본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
이정용 교수, 〈와인의 눈물〉 현상 이용한 유기 태양전지 생산 기술 개발
〈 이 정 용 교수 〉 우리 대학 EEWS 대학원 이정용 교수 연구팀이 ‘와인의 눈물’로 잘 알려진 마랑고니 효과를 이용해 물 표면에서 유기 태양전지를 제작할 수 있는 기술을 개발했다. 노종현, 정선주 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다. 유기 태양전지는 매우 가볍고 반투명하며 쉽게 휘어지는 성질 때문에 차세대 웨어러블 전자소자의 에너지원으로 주목받고 있다. 최근 성능이 향상되며 다양한 상업적 응용 가능성이 높아지고 있지만 대면적에서 높은 성능을 유지하는 공정에는 한계가 있어 상용화가 지연되고 있다. 연구팀은 자발적 순간 확산 현상, 즉 ‘마랑고니 효과’라고 불리는 일상에서 쉽게 접할 수 있는 과학적 원리를 적용해 빠른 시간에 대면적의 고품질 유기 박막을 형성하는 데 성공했다. 마랑고니 효과는 표면장력이 다른 두 용액이 접할 때 이 표면장력 차이를 해소하기 위해 일어나는 빠른 물질 수송 현상을 뜻한다. 잔에 담긴 와인을 빙글빙글 돌리면 잔 표면에 물방울이 형성돼 흘러내리는 현상이나 후춧가루가 뿌려진 물 표면에 세제를 한 방울 떨어트리면 후춧가루들이 순식간에 가장자리로 쓸려가는 현상 등이 이에 해당된다. 이 기술은 유기 물질이 녹아 들어간 용액을 물에 떨어트리는 순간 물 표면을 따라 빠르게 용액이 퍼지고 얇은 박막을 형성한다. 그 후 용액 속 용매는 공기 중과 물속으로 사라지고 대신 그 자리에 매우 얇고 균일한 유기 박막이 형성되는 원리이다. 이 기술은 여러 장점을 갖는다. 우선 종이와 곡면 유리같이 균일하게 유기 박막을 형성하기 어려운 곳에도 균일하게 박막을 전사하는 것이 가능하다. 또한 수 초 이내의 짧은 시간에 박막이 형성되기 때문에 유기 박막 손상의 원인인 산소 흡착을 최소한으로 막아줄 수 있다. 산소가 존재하는 대기 중에서도 높은 품질의 박막을 형성할 수 있는 것이 자발적 순간 확산 공정의 가장 큰 장점이다. 연구팀은 이 기술로 대기 중에서 유기 태양전지를 제작했는데 산소 및 수분으로 인한 악조건을 극복하고 고효율의 전지를 확보했다. 이는 산소와 수분이 제한된 환경에서 제작한 태양전지와 비슷한 효율을 갖는다. 산소와 수분 조건을 극복했다는 점은 대량 생산의 핵심 기술인 롤투롤(Roll 2 Roll) 공정에 적용가능하다는 것을 뜻한다. 롤투롤 공정은 롤러를 이용해 알루미늄 호일같은 유연 기판에 연속적 생산을 가능하게 하는 기술로, 저렴하고 대량 생산이 가능해 유기 태양전지를 상용화하기 위한 필수 기술이다. 그러나 기존 롤투롤 공정에 많이 쓰이던 슬롯다이(slot-die) 코팅 기술은 공기 중의 공정에서 용매 건조 시간이 길어 산소와 수분에 취약하다는 단점이 있었다. 이 교수 연구팀은 1미터 길이의 단일 유기 박막을 형성한 후 롤투롤 시스템을 이용해 유연 기판에 옮기는 데 성공했다. 자발적 순간 확산 공정을 통해 대량 생산이 가능하고, 수분과 산소에 취약한 유기소자 제작 공정의 시간과 복잡도를 낮출 수 있음을 증명했다. 이 교수는 “초고속으로 대면적의 유기 박막을 형성할 수 있는 유기 태양전지 상용화를 위한 완전히 새로운 공정이다”며 “저렴한 가격에 고효율의 유기 태양전지를 공급해 상용화를 앞당길 수 있는 원천기술이 될 것으로 기대한다”고 말했다. 이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 개발한 기술의 매커니즘을 3D 이미지로 묘사한 개념도 그림2. 개념도 및 제작된 유기 태양전지 성능 그래프
2016.08.23
조회수 14759
박용근, 정용 교수, 알츠하이머 정량화 가능한 홀로그래피영상 기술 개발
