본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
강정구, 김용훈 교수, 태양광 이용 이산화탄소로 메탄올 변환 성공
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다. 이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다. 이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다. 매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다. 경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다. 식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다. 하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다. 연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다. 이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다. 또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다. 이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다. 연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다. 강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다. 이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정 그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
2016.05.26
조회수 15072
김순태 교수, 무선인터넷 시뮬레이션 기술 모파이심(MofySim) 개발
〈 김 순 태 교수 〉 스마트폰 사용자의 75%가 하루 1회 이상 인터넷 검색, 사회연결망서비스(SNS) 관련 서비스를 이용할 만큼 무선 네트워크는 모바일 기기에서 가장 핵심적인 요소이다. 무선 네트워크에서는 상황에 따라 패킷 손실, 손상 등의 오류가 발생할 수 있고 이것이 배터리 소모의 원인이 된다. 따라서 모바일 기기를 설계할 때 네트워크 상황에 따라 기기의 성능 및 소비 에너지 등을 고려해야 한다. 우리 대학 전산학부 김순태 교수 연구팀은 스마트폰, 컴퓨터 등에서 사용되는 무선 인터넷 환경을 컴퓨터 시뮬레이션을 통해 미리 구현할 수 있는 시뮬레이션 플랫폼 모파이심(MofySim)을 개발했다. 이를 통해 스마트폰의 인터넷 환경과 비슷하게 시뮬레이션을 수행할 수 있어 하드웨어, 소프트웨어의 문제점과 개선 사항을 쉽게 파악 수 있다. 실제 시스템에서는 추출하기 어려운 하드웨어 상에서 발생하는 다양한 현상 및 시스템 소프트웨어의 활동 상황, 네트워크 상황에 따라 생기는 하드웨어와 소프트웨어의 문제점을 찾을 수 있다는 점이다. 이를 통해 모바일 시스템의 성능, 전력소비, 신뢰성을 측정할 수 있다. 이번 성과는 4월 19일 스웨덴 웁살라에서 열린 ISPASS(International Symposium on Performance Analysis of Systems and Software)학회에서 발표됐다. 기존 시뮬레이션 시스템은 통신을 통한 인터넷 연결을 완벽히 지원하지 못하고 로컬(local) 디스크에서 데이터를 읽는 형태로 지원했다. 즉, 로컬 디스크에 있는 오프라인 상의 자료만을 토대로 웹 서핑을 시뮬레이션 하는 제한된 환경 때문에 네트워크의 변동성을 반영하지 못하고 이는 신뢰도 하락으로 이어진다. 모파이심은 문제 해결을 할 수 있도록 3G, 4G, 와이파이 등 무선통신 네트워크와 통신 대역폭(bandwidth), 패킷(packet) 분실, 지연시간 등 발생 가능한 네트워크 상황을 모델링하는 모바일 시스템 시뮬레이션을 지원한다. 실제 모바일 시스템에서 무선통신으로 인터넷에 접속해 웹 서핑을 하는 것과 동일한 효과를 시뮬레이션 상에서도 구현할 수 있다. 