< 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터장 이준구 교수 >
우리 대학 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터장 이준구 교수 연구팀이 독일 및 남아공 연구팀과의 협력 연구를 통해 비선형 양자 기계학습 인공지능 알고리즘을 개발했다고 7일 밝혔다.
양자 인공지능은 양자컴퓨터의 발전과 함께 현재의 인공지능을 앞설 것으로 크게 기대되고 있으나 연산 방법이 전혀 달라 새로운 양자 알고리즘의 개발이 절실하다. 특히 양자컴퓨터는 본질적으로 일차방정식을 잘 푸는 선형적 성질을 가지고 있어 복잡한 데이터를 다루는 비선형적 기계학습에 어려움이 존재했다. 하지만 이번 연구를 통해 비선형 커널이 고안되어 복잡한 데이터에 대한 양자 기계학습이 가능하게 됐다. 특히 이준구 교수팀이 개발한 양자 지도학습 알고리즘은 학습에 있어 매우 적은 계산량으로 연산이 가능하다. 따라서 대규모 계산량이 필요한 현재의 인공지능 기술을 추월할 가능성을 제시한 것으로 평가를 받고 있다.
이준구 교수팀은 학습데이터와 테스트데이터를 양자 정보로 생성한 후 양자 정보의 병렬연산을 가능하게 하는 양자포킹 기술과 간단한 양자 측정기술을 조합해 양자 데이터 간의 유사성을 효율적으로 계산하는 비선형 커널 기반의 지도학습을 구현하는 양자 알고리즘 체계를 만들었다. 이후 IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습을 실제 시연하는 데 성공했다.
KAIST 박경덕 연구교수가 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 네이처 자매지인 `npj Quantum Information' 誌 2020년 5월 6권에 게재됐다. (논문명: Quantum classifier with tailored quantum kernel).
기계학습에 있어 중요한 문제 중 하나는 주어진 데이터의 특징(feature)을 구분해 분류하는 것이다. 간단한 예로 동물 이미지 학습데이터에서 입, 귀 등의 특징을 바탕으로 분류하기 위한 결정 경계(decision boundary)를 학습하고 새로운 이미지가 입력되었을 때 개 또는 고양이로 분류하는 작업을 생각해볼 수 있다. 데이터의 특징들이 잘 나타나는 경우에는 선형적 결정 경계만으로 분류할 수 있다. 그러나 입과 귀 모양의 특징으로만 개와 고양이를 분류하기 쉽지 않다면 새로운 결정 경계를 찾기 위해 특징에 관한 정보 공간의 차원을 확장해야 하는데 이러한 과정에서 비선형 커널 기술이 필요하다.
양자컴퓨팅은 고전 컴퓨팅과는 달리 큐비트(quantum bit, 양자컴퓨팅 정보처리의 기본 단위)의 개수에 따라 정보 공간의 차원이 기하급수적으로 증가하기 때문에 이론적으로 고차원 정보처리에 있어 기하급수적으로 뛰어난 성능을 낼 수 있다.
연구팀은 이러한 양자컴퓨팅의 장점을 활용해 데이터 특징 대비 기하급수적인 계산 효율성을 달성하는 양자 기계학습 알고리즘을 개발했다. 이 교수 연구팀이 개발한 이 알고리즘은 저차원 입력 공간에 존재하는 데이터들을 큐비트로 표현되는 고차원 데이터 특징 공간(feature space)으로 옮긴 후, 양자화된 모든 학습데이터와 테스트데이터 간의 커널 함수를 양자 중첩을 활용해 동시에 계산하고 테스트데이터의 분류를 효율적으로 결정한다. 이때 사용되는 양자 회로의 계산 복잡도는 학습 데이터양에 대해서는 선형적으로 증가하나, 데이터 특징 개수에 대해서는 불과 로그(log)함수로 매우 천천히 증가하는 장점이 있다.
연구팀은 이와 함께 양자 회로의 체계적 설계를 통해 다양한 양자 커널 구현이 가능함을 이론적으로 증명했다. 커널 기반 기계학습에서는 주어진 입력 데이터에 따라 최적 커널이 달라질 수 있으므로, 다양한 양자 커널을 효율적으로 구현할 수 있게 된 점은 양자 커널 기반 기계학습의 실제 응용에 있어 매우 중요한 성과다.
연구팀은 IBM이 클라우드 서비스로 제공하는 다섯 개의 큐비트로 구성된 초전도 기반 양자 컴퓨터에서 이번에 개발에 성공한 양자 기계학습 알고리즘을 실험적으로 구현해 양자 커널 기반 기계학습의 성능을 실제 시연을 통해 이를 입증하는 데 성공했다.