우리 대학 물리학과 박용근 교수와 바이오및뇌공학과 정용 교수(KI 헬스사이언스 연구소) 공동 연구팀이 홀로그래피 영상 기술을 이용해 알츠하이머 질환을 정량적으로 연구할 수 있는 광학 기술을 개발했다. 이무성 연구원과 이익성 박사가 공동 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 3일자 온라인 판에 게재됐다. 뇌의 구조는 뇌 기능 및 질병과 밀접한 관련을 갖고 있다. 특히 알츠하이머에 걸린 뇌는 회백질 및 해마에 아밀로이드 반점이나 신경 섬유 엉킴과 같은 비정상적 구조를 갖기 때문에 뇌 영상 촬영 기술 신경과학에서 꼭 필요한 기술이다. 뇌 관련 질병의 치료를 위해 자기공명영상(MRI)이나 양전자 단층 촬영(PET)과 같은 기존 영상 촬영 기술들을 많이 활용하고 있지만 0.1밀리미터 이하의 세밀한 구조는 관찰하기 힘들다는 한계를 갖는다. 이를 보완하기 위해 조직 병리학 기법을 이용해 뇌의 단면 구조를 관찰했지만, 뇌 조직이 투명하기 때문에 촬영을 위해선 염색 과정을 거쳐야 한다. 이 과정에서 왜곡이 발생할 수 있다. 또한 조직 병리로 얻은 정보는 정성적 정보가 대부분이기 때문에 질병 진단에 필요한 정량적, 객관적 기준을 제공하기 어려웠다. 문제 해결을 위해 연구팀은 먼저 홀로그래피 현미경 기술을 통해 뇌 구조의 정보를 정량적으로 분석했다. 연구팀의 홀로그래피 현미경은 빛의 간섭을 이용해 별도의 염색 과정 없이 조직의 굴절률 분포 수치 영상을 계산할 수 있다. 조직 샘플을 투과한 빛은 굴절률 분포에 따라 특정한 산란 과정을 겪는다. 위에서 얻은 굴절률 분포를 토대로 연구팀은 뇌 조직 내에서 빛이 산란되는 평균 거리와 산란광이 퍼지는 방향성을 정량화했다. 연구팀은 산란 평균 거리와 방향성 분포를 이용해 알츠하이머 인자를 가진 쥐의 뇌 조직에서 발생하는 구조 변화 및 정도를 정량적으로 수치화했다. 그 결과 알츠하이머 모델의 해마 및 회백질의 산란 평균 거리와 방향성이 정상 모델에 비해 더 낮아지는 것을 확인했다. 특히 해마 내 산란되는 평균 거리는 약 40%가 감소했다. 이는 해마와 회백질 구조가 알츠하이머병에 의해 손상되고 불균일해지기 때문으로 해석된다. 연구팀은 이번 연구가 알츠하이머 뿐 아니라 파킨슨 병 등 다른 질병 연구에도 광범위하게 활용될 수 있을 것이라고 내다봤다. 박 교수는 “최근 창업한 Tomocube(토모큐브) 사의 제품을 이용해 관련 연구자들이 보다 쉽게 새로운 방법을 적용시켜 다양한 조직 병리 연구에 활용할 수 있을 것으로 기대된다” 고 말했다. □ 그림 설명 그림1. 홀로그래피 현미경 모식도 그림2. 기존 현미경과 홀로그래피 현미경 성능 비교 그림3. 정상 모델과 알츠하이머병 모델의 뇌 조직의 산란 계수, 이방성 분포
2016.08.17
조회수 10620
최철희, 최경선 교수, 빛을 이용한 치료용 단백질 전달시스템 개발
우리 대학 바이오및뇌공학과 최철희 교수, 최경선 교수 공동 연구팀이 빛을 이용해 치료용 단백질을 체내로 정확하고 안전하게 전달할 수 있는 기술을 개발했다. 이는 체내 세포에서 자연적으로 생산되는 나노입자인 엑소솜과 단백질 약물이 빛을 받으면 자석처럼 서로 결합하는 기술로 우수한 기능과 안전성이 확보됐다는 의의를 갖는다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communicaitons)’ 7월 22일자 온라인 판에 게재됐다. 최근 바이오 신약의 중요성이 커지면서 바이오 신약의 대부분을 차지하는 단백질 의약을 효과적으로 신체 내 표적 세포에 전달할 수 있는 약물전달시스템 개발이 활발히 이뤄지고 있다. 특히 나노입자는 그 특성 상 종양으로 더 많은 양이 침투할 수 있다는 장점이 있다. 따라서 새로운 물리, 화학 및 광학적 특성을 갖는 나노소재의 입자를 이용해 단백질 등의 바이오 신약을 전달하려는 시도가 진행 중이다. 하지만 현재 기술은 표적 세포에 이르기까지 생체 단백질 활성을 유지시키기 어렵고 면역 반응의 발생을 억제시켜야 하는 문제 등의 한계를 갖는다. 또한 치료용 단백질은 그 크기가 매우 커 기존 방법으로는 실용화가 매우 어렵다. 무엇보다도 가장 큰 문제는 독성 발생 가능성 등 인체 안전성이 해결되지 않았다는 않다는 점이다. 연구팀은 문제 해결을 위해 인간의 세포에서 자연적으로 발생하는 나노입자인 엑소솜(세포외 소낭)을 단백질 약물의 운송 수단으로 사용했고, 빛을 받으면 서로 결합하는 특징을 갖는 CRY2와 CIBN 단백질(CRY2, CIBN : 애기식물장대에서 유래한 서로 결합하는 특성을 갖는 단백질)을 이용했다. 엑소솜에는 CIBN을, 단백질 약물에는 CRY2를 융합시킨 뒤 450~490nm 파장의 푸른빛을 쏘면 CIBN과 CRY의 결합하는 특성으로 인해 자연스럽게 엑소솜에 단백질 약물의 탑재가 유도된다. 