모파이심은 모바일 시스템, 서버 시스템, 두 시스템부를 연결하는 무선 통신부로 구성된다. 모바실 시스템부는 CPU, 메모리, 저장장치, 디스플레이 등의 하드웨어를 모델링하고, 리눅스 운영체제와 안드로이드 시스템을 구동한다. 서버 시스템부는 모바일 시스템이 접속하는 인터넷에 연결된 원격 서버를 모델링한다. 마지막으로 무선 통신부는 두 시스템을 무선 통신을 통해 연결하는 모파이심의 핵심이다. 연구팀은 모파이심이 교육 분야에서도 활용이 가능해 관련 분야 교육 수준을 향상시키는 데 기여할 것으로 예상했다. 김 교수는 “모파이심을 이용해 현재 뿐 아니라 미래의 모바일 시스템 모델링이 가능해진다”며 “하드웨어가 개발되지 않은 상황에서 미래 시스템을 실험할 수 있는 유용한 플랫폼이 될 것이다”고 말했다. 이 시스템은 홈페이지(http://ecl.kaist.ac.kr/tools)에서 등록 후 무료 다운로드할 수 있다. 전산학부 김형규 박사과정과 삼성전자 소프트웨어센터 주민호 책임연구원의 참여로 이뤄진 이번 연구는 한국연구재단 중견연구자지원사업과 정보통신기술진흥센터 SW컴퓨팅산업원천기술개발사업의 지원을 받아 수행됐다. ㅁ 그림 설명 그림1. 모파이심 시스템 시뮬레이션 플랫폼 구조도
2016.05.16
조회수 10990
김필남 교수, 악성 뇌종양의 내성 발생 원리 밝혀
〈 김 필 남 교수 〉 우리 대학 바이오및뇌공학과 김필남 교수 연구팀이 3차원 체외 종양 모델을 제작해 악성 뇌종양의 약물 저항성(내성) 발생 원리를 밝혔다.이번에 제작된 뇌종양 3차원 모델은 실제로 중요한 영향을 미치는 종양의 미세환경(tumor microenvironment)을 고려해 제작함으로써 실질적 암 치료에 적용 가능할 것으로 기대된다. 이번 연구는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 4월 26일자 온라인 판에 게재됐다. (논문명: Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation) 악성 뇌종양은 주변 조직으로 침윤하는 특성이 매우 강해 치료하기 힘든 질병 중 하나이다. 수술을 통해 종양을 절제해도 주변 조직에 넓게 침윤한 잔여 세포들이 재발하는 경우가 많다. 따라서 악성 뇌종양의 치료 효율 및 생존율을 높이기 위해서는 남아있는 침윤 세포를 표적으로 한 치료법을 개발해야 한다. 그러나 종양의 악성화 및 침윤 특성의 주요 원인인 주변 미세환경(tumor microenvironment)을 고려하지 않은 항암제 개발이 주로 이뤄졌기 때문에 종양의 침윤 및 약물 저항의 원리를 밝히기 어려웠다. 연구팀은 문제 해결을 위해 체외에서 종양 주변 미세환경의 특성을 반영한 3차원 암 모델을 구현했다. 이는 뇌종양 미세환경의 주요 구성요소인 과함유 히알루론산(hyaluronic acid) 기질과 백색질 경로(white matter tract)를 모사한 생체모방체외종양 모델이다. 연구팀은 체내에 존재하는 악성 뇌종양의 특성을 체외에서도 유사하게 유지시켜 환자를 대체할 수 있는 종양 모델로 활용 가능함을 확인했다. 연구팀은 뇌종양 세포가 침윤하는 데 중요한 역할을 하는 히알루론산 합성 단백질을 억제하는 약물을 투입했다. 초기에는 뇌종양 침윤이 억제됐지만 시간이 흐르며 미세환경 적응(microenvironmental adaptation) 과정에서 뇌종양이 새 기전을 통해 약물에 대한 내성이 생기는 현상을 발견했다. 이 모든 과정을 체외 종양 모델을 통해 진행함으로써 동물실험을 대체하여 다양한 항암제를 조합하고 검증할 수 있어 실질적인 암 치료에 도움이 될 것으로 기대된다. 연구팀이 제시한 3차원 체외 암 모델은 기존 약물의 저항 원인을 규명하는 기반이 될 것으로 예상된다. 또한 추후 정밀 암 치료를 위한 핵심 기반 기술로 환자맞춤 약물 검증 및 신약 발굴 모델 등으로 다각적 활용이 가능할 것으로 기대된다. 김 교수는 “뇌종양의 체외 종양모델로서 공학적 기술 기반의 3차원 미세환경 암 모델을 제시했다”며 “이를 바탕으로 뇌종양 환자 개별 치료의 가능성을 높여 생존율 개선에 힘이 되겠다”고 말했다. 바이오및뇌공학과 차정화 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 신진연구자지원사업 및 보건복지부 중개중점 연구사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 악성 뇌종양 주변 미세환경 그림2. 환자 대체치료용 3차원 체외뇌암모델의 모식도 그림3. 환자유래 뇌종양 세포의 미세환경 적응 과정에 의한 약물 저항 메커니즘
