형 저잡음 브릴루앙 레이저를 해당 파장 영역에서 세계 최초 개발하여 더욱 정밀한 분자물리·화학 연구 및 다양한 차세대 응용 기술의 기반을 마련하였다. 우리 대학 물리학과 이한석 교수 연구팀이 호주국립대 최덕용 교수, 예일대 피터 라키치 교수, 한국원자력연구원 고광훈 박사, 닝보대학교 롱핑 왕 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다고 31일 밝혔다. 칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에
2025-03-31최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다. 흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(H
2025-03-10나무뿌리가 흙에 단단히 고정되는 구조를 모방해, 한국 연구진이 최대 700%까지 늘어나는 신축성을 확보하고 스트레처블 전자 제품의 상용화를 위한 새로운 기준을 제시했다. 특히 스마트 저항 밴드와 스트레처블 LED 디스플레이, 태양 전지와 같은 응용 사례를 통해 기술의 폭넓은 적용 가능성을 입증했다. 우리 대학 기계공학과 박인규 교수 연구팀이 한국전자통신연구원(ETRI)과 공동연구를 통해 스트레처블 전자 제품 개발에서 기존의 한계를 극복한 혁신적인 기술인 ‘생체 모사 인터페이스 설계(Bioinspired Interfacial Engineered Flexible Island, 이하 BIEFI)’를 개발했다고 6일 밝혔다. 이번 연구는 생체 모사 인터페이스 설계를 기반으로, 전자 제품의 유연성, 신축성과 기계적 내구성을 동시에 극대화하는 데 성공했다. 연구진은 주 뿌리(primary roots)와 보조 뿌리(secondary roots) 구조를 설계에
2025-03-06뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27