이 기술은 기존의 수동적인 탑재에 비해 두 가지 장점을 갖는다. 우선 세포 바깥에서 정제된 단백질을 엑소솜에 넣는 기술에 비해 치료용 단백질의 적재율이 천배 가까이 높아졌다. 그리고 단백질을 정제할 필요가 없어져 효율성, 성공률은 높아지고 비용은 적어진다. 연구팀은 기존보다 낮은 비용으로 보다 쉽게 치료용 단백질이 탑재된 엑소솜을 생산하면서 효율 및 안정성이 향상된 치료용 단백질 전달시스템을 개발했다. 이 기술은 기존 단백질 약물이 세포 외부에서만 작용한다는 한계를 극복함으로써 향후 바이오의약 분야의 새로운 패러다임을 제시하는 원천 기술이 될 것으로 기대된다. 연구팀은 현재 다양한 난치성 질환 치료를 위한 표적 단백질이 탑재된 치료용 엑소솜을 개발 중이며 효능 및 임상 적용 가능성을 검증하고 있다. 최철희 교수는 “이번 기술은 생체에서 만들어지는 나노입자인 엑소솜에 치료용 단백질을 효율적으로 탑재시켰다”며 “안전하고 기능이 우수한 단백질 약물을 대량 생산할 수 있는 획기적인 원천기술이다”고 말했다. 이 기술은 KAIST 교원창업기업인 ㈜셀렉스라이프사이언스 사에 기술이전 돼 엑소솜 약물 제조 기술의 최적화 및 전, 임상 시험을 위한 개발 단계 중이다. □ 그림 설명 그림1. 엑소솜 내부에 치료용 단백질이 함유된 것을 묘사한 개념도 그림2. 개발한 기술의 개념도
2016.08.09
조회수 13012
오왕열 교수, 영상왜곡 없는 3차원 관상동맥 내시현미경 시스템 개발
〈 오 왕 열 교수 〉 우리 대학 기계공학과 오왕열 교수 연구팀(KI 헬스사이언스 연구소)이 영상왜곡 없이 관상동맥 내부를 정확히 이미징할 수 있는 관상동맥 내시현미경 시스템을 개발했다. 이 시스템으로 생체 관상동맥 내부 3차원 미세구조를 단일 심박 내에서 초고속 및 고해상도로 촬영했고 단일 심박 내에서 고해상도로 이미징 하는데 성공했다. 연구팀은 이 시스템을 사용해 인간과 비슷한 돼지 심장의 관상동맥 이미징에 성공함으로써 급성 심근경색으로 대표되는 관상동맥 질환의 정확한 진단 및 치료에 새로운 방향을 제시할 것으로 기대된다. 연구 결과는 심혈관분야의 임상저널인 ‘미국심장학회 학술지(JACC Cardiovascular Imaging : Journal of American College of Cardiology Cardiovascular Imaging)’ 5월호에 게재됐다. 돌연사의 가장 큰 원인인 급성 심근경색은 심장표면에 존재하면서 심장근육에 혈액을 공급하는 관상동맥(coronary artery)이 좁아지고 막혀 심장박동이 중지돼 갑작스럽게 사망하는 질환이다. 따라서 급성 심근경색을 예측하는 것은 매우 중요하며 이를 위해서는 의료진이 정확하게 진단할 수 있는 자료가 필수적이다. 광단층영상기술(OCT, Optical Coherence Tomography) 기반의 혈관 내시경은 현재 가장 높은 해상도의 심혈관 내부 영상을 제공하고 있다. 하지만 통상적으로 초당 100장 정도를 촬영하기 때문에 관상동맥 전체의 영상을 획득하는데 최소 3~5초가 소요된다. 이 사이 발생한 수차례의 심장 박동은 혈관의 반복적인 수축 및 팽창을 일으키고, 이는 정상적인 혈관도 마치 좁아진 것처럼 울퉁불퉁하게 보이는 영상왜곡으로 이어져 진단의 정확도가 떨어지게 된다. 연구팀이 개발한 단일 심박 주기 내 3차원 관상동맥 OCT 이미징 기술은 이러한 문제를 해결할 수 있는 핵심 기술이다. 초당 500장 촬영하는 고속 관상동맥 및 심박을 모니터링해 가장 움직임이 적은 영역을 자동적으로 포착 후 이미징을 수행하는 기술을 개발했다. 이를 통해 심장 박동으로 인한 영상 왜곡 없이 7센티미터 길이의 관상동맥을 0.7초 사이에 촬영해 내부 고해상도 영상을 확보할 수 있었다. 오 교수 연구팀은 고려대구로병원 김진원 교수 연구팀과의 협력을 통해 사람의 관상동맥과 비슷한 크기를 갖는 돼지 관상동맥의 단일 심박 내 초고속 3차원 이미징에 성공했다. 연구팀은 “이번 연구 결과를 통해 국내에서 개발한 세계 최고의 기술이 병원과의 긴밀한 협력을 통해 실제 임상에서의 한계를 극복하고 유용성을 인정받았다”고 밝혔다. 오 교수는 “심혈관 내 플라크 형태 분석과 스텐트(stent : 혈관 확장을 위해 혈관에 삽입하는 구조물) 삽입 등에 유용하게 사용 가능할 것으로 기대된다”며 “환자에 적용하기 위해 식약처 승인을 받기 위한 과정을 준비 중이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 단일심박 초고속 관상동맥 OCT로 획득한 돼지 관상동맥의 길이방향 영상 그림1. 관상동맥 OCT로 영상으로부터 얻은 관상동맥 3차원 구조 복원 영상