2016.05.11
조회수 13682
박오옥, 한상우 교수, 팔 14개 달린 금 나노입자 개발
우리 대학이 중심 입자에 14개의 팔 모양 입자가 달린 이원 구조의 금 나노입자를 개발했다. 이 기술은 팔 모양 입자 주변에서 전기장을 강하게 증폭시켜 표면증강 라만분광을 이용해 미량의 물질도 검출할 수 있다. 이를 통해 화폐 보안물질, 인체 광열치료 등에도 활용 가능할 것으로 기대된다. 생명화학공학과 박오옥 교수, 화학과 한상우 교수, 한국화학연구원 김도엽 박사와가 공동으로 진행한 이번 연구 성과는 광학 재료분야 학술지 ‘저널 오브 머티리얼스 케미스트리 씨(Journal of Materials Chemistry C)’ 4월 21일자 표지논문으로 게재됐다. 중심에 팔 모양의 입자가 달린 이원구조의 금 나노입자는 외부의 빛과 반응해 팔 모양 주변에서 전기장이 강하게 증폭된다. 이를 통해 금 나노입자를 기판으로 활용해 물질을 그 위에 올리면 적은 농도로도 쉽게 물질의 검출이 가능해진다. 하지만 기존 기술은 중심 나노입자에 달린 팔 모양 입자의 크기, 길이를 정밀하게 제어하지 못해 형태가 제각각인 금 나노입자만 얻을 수 있었다. 연구팀은 문제 해결을 위해 14개의 꼭지점을 갖는 사방십이면체 형태의 금 나노입자를 먼저 합성 후 꼭지점 부분만 선택적으로 성장시켰다. 이를 통해 팔이 14개 달린 이원구조의 금 나노입자를 합성했고 팔 크기나 길이를 조절해 광학특성 및 전기장 세기 증폭을 조절할 수 있게 됐다. 연구팀은 유한차분 시간영역법을 통한 시뮬레이션과 표면증강라만산란 실험을 통해 이원 구조에서의 팔의 크기가 작을수록, 몸통 입자의 크기가 클수록 전기장 세기가 강하게 증폭됨을 증명했다. 이 기술을 표면증강라만분광(surface-enhanced Raman spectroscopy)에 이용한다면 물질의 분자 검출 및 분석 등에 응용할 수 있다. 박 교수 연구팀은 이전 연구에서도 美 워싱턴대학 유난 시아(Younan Xia) 교수와의 공동연구를 통해 6개의 팔 모양 입자가 달린 이원구조의 금 나노입자 합성기술을 개발한 바 있다. 이번 연구에서는 이원 구조 금 나노입자의 성장과정 분석과, 더 나아가 이론적 계산을 통한 금 나노입자 표면에서의 전기장 세기가 증폭됨을 확인했다. 또한 실제 표면증강 라만산란 실험을 통한 특정분자 검출 등 다각적 연구를 통해 이원구조 금 나노입자의 응용 가능성을 높였다. 연구팀은 “새로운 접근법을 통한 이원구조 금 나노입자의 팔 개수, 길이 등의 조절로 광학특성 등 물리적 성질을 제어하는 기술을 개발했다”며 “이를 통해 라만분광법을 이용한 물질 검출이나 화폐보안물질 등에 응용 가능할 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부 산하의 한국연구재단-선도연구센터지원사업, 나노·소재기술개발사업 및 기초연구사업과 KAIST 기후변화연구허브사업의 지원으로 수행됐다. □ 그림 설명 그림1. 중심입자에 14개의 팔이 달린 이원구조의 금 나노입자와 팔의 크기만 선택적으로 조절된 금 나노입자의 전자현미경 이미지 그림2. 팔 크기 변화에 따른 전기장 세기를 유한차분 시간영영법으로 시뮬레이션한 결과와 표면증강라만 신호 결과
2016.05.10
조회수 16631
박현규 교수 DNA 활성 조절 가능한 스위치 개발