< 그림 1. 인공지능을 통한 분류에 있어 비선형 커널을 이용한 특징 분류 기술 >
< 그림 2. 연구팀이 개발한 양자 커널기반 지도학습의 양자회로도의 예시. >
< 그림 3. 5-큐비트 IBM 양자 컴퓨터로 구현한 양자 기계학습의 예시. (왼쪽) Bloch sphere상에서 표현되는 양자 데이터. 학습데이터는 파란색 x, 테스트데이터는 초록색 화살표로 표시. (오른쪽) 5-큐비트 양자 컴퓨터에서의 커널기반 양자 지도학습 기반 분류 실험의 결과. >
이 연구에 참여한 박경덕 연구교수는 "연구팀이 개발한 커널 기반 양자 기계학습 알고리즘은 수년 안에 상용화될 것으로 예측되는 수백 큐비트의 NISQ(Noisy Intermediate-Scale Quantum) 컴퓨팅의 시대가 되면 기존의 고전 커널 기반 지도학습을 뛰어넘을 것ˮ이라면서 "복잡한 비선형 데이터의 패턴 인식 등을 위한 양자 기계학습 알고리즘으로 활발히 사용될 것ˮ이라고 말했다.
한편 이번 연구는 각각 한국연구재단의 창의 도전 연구기반 지원 사업과 한국연구재단의 한-아프리카 협력기반 조성 사업, 정보통신기획평가원의 정보통신기술인력 양성사업(ITRC)의 지원을 받아 수행됐다.
우리 대학 신소재공학과 김경민 교수 연구팀이 산화나이오븀(NbO2) 의 확률적 금속-절연체 전이 현상을 이용한 차세대 확률론적 컴퓨팅의 핵심 반도체 소자를 개발했다고 23일 밝혔다. 최근 IoT (Internet of Things), 자율주행, 빅데이터, 인공지능으로 대표되는 초연결시대가 진행됨에 따라 다양한 제한 조건과 구성 요소들이 상호작용하는 상황에서 최적의 해결책을 신속하게 찾아내는 '조합최적화 문제’의 해결이 중요한 과제로 부상하고 있다. 예를 들면, 네비게이션에 활용되는 최적 경로 탐색과 같은 문제가 조합최적화 문제에 해당한다. 조합최적화 문제는 복잡도가 증가함에 따라 해답을 찾기가 급격히 어려워지는 특성을 갖기에, 이를 효과적으로 해결할 수 있는 신개념 컴퓨팅 기술이 요구된다. 양자컴퓨팅은 그 대표적인 예시이지만 간섭, 오류 수정, 안정성 등의 이유로 양자 컴퓨팅의 상용화에는 여전히 많은 어려움이 남아 있다. 확률론적 컴퓨터의 기본 소자는 피
2023-11-23양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다. 우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다. 연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다. 연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서
2023-03-27우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다. ☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다. 우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한
2022-06-24우리 대학 전기및전자공학부 이준구 교수 연구실 류주영, 이증락, Eyuel Elala 석사과정 학생으로 이뤄진 AI양자컴퓨팅 ITRC 양자소프트웨어 연구팀이 QHack 2022 오픈 해커톤 사이언스 챌린지(Open Hackathon Science Challenge)에서 1등상(First Place)을 수상했다. QHack 2022 Open Hackathon은 미국 Xanadu 사에서 주최하여, 총 100여 개 국가에서 250여 명이 참가한 세계 최대 규모의 양자소프트웨어 해커톤 행사다. IBM Quantum, AWS, CERN QTI, Google Quantum AI 등의 대회 스폰서가 챌린지를 제시하고, 주제에 맞는 프로젝트를 심사하여 우승팀을 선정하였다. 본 프로젝트는 총 13개 챌린지 중에 CERN QTI에서 제시한 사이언스 챌린지에서 1등상(First Place)을 받았다. 학생들은 'Learning Based Error Mitigation for VQE'라는 주제
2022-04-07우리 대학 물리학과 최재윤 교수 연구팀이 ‘극저온 중성원자로 구성된 보즈-아인슈타인 응집체를 이용해 스핀 상관된 물질파 방출’에 성공했다. 물리학과 김경태 박사가 제 1저자로 참여한 이번 연구는 물리학 분야 권위지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’에 지난 7월 22일에 게재됐다. 극저온 중성 원자로 구현된 보즈 아인슈타인 응집체 (Bose-Einstein condensate, BEC)는 수만 개 이상의 원자들이 하나의 파동함수로 기술되는 양자 상태로, 중성 원자가 갖는 스핀 자유도를 활용하면 진공 압축 (squeezed vacuum state)상태를 구현 할 수 있으며, 이를 활용하여 다양한 양자 정보 연구를 수행할 수 있다. 양자 얽힘 상태 생성의 미시적인 과정은 두개의 스핀0인 원자가 충돌 이후 스핀1과 스핀-1로 변환되는 것으로, 생성된 스핀 쌍은 (+1,-1)와 (-1,+1)의 중첩 상태인
2021-09-01