2016.08.04
조회수 14503
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉 우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다. 대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다. 이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다. 촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다. 청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다. 학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다. 연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다. 연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다. 특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다. 연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다. 당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다. 이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다. 박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다. □ 그림 설명 그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도 그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 12264
유승협 교수, 열차단과 전기생산 동시에 가능한 태양전지 개발
〈 유 승 협 교수 〉 우리 대학 전기 및 전자공학부 유승협 교수와 성균관대 화학공학부 박남규 교수 공동 연구팀이 열을 차단하는 동시에 전기도 생산할 수 있는 반투명 태양전지 기술을 개발했다. 이는 다층 금속 박막 기반의 투명전극을 이용한 기술로써 가시광선은 투과하고 적외선(열선)은 선택적으로 반사한다. 동시에 전기도 생산하기 때문에 에너지를 효율적으로 사용하면서 낮은 실내 온도를 유지할 수 있다. 자동차 선팅이나 건물 창호 등에 다방면으로 이용 가능할 것으로 기대된다. 이번 연구 성과는 에너지 분야 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 20일자 표지 논문으로 선정됐다.(논문명: Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality) 태양전지는 지붕 위에 설치하는 청색의 사각 패널 뿐 아니라 건물이나 차량 유리창에 적용할 수 있는 반투명 모양으로도 발전될 수 있다. 하지만 빛을 흡수해 전기를 생산하는 태양전지의 속성 상 빛을 투과시키는 태양전지의 반투명한 특성은 효율을 감소시킬 수밖에 없다. 또한 기존의 상용화된 결정질 실리콘 기반의 태양전지는 반투명하게 제작이 어렵다는 한계를 갖는다. 연구팀은 문제 해결을 위해 차세대 태양전지 재료로 주목받는 유, 무기 복합물로 이뤄진 페로브스카이트를 광전변환 재료로 이용했다. 그리고 양면에 투명 전극을 사용해 반투명한 태양전지를 구현했다. 이 때 한쪽 면의 투명 전극은 연구팀이 수년 간 전자소자에 적용해온 ‘절연층-금속-절연층’ 구조의 금속 기반 다층 박막을 사용했다. 금속은 통상적으로 빛이 투과되기 어렵다. 하지만 연구팀은 수십 나노미터 두께의 얇은 박막으로 제작한 뒤 그 위에 반사를 줄이는 굴절률이 높은 절연층을 적층하는 방법으로 투명한 전극을 구현했다. 또한 투명 전극 각 층의 두께를 세밀하게 조절해 사람의 눈에 보이는 가시광선 대역의 빛은 투과시키고, 눈에 보이지 않는 대역의 빛은 반사되도록 설계했다. 