〈 박 현 규 교수 〉 우리 대학 생명화학공학과 박현규 교수 연구팀이 스위치를 켜고 끄듯이 DNA 내부의 핵산중합효소 활성을 조절하는 기술을 개발했다. 이 기술은 수은, 은 등의 금속이온을 스위치로 사용해 DNA 압타머를 조절함으로써 DNA 압타머와 결합돼 있는 핵산중합효소의 활성을 조절하는 원리이다. 이번 연구는 영국왕립화학회가 발행하는 ‘케미컬커뮤니케이션(Chemical communications)’ 4월호에 게재됐고, 중요성을 인정받아 표지 논문으로 선정됐다. 핵산과 금속이온의 상호작용을 이용해 효소 활성을 조절하는 여러 연구들이 수행되고 있다. 하지만 이 연구들은 금속이온에 의해 반응이 진행되고 나면 다시 반응을 되돌릴 수 없어 가역적으로 시스템을 구현해야 하는 분자스위치, 논리게이트 등에 사용이 어렵다는 한계를 갖는다. 핵산중합효소는 핵산의 복제를 돕는 효소로 DNA 압타머와 결합해 있는 상태로는 별다른 역할을 수행할 수 없다. 따라서 특정 외부적 자극을 통해 DNA 압타머를 조절해 핵산중합효소를 활성화시켜야 한다. 연구팀은 문제 해결을 위해 핵산중합효소와 상호작용을 하는 DNA 압타머가 특정 금속이온에 반응하도록 염기서열을 조작했다. 그리고 수은 및 은 등의 금속이온을 도입해 핵산중합효소와 DNA 압타머의 결합을 조절함으로써 중합효소의 활성을 조절 가능하게 만들었다. 연구팀은 이 기술을 기반으로 금속이온에 의해 시스템을 조절할 수 있는 분자 수준의 스위치를 개발했다. 기존 기술의 한계였던 비가역성 문제를 해결해 핵산중합효소의 활성을 가역적으로 조절할 수 있는 것이다. 연구팀은 이를 통해 향후 DNA기반의 분자회로 및 신호전달체계의 원천기술이 될 수 있을 것으로 기대된다고 밝혔다. 박 교수는 “이번 연구에서 개발된 기술은 중합효소 외에 다양한 효소 활성의 가역적 조절에 응용될 수 있다”며 “이를 통해 다양한 분자 스위치의 개발이 가능해질 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 압타머와 금속이온의 상호작용에 의하 가역적으로 조절되는 중합효소 활성 모식도
2016.05.03
조회수 9770
정기훈 교수, 반딧불이 구조 적용한 유기발광다이오드(OLED) 개발
〈 정 기 훈 교수 〉 우리 대학 바이오 및 뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 구조의 광학적 역할을 밝혀내고 이를 공학적으로 모사하는데 성공했다. 이를 통해 기존 유기발광다이오드(Organic Light-Emitting Diode: OLED) 보다 발광효율을 향상시킨 반딧불이 모사 유기발광다이오드를 개발했다. 김재준 박사가 주도한 이번 연구는 나노분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 5일자 온라인 판에 게재됐다. 반딧불이는 스스로 빛을 내는 대표적인 자연발광체이며 자연계 내에서 가장 높은 발광효율을 가져 예전부터 반딧불이에 대한 연구가 이뤄졌다. 이전 연구는 주로 발광 원리를 밝혀내는 과정에 집중됐고 상대적으로 반딧불이 발광기관의 광학적 구조에 대한 연구는 활발하지 않았다. 반딧불이의 발광기관은 외피층, 발광세포층, 반사층으로 구성된다. 발광세포층은 빛을 발생시키는 역할, 반사층은 외피층으로 향하지 않는 빛을 반사시키는 역할을 하고 최종적으로 발생된 빛은 외피층을 통해 밖으로 빠져나간다. 이 중 빛을 발생시키는 발광세포층에 대한 연구는 많이 이뤄졌지만 반사층 및 외피층이 어떤 광학 구조를 갖고 어떤 역할을 수행하는지는 명확하지 않았다. 연구팀은 반딧불이의 발광기관 외피에 마이크로 및 나노구조가 결합된 계층적 구조가 있음을 발견했다. 그리고 광학수치해석과 실험을 통해 이 계층적 구조의 역할은 발광세포층에서 발생되는 빛을 효과적으로 추출하면서 넓은 광 분포를 구현하는 것임을 밝혀냈다. 연구팀은 이러한 반딧불이의 광학구조를 OLED에 적용해 기존 OLED가 갖는 문제점을 해결하고자 했다. OLED는 발생된 빛이 내부에 갇혀 약 20%의 빛만 외부로 추출되는 문제를 갖는다. 연구팀은 반도체공정 및 미세몰딩공정을 이용해 반딧불이의 광학구조를 모사하는데 성공했고, 이를 OLED에 적용해 광 추출 효율을 최대 61%까지 향상시켰다. 또한 계층적 구조를 이용해 기존 OLED보다 넓은 광 분포도를 구현했다. 향후에는 광학구조의 설계 변경을 통한 다양한 광 분포 조절로 OLED 기반 조명 및 디스플레이에 적용이 가능하고 이를 통해 OLED의 발광 효율을 효과적으로 향상시킬 수 있을 것으로 기대된다. 연구팀은 “반딧불이 발광기관에서 발견된 계층적 광학구조를 성공적으로 모사했고 이를 통해 OLED의 발광효율을 효과적으로 향상시켰다”며 “이 연구를 기점으로 생물발광기관 모사 연구가 활발히 진행될 것으로 기대된다”고 말했다. 정 교수는 “이번 연구는 자연의 신비를 밝힘과 동시에 OLED의 광추출 효율을 높이는 새로운 방법을 제시했다”며 “이 연구가 생물발광체 관련 생체모사연구에 대한 연구자들의 관심을 불러일으킬 것이다”고 말했다. □ 그림 설명 그림1. 기존 OLED(좌)와 반딧불이 모사 OLED의 발광 사진(우) 그림2. 반딧불이 사진 그림3. 반딧불이 발광기관에서 발견된 계층적 구조의 전자현미경 사진(비대칭 마이크로구조 위에 나노구조가 형성되어 있음) 그림4. 반딧불이 모사 OLED의 구조
