< (왼쪽부터) KAIST 육종민 교수, 경북대학교 한영기 교수, KAIST 구건모 박사과정 >
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다.
이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다.
신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils)
전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다.
수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다.
그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다.
최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다.
육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다.
< 그림 1. 본 연구에 사용된 그래핀 액상 셀을 이용한 세포 관찰 방법에 대한 모식도와 이를 이용해서 관찰한 살아있는 세포의 주사전자현미경 이미지 >
< 그림 2. 일반 전자현미경 기술을 이용하여 관찰한 죽은 세포(상)와 그래핀 액상 셀을 이용하여 관찰한 살아있는 세포(하)의 주사전자현미경 이미지 >
< 그림 3. 그래핀 액상 셀을 이용한 샘플과(좌) 일반 전자현미경 관찰한(우) 이후 형광분석법을 통한 세포의 생존성 검증. 살아 있는 세포는 녹색 형광을 보인다. >
육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다.
한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
< 그림 4. Nano Letters 6월호 표지 이미지 >
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다. *공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임. 수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다. 아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도,
2024-10-22퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다. 우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다. 단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을
2024-01-30우리 대학이 8일부터 이틀간 국회의원회관에서 ‘2023 혁신창업국가 대한민국 국제심포지엄’을 개최한다. 딥테크 창업기업들은 첨단과학기술을 기반으로 혁신적인 제품과 서비스를 개발하고 경제 성장과 일자리 창출에 핵심적인 역할을 맡고 있다. 또한, 고도의 기술력과 창의력으로 대한민국의 경제 생태계를 혁신적으로 변화시키는 원동력이 되기도 한다. 그러나 기술개발, 인력 확보, 규제, 시장 진입 및 경쟁, 자금 부족 등이 혁신창업기업이 겪는 제약은 여전히 산적해 있다. 이번 행사는 국제심포지엄과 함께 혁신창업기업을 선정해 시상하고 창업기업 체험 부스, 기업 소개, 창업 경진대회 등을 마련해 국내·외 혁신 창업의중요성에 대한 공감대를 형성하고 이를 활성화하는 방안을 모색하고자 마련됐다. 첫날 열리는 국제심포지엄에서는 기업주도형 벤처 캐피털인 어플라이드 벤처스(Applied Ventures)의 아난드 카만나바르(Anand Kamannavar) 글로벌 투
2023-11-08우리 대학 신소재공학과 김상욱 교수가 지난 7월 13일 부산에게 개최된 제10회 한국그래핀학회 정기총회에서 한국그래핀학회의 7대 회장으로 선출되었다. 한국그래핀학회는 2008년 우리 대학 전기전자공학과 조병진 교수가 주도한 그래핀학술연구회 모임으로 출발하여 2019년 한국그래핀학회로 재도약하였으며, 우리나라 그래핀 연구와 학문적 교류를 촉진하는 데 중추적인 역할을 수행하고 있다. 김상욱는 2024년 1월부터 2년간 학회 회장직을 맡게 된다. 지난 10여년간 한국그래핀학회는 우리나라가 전세계적으로 연구를 선도하고 있는 대표적인 연구분야인 그래핀과 2차원소재에 대한 다양한 국내외 학술행사의 추진을 통해 연구활동의 증진과 함께 국제적 학술교류를 촉진하여 왔으며, 앞으로 본격적으로 그래핀을 산업적으로 유용한 신소재로 발전시키기 위한 연구개발 측면에서도 우리나라가 전 세계를 선도하는데 중추적인 역할을 수행하고자 한다. 김상욱 차기회장은 “그래핀과 2차원 신소재들이 IT, 에
2023-07-17기후변화 대응을 위한 친환경 공정 기술 개발의 필요성이 확대됨에 따라 화학 및 제약 산업에서의 저에너지 분리 공정은 지속가능한 개발에 있어 중추적 역할을 담당하고 있다. 특히, 제약 산업의 경우 고품질의 의약품 제조를 위해 고순도의 유기용매 사용이 필수적이며, 이에 따라 유기용매의 고효율 분리 공정에 대한 요구가 꾸준히 증가하고 있는 실정이다. 우리 대학 생명화학공학과 최민기 교수 연구팀이 2차원 다공성 탄소 기반의 유기용매 정제용 초고성능 나노여과막을 개발했다고 3일 밝혔다. 기존의 유기용매 분리 공정은 혼합물을 이루는 물질 간의 끓는점 차이를 이용하여 분리하는 증류법이 사용되어 대용량의 혼합물을 끓여야 하는 만큼 막대한 에너지가 소모되는 단점이 있었다. 반면, 분리막 기술은 단순히 압력을 가하는 것만으로 유기용매의 선택적 투과가 가능하고 유기용매보다 크기가 큰 입자들을 효과적으로 제거할 수 있다. 특히, 열이 가해지지 않으므로 공정에서 요구되는 에너지 및 비용을 절
2023-04-03