이를 통해 차량용 선팅 필름과 비슷한 수준인 7.4% 평균 가시광선 투과율을 갖는 동시에 13.3%의 광전변환효율을 보이는 반투명 태양전지 제작에 성공했다. 연구팀은 적외선 반사를 최대화해 태양광의 열선을 효과적으로 반사시키는 기능을 더했다. 선팅 필름 제품의 태양열차단 성능은 총태양열에너지차단율(Total Solar Energy Rejection : TSER) 지수로 평가되는데 연구팀의 반투명 태양전지는 고가 선팅 필름 제품과 동등한 수준인 89.6%의 우수한 TSER 값을 보였다. 다수의 선팅 필름 제품들이 흡수를 통해 태양빛을 차단하기 때문에 태양빛에 노출 시 필름 자체의 온도가 올라간다. 반면 연구팀의 태양전지는 반사를 통해 열을 차단해 빛에 노출돼도 온도가 거의 올라가지 않아 태양전지의 안정성 향상 측면에서도 유리할 것으로 기대된다. 유 교수는 “열 차단 기능성 반투명 태양전지는 추가적 광학 설계를 통해 색 조절도 가능하고 궁극적으로는 필름형으로도 제작 가능해 기존 차량 및 건물의 유리창을 멋있고 스마트하게 업그레이드할 수 있을 것이다”며 “태양전지가 친환경 에너지를 생산하는 것에서 더 나아가 새로운 부가가치를 갖출 때 기존보다 더 큰 시장을 개척할 수 있을 것이다”고 말했다. 김호연, 하재원 박사과정 학생과 성균관대 김희선 학생이 공동으로 참여한 이번 연구는 KAIST 기후변화연구허브 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 게재된 저널의 표지논문 그림 그림2. 태양전지 사진 그림3. 열화상 사진 그림4. 모식도
2016.08.01
조회수 14114
박병국 교수, 차세대 자성메모리의 성능 향상 기술 개발
〈 박 병 국 교수 〉 우리 대학 신소재공학과 박병국 교수와 고려대학교 이경진 교수 공동 연구팀이 차세대 자성메모리(MRAM)의 속도 및 집적도를 동시에 향상시키는 소재기술을 개발했다. 이번 연구결과는 나노기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 7월 11일자에 게재됐다.(논문명 : Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures) 자성메모리(MRAM)는 실리콘을 기반으로 한 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 새로운 비휘발성 메모리 소자이다. 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 고속 동작과 집적도를 높일 수 있다. 이러한 특성 때문에 메모리 패러다임을 바꿀 새로운 기술로 각광받고 있으며 전 세계 반도체 업체에서 개발 경쟁을 벌이고 있는 차세대 메모리이다. 개발 경쟁의 대상이 되는 핵심 기술 중 하나는 메모리 동작 속도를 더 높이면서도 고집적도를 동시에 구현 하는 기술이다. 현재까지 개발 된 자성메모리 기술에 의하면 동작 속도를 최고치로 유지하는 경우 집적도가 현저히 떨어지는 문제가 있었다. 연구팀은 문제 해결을 위해 동작 속도를 기존 자성메모리 기술보다 10배 이상 빠르고 고집적도를 달성 할 수 있는 새로운 기술을 개발했다. 일반적 스핀궤도토크 기반의 자성메모리는 정보기록을 위해 중금속-강자성 물질의 스핀궤도결합을 이용한다. 하지만 기존에 사용되는 백금(Pt) 또는 텅스텐(W)의 경우 외부 자기장을 걸어 주어야 하는 제약이 있었다. 연구팀은 이리듐-망간(IrMn) 합금과 같은 새로운 반강자성 소재를 도입해 반강자성-강자성 물질의 교환결합을 이용했고, 외부자기장 없이 빠르고 저전력 동작이 가능한 기술을 개발했다. 스핀궤도토크 자성메모리는 컴퓨터 또는 스마트폰에 쓰이는 정적 기억장치(SRAM) 보다 10배 이하로 전력소모를 낮출 수 있다. 또한 비휘발성 특성으로 저전력을 요구하는 모바일, 웨어러블, 사물인터넷 메모리로 활용가능성이 높다. 박 교수는 “이번 연구는 차세대 메모리로써 각광받고 있는 자성메모리의 구현 가능성을 한 걸음 더 발전시켰다는 의미를 갖는다”며 “추가 연구를 통해 기록성능이 뛰어난 신소재 개발에 주력할 예정이다”고 말했다. 이번 연구는 미래소재디스커버리사업 스핀궤도소재연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스핀궤도토크(SOT) 기반 자성메모리(MRAM)의 개략도 그림2. 스핀궤도토크에 의해 강자성 물질의 스핀 방향을 제어하는 소자개략도 및 주요 실험 결과