2016.04.26
조회수 13688
최민기 교수, 고성능의 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉 우리 대학 생명화학공학과 최민기 교수 연구팀이 이산화탄소를 효율적이고 안정적으로 포집할 수 있는 흡착제를 개발했다. 이번에 개발된 이산화탄소 흡착제는 제올라이트와 아민 고분자를 기반으로 해 값싸고 대량 생산이 가능할 뿐 아니라 효율적인 성능과 뛰어난 재생 안정성을 갖는다. 연구 결과는 에너지 및 환경 분야 학술지인 ‘에너지&인바이러먼털 사이언스(Energy & Environmental Science)’ 3월 16일자 온라인 판에 게재됐다. 지구 온난화의 주요 원인인 이산화탄소의 포집을 위한 흡착제 연구가 활발히 진행 중이다. 특히 에너지 효율이 높고 환경에 무해한 고체 흡착제 중심으로 연구가 이뤄지고 있는데 제올라이트와 아민 고분자 기반의 흡착제가 가장 대표적이다. 그러나 제올라이트 기반 흡착제는 이산화탄소와 수분이 동시에 존재하는 경우 수분을 우선적으로 흡착하는 한계를 갖는다. 아민 고분자 기반 흡착제는 수분이 존재해도 효율적인 이산화탄소 흡착이 가능하지만 재생을 위해 130oC 이상 열을 가했을 때 요소가 생성돼 심각한 비활성화를 겪는 문제가 있다. 연구팀은 문제 해결을 위해 아민 고분자와 제올라이트의 장점을 모두 갖는 ‘아민-제올라이트 복합체’를 개발했다. 암모늄(NH4+)을 골격 외 양이온으로 갖는 제올라이트를 고온 열처리하면 암모니아(NH3)가 제거되고 수소 양이온이 남아 산성 제올라이트가 만들어진다. 이 제올라이트에 염기성을 갖는 에틸렌다이아민 증기를 처리하면 산-염기 반응에 의해 제올라이트 기공 내부에 아민이 기능화되는 원리이다. 이를 통해 이산화탄소 포집 공정에서 효율적으로 이산화탄소를 흡착하는 것을 확인했고, 매우 우수한 재생 안정성을 확인했다. 새로 개발한 흡착제는 제올라이트 내부에서 흡착된 물이 아민의 비활성화를 억제하는 상쇄효과를 보여 안정성을 더욱 높였다. 기존 연구들은 이산화탄소 흡착 성능 향상에만 집중됐지만 이번 연구는 우수한 흡착 성능 뿐 아니라 재생 안정성을 비약적으로 상승시켰다. 최 교수는 “값싸고 대량 생산이 가능한 제올라이트 기반의 흡착제로 실용화가 가능할 것으로 기대된다”며 “합성 방법의 최적화를 통해 더 높은 이산화탄소 흡착 성능을 갖는 흡착제 개발에도 힘쓸 것이다”고 말했다. 전남대학교 응용화학공학과 조성준 교수 연구팀과 공동으로 진행한 이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 아민-제올라이트 복합체를 이용한 이산화탄소 포집 공정의 개념도 그림2. 연속적인 온도교대흡착 공정에서 흡착제들의 이산화탄소의 흡착능 비교
2016.04.25
조회수 14920
조영호 교수, 정신건강 측정 기술 개발
〈 조 영 호 교수 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 스트레스 등인간의 정신 건강 상태를 측정할 수 있는 피부 부착형 패치를 개발했다. 미래 사회에서 인간의 감성 증진 및 정신건강 관리의 중요성을 일깨워주는 과학적 연구가 될 것으로 예상된다. 이번 연구는 네이처의 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 3월 23일자 온라인 판에 게재됐다. (논문명: A Flexible and Wearable Human Stress Monitoring Patch) 최근 인공지능과 신체 건강 등의 모니터링에 대한 관심이 고조되고 있지만 감성 관리와 정신건강 향상에 대한 기술은 많이 부족했다. 기존 스트레스 측정을 위한 데이터 분석은 맥파 등 하나의 생리적 데이터만을 분석하기 때문에 스트레스 이외의 생리적 상태(운동, 더위, 추위, 심혈관 질환 등)에 의한 영향을 구분하는 데 한계가 있었다. 연구팀은 문제 해결을 위해 피부에 나타나는 세 가지 감정 징후인 피부온도, 땀 분비량, 맥파 등 다중 생리적 데이터의 변화를 측정해 이를 피부에 부착 가능한 패치로 제작했다. 이 우표크기(25mm*15mm*72µm)의 피부 부착형 스트레스 패치는 맥박이 뛸 때 생기는 압력으로 스스로 전기를 만들어 공급하는 방식으로 외부 전원 및 배터리 없이 사용이 가능하다. 또한 모든 센서를 하나의 극소형 패치로 집적해 기존의 패치에 비해 피부 접촉면적을 1/125로 줄이고 유연성을 6.6% 높여 착용감을 극대화했다. 이를 통해 감정과 스트레스 징후를 연속적으로 측정해 개인의 감정 관리 및 정신건강 증진에 도움이 될 것으로 보인다. 연구팀은 “기존 웨어러블 기기에 쉽게 연결 가능하고 전원이 필요 없어 산업적 응용가치가 크다”며 “급격히 성장 중인 인공지능 기술과 접목할 경우 인간의 이성적 지능과 함께 감성적 부분까지 교감할 수 있을 것이다”고 말했다. 조 교수는 “미래사회에서는 인간의 지능과 신체 건강 뿐 아니라 고차원적 감정 조절과 정신 건강 관리의 중요성이 크게 부각될 것이다”며 “인간-기계 간 교감을 통해 정신적 만족감을 더해 삶의 질을 향상시키려는 감성 교감 기술이다”고 말했다. 윤성현, 심재경 박사과정 연구원이 주도한 이번 연구는 미래창조과학부 신기술융합형 성장동력사업의 지원으로 수행됐다. □ 그림 설명 그림1. 피부부착형 유연 스트레스 패치 소자 부착 사진 그림2. 피부부착형 유연 스트레스 패치의 다층 구조 그림3. 피부부착형 유연 스트레스 패치 실제 크기
2016.04.19
조회수 12402
남윤기 교수, 빛과 열로 신경세포의 활성을 억제하다
〈 남 윤 기 교수 〉 우리 대학 바이오및뇌공학과 남윤기 교수와 박지호 교수 연구팀이 빛과 열을 통해 신경세포의 활성을 억제할 수 있는 새로운 플랫폼을 개발했다. 이번 연구는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 9일자 온라인 판에 게재됐다. 신경세포는 활동 전위를 생성해 세포 사이의 정보를 교환하는 역할을 담당한다. 신경세포의 활성은 뇌기능을 이해할 수 있는 핵심 요소로 이를 조절하기 위해 전기 자극, 광유전학 등 다양한 방법의 기술이 연구됐다. 그러나 전기 자극은 신경세포의 활성 유도엔 효과적이나 그 반대인 활성 억제엔 기술적 한계를 갖는다. 광유전학은 빛으로 신경세포 활성을 조절할 수 있지만 유전자 조작이 까다롭고 다른 기술과의 결합이 어려웠다. 연구팀은 문제 해결을 위해 금 나노막대를 신경세포 칩에 결합하는 방법을 선택했다. 금 나노막대는 특정 파장대의 빛을 흡수해 열을 발생시키는 특성이 있어 광열 자극의 매개체로 사용 가능하다. 연구팀은 신경세포가 이 광열 자극에 노출될 경우 그 활성이 억제되는 현상을 발견했고 이를 응용한 전기 광학적 신경플랫폼을 제작했다. 근적외선을 선택적으로 흡수하는 금 나노막대를 합성한 후 생체 친화성을 갖는 중합체(polymer)로 코팅해 신경세포 칩 표면에 결합했다. 신경세포 칩 상의 금속 전극은 금 나노막대가 결합한 후에도 전기적 특성이 변하지 않아 신경세포 활성 측정에 적합하다. 금 나노막대가 결합한 칩에 신경세포를 배양하면 전기적으로 신경세포의 활성을 측정하는 동시에 광열 자극으로 신경세포의 활성을 억제함을 확인했다. 이 기술은 유전자 조작 없이도 빛으로 활성 조절이 가능해 기존의 광유전학 기술의 단점을 상쇄시켰다. 연구팀이 개발한 전기 광학적 신경플랫폼은 광유전학 기술의 대안이 될 것으로 기대된다. 또한 기존 신경플랫폼과 결합해 뇌기능 연구 및 뇌질환 치료에 다각적으로 활용 가능할 것으로 예상된다. 남 교수는 “나노입자와 신경세포를 결합해 새로운 자극 플랫폼을 제시했다”며 “기존의 전기적 신경 시스템을 활용하는 동시에 광열 자극으로 신경세포의 활성을 자유롭게 억제할 수 있다”고 말했다. 우리 대학 바이오및뇌공학과 유상진 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자지원사업 도약연구의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금나노막대와 미세전극칩을 결합한 광-전기 복합 자극칩 플랫폼 모식도