2016.07.14
조회수 12379
배병수 교수, 오징어 폐기물로 플렉서블 전자소자 제작용 투명종이 개발
〈 배 병 수 교수 〉 우리 대학 신소재공학과 배병수 교수와 울산대학교 첨단소재공학부 진정수 교수 공동 연구팀이 오징어의 폐기물을 재료로 플렉서블 기기의 기판으로 사용 가능한 투명종이를 개발했다. 이번 연구 성과는 재료분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’7월 7일자 표지논문으로 선정됐다. 식물의 주성분인 셀룰로오스로 이뤄진 종이는 기존의 일상적인 용도에서 벗어나 최근 다양한 미래 친환경 플렉시블 전자소자의 기판소재로서 주목을 받고 있다. 하지만 기존의 일반적인 종이는 마이크로(10-6)미터 크기의 굵은 셀룰로오스 섬유로 이루어져 가시광의 산란을 일으켜 불투명할 뿐만 아니라 쉽게 찢어지는 문제가 있었다. 반면 투명 종이는 나노(10-9)미터 크기의 나노섬유로 제작해 기존의 종이에 비해 매우 높은 투명성과 우수한 기계적 특성을 나타낼 수 있다. 차세대 플렉시블 디스플레이나 생체친화적인 기능성 전자소자의 기판소재로 국제적으로 활발한 연구가 진행 중이다. 현재까지 보고된 투명종이의 원료는 대부분 식물의 성분인 셀룰로오스 나노섬유에 집중돼 있었다. 그러나 연구팀은 게와 새우 껍질 및 오징어 내골격의 주성분이면서 셀룰로오스보다 생체친화성이 뛰어난 키틴 나노섬유를 이용해 투명종이 개발에 성공했다. 키틴은 셀룰로오스와 함께 지구상에 가장 많이 존재하는 천연고분자로서 ‘바다의 셀룰로오스’라고 불린다. 기계적으로 매우 강하면서도 생분해성과 생체친화성이 뛰어나 미래 친환경 소재로 각광받고 있다. 그러나 이 같은 장점에도 불구하고 수소결합에 의한 키틴 특유의 불용성(용매에 녹지 않는 성질)과 필름 제작 시 생기는 수축현상으로 인해 키틴 나노섬유를 이용한 투명종이 개발에는 상당한 어려움이 있었다. 이러한 문제를 해결하기 위해 연구팀은 용해성이 상대적으로 높은 오징어 내골격 유래 키틴과 수소결합을 효과적으로 끊을 수 있는 용매를 사용했다. 동시에 필름 제작 시 생기는 수축 현상을 원심력을 이용해 억제할 수 있는 새로운 필름 제작 공정을 설계했다. 이를 통해 균일하면서도 매우 투명한 키틴 나노섬유 투명종이를 개발하는 데 성공하였다. 특히 연구팀이 개발한 키틴 나노섬유 투명종이는 기존의 종이처럼 접을 수 있고 인쇄도 가능할 뿐만 아니라, 대표적인 고성능 합성 플라스틱 필름들과 견주어도 전혀 손색이 없는 성능을 보였다. 또한 연구팀은 이번에 개발한 키틴 나노섬유 투명종이를 기판으로 사용해 최초로 플렉서블 유기발광다이오드(OLED) 디스플레이 소자를 제작하는 데 성공함으로써 나노섬유 투명종이의 응용 가능성을 검증하였다. 연구팀은 “버려지는 오징어 폐기물을 원료로 개발한 키틴 나노섬유 투명종이는 친환경 소재의 중요성과 수요 증대와 발맞춰 향후 플렉시블 디스플레이뿐만 아니라 다양한 미래 친환경 전자소자의 플랫폼으로도 이용될 수 있을 것이라고 기대된다.”라고 밝혔다. 이번 연구는 산업통상자원부 및 민간기업의 협력 투자로 발족된 '미래 디스플레이 핵심 원천기술 개발(KDRC)' 사업의 일환으로 진행됐다. □ 사진 설명 사진 1. 휘어지는 유기발광다이오드 사진 사진2. 제작된 키틴 나노 섬유 투명 종이는 기존의 종이처럼 접을 수 있고 그를 이용한 인쇄도 가능함
2016.07.11
조회수 14678
니콜라이 츠베코프 박사, 성능 30배 증가된 연료전지 소재기술 개발