2016.03.31
조회수 11327
박사과정 4명, 학술지에 초청 논문 게재
〈 이상엽 교수 연구팀 〉 우리 대학 생명화학공학과 네 명의 박사과정 학생들(지도 : 이상엽 특훈교수)이 시스템대사공학(Systems metabolic engineering) 전략을 주제로 초청 리뷰논문을 게재했다. 이상엽 교수의 지도 아래 최경록, 신재호, 조재성, 양동수 네 명의 학생이 주도한 이번 논문은 미생물 분야 학술지 ‘에코살 플러스(EcoSal Plus)’ 10일자 온라인 판에 게재됐다. 이번 논문은 학술 및 산업적으로 널리 연구되고 활용되는 대장균의 시스템대사공학 연구 전략을 총망라했다. 시스템대사공학은 이상엽 특훈교수가 창시한 과학기술 분야로 기존 대사공학에 시스템생물학, 합성생물학, 진화공학 등을 융합한 학문이다. 이번 리뷰 논문에서는 ▲시스템대사공학에서 활용하는 다양한 실험 기법 ▲시스템대사공학 연구 전략 ▲시스템대사공학 전략을 적용해 대량생산 및 산업화에 성공한 바이오리파이너리 사례를 다룬다. 대사공학은 미생물의 대사 흐름을 조절해 화합물을 생산할 수 있는 세포 공장 구축을 목표로 한다. 바이오매스 등 재생 가능한 탄소원을 먹이로 삼아 미생물을 배양해, 다양한 산업 및 의약 물질을 생산하는 바이오리파이너리 분야의 핵심 요소로 평가받는다. 특히 기존 대사공학에 시스템대사공학 전략을 적용하면 물질을 대량생산할 수 있는 고성능 균주를 효과적으로 구축할 수 있어 비용 절감을 기대할 수 있다. 또한 균주가 대규모 바이오리파이너리 공정에 적합하도록 지속적으로 최적화하는 과정도 포함돼 미래에는 석유화학 산업을 대체할 수 있을 것으로 기대된다. 에코살 플러스는 두 번에 걸쳐 출판된 ‘대장균과 살모넬라(Escherichia coli and Salmonella: Cellular and Molecular Biology)’ 책자를 전신으로 하는 온라인 리뷰 학술지이다. 생물학 연구에서 중요한 대장균 등의 미생물에 관련한 유전, 생화한, 대사 등 모든 분야를 다뤄 생물학 전반 연구의 주요 지침서로 알려져 있다. 이 교수는 “이번 초청 리뷰는 최경록, 신재호, 조재성, 양동수 네 명의 박사과정 학생들이 세계적 수준의 전략 제시 능력을 갖췄음을 증명한 것이다”며 “생명공학분의 바이블로 불리는 에코살 플러스에 논문을 게재한 학생들이 매우 자랑스럽다”고 말했다.
2016.03.30
조회수 12206
최민기, 김형준 교수, 1년 이상 유지 가능한 백금 단일원자 촉매 개발
우리 대학 생명화학공학과 최민기 교수, EEWS 대학원의 김형준 교수 공동 연구팀이 1년 이상 유지가 가능하고 과산화수소를 생산할 수 있는 단일 원자 크기의 백금 촉매 개발에 성공했다. 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8일자 온라인 판에 게재됐다. 백금 고체 촉매는 산업계에서 널리 이용된다. 고가의 촉매 활성물질인 백금을 최대한 효율적으로 활용하기 위해 백금 촉매입자를 최대한 작게 합성하려는 연구가 많이 이뤄지고 있다. 과학계에서는 효율적인 금속의 사용을 위해 가장 작은 구성원소인 단일 원자로 이뤄진 백금 촉매(1/10 나노미터 수준)를 개발했다. 백금을 비롯한 모든 금속은 나노미터 수준에서는 매우 불안정하기 때문에 특정 금속 산화물을 담지체로 사용해 백금 원자를 안정화해야 한다. 그러나 이 방법으로 합성된 촉매 또한 장기적으로는 안정성이 떨어지는 경우가 대부분이다. 탄소 소재의 경우 전기전도성이 높고 저렴해 담지체로서 장점을 갖지만 금속을 안정화시키는 능력이 매우 떨어져 탄소 전극 위에서 백금을 합성시키기 어려웠다. 연구팀은 문제 해결을 위해 금속과 강하게 결합할 수 있는 황 원자를 이용했다. 제올라이트를 거푸집으로 사용해 황 원자가 다량으로 분포된 탄소 나노구조를 합성했고, 이 물질에 백금 촉매를 형성했을 때 단일 원자 형태로도 백금을 안정화시키는 것을 발견했다. 연구팀은 황과 결합된 이 탄소 소재가 일반적인 촉매 합성 방법을 통해서도 백금이 단일 원자 크기로 존재하는 것을 확인했다. 또한 기존의 단일 원자 촉매는 불안정성으로 인해 구조가 쉽게 변했지만 연구팀이 개발한 촉매는 상온에서 1년이 지난 후에도 대부분의 촉매가 단일 원자로 존재하는 안정성을 보였다. 그밖에도 연구팀은 추가적인 성과를 확인했다. 일반적인 단일 원자 백금 촉매를 수소와 산소를 이용해 연료 전지 기술에 적용할 경우 대부분 물(H2O)이 형성되지만, 연구팀의 단일 원자 백금 촉매는 고부가가치 물질인 과산화수소가(H2O2) 95% 이상의 선택도로 생성돼 저렴하게 과산화수소를 생산할 수 있을 것으로 기대된다. 최 교수는 “기존의 불균일계 촉매로는 불가능했던 특이 촉매 선택성을 구현할 수 있을 것으로 예상된다” 며 “다른 단일 원자 촉매군 에 비해 훨씬 높은 안정성을 가져 촉매 수명을 획기적으로 늘릴 수 있을 것으로 기대된다"고 말했다. 김 교수는 “양자역학 시뮬레이션을 이용해 단일 원자 백금 촉매가 탄소 담지체에서 갖는 안정성 및 특이한 선택성 등의 원인을 규명했다”고 말했다. 이번 연구는 미래창조과학부의 지원을 받아 수행됐다. □ 그림 설명 그림1. 백금 단일 원자 촉매에서의 과산화수소 (H2O2) 생성 반응 모식도 그림2. 백금 단일 원자 사진
2016.03.14
조회수 10883
김희탁, 박정기 교수, 보호막 씌워 리튬공기전지 수명 연장
〈 김 희 탁 교수 〉 〈 박 정 기 교수 〉 우리 대학 생명화학공학과 김희탁(44) 교수와 박정기 (65) 교수 공동 연구팀이 차세대 리튬공기전지의 수명연장 기술을 개발했다. 이 기술은 리튬공기전지 리튬금속을 보호막을 씌워 발생 가능한 문제점을 차단하는 방식으로 전지기술의 한계를 극복할 수 있을 것으로 기대된다. 이 성과는 재료과학 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 2월 3일자에 게재됐고, 우수성을 인정받아 표지논문으로 선정됐다. 리튬공기전지는 공기 중의 산소와 리튬금속으로 구동되는 이차전지로 기존 리튬이차전지보다 5배에서 10배 높은 에너지 밀도를 구현할 수 있다. 따라서 전기 자동차 등의 차세대 대용량 전지로 각광받고 있지만 양극에서의 낮은 가역성 및 에너지 효율, 급속한 수명 저하가 한계로 지적됐다. 이런 단점을 극복하기 위해 ‘산화환원 중계물질(Redox mediator)’이라는 촉매가 들어간 리튬공기전지가 개발돼 중계물질에 의한 가역성이 획기적으로 향상됐다. 그러나 반응성이 높은 리튬 금속을 음극 소재로 사용하기 때문에 음극 표면이 쉽게 산화돼 전지 수명이 제한된다는 한계를 갖는다. 특히 가역성 향상을 위한 중계물질이 리튬 금속에 노출되면 양극에서의 중계 효과가 제한되고 중계물질이 소실돼 효율 및 수명이 급격히 감소하는 현상은 큰 문제로 남아있었다. 연구팀은 문제 해결을 위해 리튬 금속에 보호막을 씌우는 방법을 개발했다. 리튬 금속과 전해액의 직접 접촉을 물리적으로 차단하면서 리튬 이온만 효과적으로 전도시킬 수 있는 유무기 복합 보호층을 개발해 리튬 음극 표면에 도입한 것이다. 이 유무기 복합 보호층은 리튬 금속 음극의 급격한 산화를 억제하고 중계물질과 리튬금속 간의 반응을 물리적으로 차단하는 역할을 한다. 보호층은 산화된 중계물질이 리튬 금속 표면에서 스스로 환원되는 현상을 물리적으로 차단한다. 이를 통해 중계물질이 양극 표면에서 방전 생성물 분해에만 집중할 수 있고, 리튬 금속 표면에서의 분해로 인한 소실 문제를 차단할 수 있다. 연구팀은 리튬금속 음극 안정성과 중계물질의 지속성을 동시에 증대시켜 리튬공기전지의 충전 및 방전 사이클 수명을 3배 연장하는 데 성공했다. 개발한 유무기 복합 보호층을 통한 리튬 표면 안정화 기술은 리튬-황, 리튬 금속 전지와 같은 차세대 리튬 전지에도 적용 가능해 향후에도 활용 가능성이 높을 것으로 기대된다. 김 교수는 “차세대 에너지 저장장치인 리튬공기전지의 수명 한계를 극복할 단서를 제시했다”며 “이는 리튬공기전지의 실용화를 위한 유용한 전략이 될 것이다”고 말했다. 이번 연구는 한국연구재단의 일반연구자사업과 기후변화대응기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 머티리얼스 표지논문 그림2. 전기화학 구동 후 리튬 금속 음극형상
2016.03.09
조회수 14220
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 83