〈 니콜라이 츠베코프 박사 〉 우리 대학 EEWS 대학원 니콜라이 츠베코프(Nikolai Tsvetkov) 박사가 30배 증가된 성능과 긴 수명을 갖는 연료전지의 전극 소재를 개발했다. 이 기술은 이종원소로 알려진 페로브스카이트 산화물을 물리적으로 표면 처리하는 방법으로 이를 통해 소재의 전기적 특성 및 안정성을 향상시킬 수 있다. 니콜라이 박사는 지난 1월 EEWS 대학원 강정구 교수 연구실에 우수 해외 신진연구자로 참여했다. 이번 연구는 국제 과학 학술지 ‘네이처 머티리얼즈(Nature Materials)’ 6월 13일자 온라인 판에 게재됐다. 페로브스카이트 산화물은 최근 수 년 간 연료전지, 비휘발성 메모리, 이산화탄소의 광 변환 등 다양한 분야에 활용 가능한 소재로 연구됐다. 그러나 고온에서 수분과 공기에 노출되면 산화물 표면이 화학적으로 불안정해져 메모리, 연료 전지 등의 수명과 성능을 저하시키는 주요 원인이 됐다. 이러한 현상이 발생하는 이유는 페로브스카이트 산화물의 원소 중 스트론튬이 표면에서 산화물 절연막을 형성해 전자전달 및 산소교환반응을 방해하기 때문이다. 이를 방지하기 위해 금속 산화물 표면에 수 나노미터 수준으로 코팅하는 방법이 있지만 근본적인 문제 해결에는 한계가 있었다. 연구팀은 문제 해결을 위해 다양한 이종 원소를 이용해 표면에 존재하는 산소 원자결함을 선택적으로 제거하는 기술을 개발했다. 이를 통해 반응을 방해하는 표면의 절연층 형성을 억제하고 우수한 전기적, 촉매적 특성 및 반응속도를 갖는 소재를 개발했다. 연구팀은 촉매로서의 활성이 없는 것으로 알려진 하프늄을 사용해 기존 소재 대비 연료전지 전극의 성능을 30배 증가시켰고 소재의 안정성도 대폭 향상시켰다. 이 연구 결과는 기존에 알려지지 않은 새로운 현상으로서 그동안 연료전지 성능 향상의 가장 큰 걸림돌이었던 전극 표면에서의 산소환원반응의 원인을 이론적으로 규명했다는 의미를 갖는다. 또한 고체 산화물 연료전지의 안정성에 대한 해답을 제시했다. 니콜라이 박사는 “극소량의 이종원소 표면처리 기술을 이용해 연료전지를 비롯한 다양한 분야의 전기화학촉매가 될 것이다”며 “기존의 기술적 한계를 극복하는 핵심 기술로 널리 활용될 수 있을 것이다”고 말했다. 이번 연구는 미국항공우주국(NASA) ‘화성탐사 2020 프로젝트’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 페로브스카이트 산화물 박막(좌)에 이종 원소의 도핑으로 표면의 산소 원자결함을 제어한 박막구조 그림2. 도핑된 이종 원소별 산소교환 성능 그래프
2016.07.07
조회수 11609
홍순형, 류호진 교수, 세라믹과 고온용 2차원나노소재 합성기술 최초개발
우리 대학 신소재공학과 홍순형 교수와 원자력및양자공학과 류호진 교수 공동 연구팀이 고온용 2차원 나노소재인 질화붕소 나노플레이트렛(BNNP)을 세라믹 재료의 강화재로 응용하는 기술을 개발했다. 이번 연구는 질화붕소 나노플레이트렛을 통해 내충격성이 약한 세라믹의 성능을 높일 수 있음을 규명했다는 의미를 갖는다. 이를 통해 향후 인공치아, 인공뼈 및 우주항공용 고온 소재 등에 사용 가능할 것으로 기대된다. KAIST 신소재공학과 이빈 박사과정 학생이 제 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 6월 8일자 온라인 판에 게재됐다. 세라믹은 다른 소재들에 비해 내충격성이 약해 쉽게 깨지는 단점이 있다. 따라서 나노물질 강화재를 첨가해 내충격성을 향상시킬 수 있는 복합소재를 개발하는 것이 중요하다. 신소재로 각광받는 그래핀은 전기전도도가 높아 절연 특성을 요하는 기판용 세라믹 재료에 적합하지 않다. 또한 섭씨 350℃에서 산화, 검은 색깔 등의 특성을 갖기 때문에 심미성이나 실용성의 문제로 우주항공용 소재나 인공치아 등에 활용이 어렵다. 반면 질화붕소 나노플레이트렛은 섭씨 1천℃에서도 안정적이고 투명하며 생체적합성이 뛰어나 고온용 소재나 생체용 세라믹 재료의 강화재로 응용할 수 있다면 물성을 크게 향상시킬 수 있다. 이번 연구에서 제조된 질화붕소 나노플레이트렛은 질소와 붕소 원자가 육각형의 벌집모양 형태로 화학결합을 한 두께 10나노미터 이하의 2차원 나노소재이다. 이와 같은 장점에도 불구하고 제조공정이 어렵다는 단점 때문에 연구가 활발하지 않아 그래핀에 비해 널리 활용되지 못했다. 연구팀은 질화붕소 나노플레이트렛을 제조하기 위해 ‘고에너지 볼밀링’ 공정을 이용했다. 볼밀링 공정은 용기 내에 볼과 대상 물질을 넣고 회전시켜 에너지를 가하는 방식이다. 대상 물질인 질화붕소와 철로 만들어진 볼을 넣고 회전을 가하는 간단한 방법으로 질화붕소 각각의 층을 박리하는 데 성공했다. 그리고 이를 통해 정밀한 질화붕소 나노플레이트렛을 대량으로 제조하는 데 성공했다. 또한 계면활성제를 통해 질화붕소 나노플레이트렛을 세라믹 재료 내에 균일하게 분산시키는 데 성공했다.대표적 세라믹 소재인 질화규소에 첨가했을 때 2%의 첨가만으로 강도 10%, 파괴인성 20%, 내마모 특성을 30% 향상시켰다. 홍 교수는 “질화붕소 나노플레이트렛의 우수한 기계적 물성, 열전도율, 고온 안정성 등을 세라믹 소재에 접목해 우주항공용 고온 소재, 인공치아용 소재, 전자기기 기판 소재 등에 응용이 가능하다”고 말했다. 류 교수는 “세라믹 소재의 특성을 획기적으로 향상시키고 응용 분야를 넓혀 신산업을 창출할 수 있을 것이다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어 사업, 소프트 광소자용 2D 및 차원융합 하이브리드 소재 개발 기술 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1.볼밀링 공정을 통해 질화붕소를 BNNP로 박리하는 공정 그림2. 본 연구를 통해 제조된 BNNP 강화 질화규소 나노복합분말 및 나노복합소재
2016.07.04
조회수 10916
강정구, 김용훈 교수, 초고속 충전 가능한 리튬이온 배터리 소재 개발
우리 대학 EEWS 대학원 강정구, 김용훈 교수 공동 연구팀이 빠른 속도의 충, 방전이 가능한 동시에 1만 번 이상의 작동에도 용량 손실이 없는 리튬 이온 배터리 음극 소재를 개발했다. 이번 연구는 3차원 그물 형상의 그래핀과 6나노미터 크기의 이산화티타늄 나노입자로 구성된 복합 구조체를 간편한 공정으로 제조하는 기술이다. 이를 통해 탄소계열 물질 위주의 기존 전극이 갖고 있던 고출력 성능이 제한되는 문제를 개선해 고성능의 배터리 전극을 구현했다. 향후 전기자동차, 휴대용 기기 등 높은 출력과 긴 수명을 요구하는 분야에 응용 가능할 것으로 기대된다. 이규헌 박사과정, 이정우, 최지일 박사가 주도한 이번 연구 결과는 국제 과학 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 지난 5월 18일자 온라인 판에 게재됐다. 현재 음극 배터리 물질로는 그래핀이 가장 많이 사용된다. 이 그래핀을 쉽게 만드는 방법은 용액 상에서 흑연을 분리시키는 방법인데 이 과정에서 결함 및 표면의 불순물이 발생해 전기 전도성을 높이는데 방해가 된다. 연구팀은 문제 해결을 위해 화학기상증착법을 이용해 기존의 평평한 형태가 아닌 결함이 적고 물성이 우수한 3차원 그물 형상의 그래핀을 제조했다. 그 위에 메조 기공이 형성된 이산화티타늄 나노입자 박막을 입혀 복합 구조체를 구현했다. 이 기술로 일반적인 전극 구성물질인 유기 접착제와 전도성 재료를 사용하지 않음으로써 전극 제조 공정을 간소화했고 전기 전도성을 높였다. 또한 3차원 그물 형상의 그래핀과 화학적으로 안정된 이산화티타늄 나노입자가 형성하는 다양한 크기의 기공들이 전해질의 접근성을 높이는 역할을 한다. 이를 통해 이온들의 접근을 촉진시키고 원활한 전자의 이동이 가능하게 한다. 이 기술은 크기가 작은 나노 입자를 사용하기 때문에 표면부터 중심까지의 거리가 짧다. 따라서 짧은 시간 내에 결정 전체에 리튬을 삽입할 수 있어 빠른 충, 방전 속도에서도 효율적인 에너지 저장이 가능하다. 연구팀은 1분 이내에 130mAh/g의 용량을 완전히 충, 방전하는데 성공했고, 이 과정에서 용량 손실 없이 1만 번 이상 작동함을 확인했다. 연구팀은 “재료의 물성을 극대화시킬 수 있는 구조적 설계를 통해 기존 이차전지의 문제점을 해결하고 성능을 효과적으로 높이는 방법을 제시했다”고 밝혔다. 강 교수는 “재료 물리학 측면에서 가치가 높은 연구 결과이다”며 “구조적 측면에서도 향후 여러 에너지 저장장치 등의 분야에 활용 가능성이 클 것이다”고 말했다. 이 연구는 미래창조과학부의 글로벌프론티어사업, 한국연구재단의 도약사업과 KISTI 슈퍼컴퓨팅의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 그물 형상의 그래핀위에 증착된 메조기공을 형성하는 이산화 티타늄 박막 복합 구조체의 모식도 그림2. 리튬이 삽입된 구조분석 그림3. 바인더 없이 제조된 고출력고수명 특성
2016.06.20
조회수 13599
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15081
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 83