-
단일 분자로 두 가지 빛 발현 기술 개발
우리 대학 신소재공학과 김보현, 전석우 교수 연구팀이 그래핀을 이용해 단일 분자에서 두 가지 빛을 번갈아 발현하는 기술을 개발했다.
이번 연구결과는 신소재 전문 학술지 어드밴스드 머터리얼즈(Advanced Materials) 12월 17일자 온라인 판에 게재됐다.
이번 기술은 HD TV 등의 디스플레이 제품과 바이오, 광통신 등 다양한 분야에서 폭넓은 활용이 가능할 것으로 기대된다.
모든 물질이 빛을 내는 원리는 동일하다. 바닥상태에 있던 전자가 에너지를 받아 들뜬 상태로 올라간 후, 다시 안정적인 바닥상태로 돌아가면서 얻었던 에너지를 열에너지나 빛에너지로 돌려주는 것이다. 이때 빛에너지로의 전환 비율이 열에너지보다 높으면 흔히 보는 디스플레이 화면이 된다.
들뜬 전자가 빛을 낼 때 높은 에너지 상태로 올라갔다가 바로 떨어지는 것을 형광, 좀 더 낮은 에너지 상태로 이동했다가 서서히 떨어지는 것을 인광이라 부른다.
일반적으로 양자역학 및 광화학적 조건 때문에 에너지가 다른 두개의 빛을 단일 분자에서 번갈아 구현하는 것은 불가능하다고 여겨졌다. 한번 낮은 에너지 상태로 이동한 전자가 외부 자극 없이 다시 높은 곳으로 되돌아갈 수 없기 때문이다.
따라서 여러 빛이 필요한 디스플레이는 각각의 빛을 내는 소자나 빛을 걸러주는 필터가 필요하게 된다.
김 교수 연구팀은 문제 해결을 위해 그래핀과 포르피린이라는 두 물질을 샌드위치 쌓듯이 번갈아 적층하는 방법을 사용했다. 강한 인광을 내는 포르피린을 그래핀 위에 얇게 올리면 그래핀 플라즈몬(빛에 의한 전자의 집단 진동)과 포르피린의 공명에 의해 형광이 강하게 발현되고 더불어 인광도 동시에 증폭되는 원리를 이용한 것이다.
연구팀은 실험을 통해 그래핀과 백금 포르피린 복합체가 기존의 백금 포르피린에 비해 형광은 최대 29배, 인광은 최대 7배 이상 증폭되는 효과를 확인했다. 또한 그래핀 층 숫자를 조절해 빛의 세기 증가, 형광과 인광의 발광 비율 조절 등이 가능함을 증명했다.
유연한 그래핀과 포르피린 복합체를 이용하면 단일 분자로도 두 개 이상의 색을 발현할 수 있기 때문에 디스플레이의 유연성, 회로 효율 등이 매우 높아진다. 예로 TV 안에 각각의 색을 내기 위한 물질의 숫자를 절반 이상 줄임으로써 소자를 단순화하고 효율을 증가시킬 수 있는 것이다.
연구팀은 이 기술이 디스플레이 뿐 아니라 광통신 분야에 사용되는 레이저 기술, 포르피린과 혈액 내 금속의 결합을 색으로 발현시켜 신체 상태를 파악할 수 있는 바이오 기술 등에도 접목이 가능할 것이라고 밝혔다.
김 교수는 “이 기술을 통해 인광 물질인 백금 포르피린에서 형광이 강하게 증폭되게 할 수 있다”며 “이는 단일 발광 소재에서는 한 종류의 빛만 발현 가능하다는 이론을 뛰어넘는 큰 발견이다”고 말했다.
이번 연구는 한국연구재단의 글로벌프론티어 사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 그래핀-백금 포르피린 복합 소재와 단일 백금 포르피린에서 다른 파장의 빛이 나오는 모식도와 실제 측정 결과
그림2. 그래핀-백금 포르피린 적층 구조에서 형광과 인광이 층수에 따라 조절됨을 보여주는 측정 결과
그림3. 실제 그래핀-백금 포르피린 복합체가 적층된 소자
2015.12.21
조회수 8400
-
이희승 교수, 펩타이드 자기 나침반 개발
〈이 희 승 교수〉
우리 대학 화학과 이희승(47) 교수 생체모방 유기분자 연구팀이 순수 유기화합물만으로 구성된 펩타이드 자기 나침반을 개발했다.
이번 성과는 네이처(Nature) 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 29일자 온라인 판에 게재됐다.
금속화합물, 산화금속과 같은 강자성(ferromagnetic) 및 상자성(paramagnetic)을 갖는 자성물질은 이들의 자기적 특성을 이용해 다양하게 응용되고 있다.
반면, 펩타이드와 같은 반자성(diamagnetic) 유기분자들은 금속성 물질에 비해 자기민감성(magnetic susceptibility)이 현저히 낮아 수 테슬라(Tesla) 이상의 강한 자기장에도 반응하지 않기 때문에 비 자성(non-magnetic) 물질로 취급됐다.
또한 반자성 특성은 분자수준에서 관찰이 어렵고 효율성이 낮아 한계가 있는 것으로 여겨졌다.
물론 이론적으로는 반자성 분자라도 열에너지를 극복할 수 있는 다수의 분자가 일정한 규칙으로 정렬된 집합체가 되면 반자성 정렬(diamagnetic alignment)이 가능하다. 따라서 외부자기장의 변화에 실시간으로 반응하는 분자기계의 개발이 가능하지만, 이를 실험적으로 증명한 예는 없었다.
문제 해결을 위해 연구팀은 폴덱쳐(foldecture)라고 이름 지은 독창적인 나선형 펩타이드 분자 자기조립체를 개발했다. 이는 독특한 3차원 모양의 일정한 크기를 갖는 비금속 유기물질이고, 반자성 특성을 갖지만 이를 구성하는 펩타이드 분자들이 높은 결정성과 일정한 규칙성을 갖도록 설계됐다.
이러한 규칙성과 결정성 등의 특징은 펩타이드 자기조립체가 외부 자기장 방향을 따라 정렬할 수 있게 만들었다.
또한 MRI 장비의 자기장 세기보다 낮은 1 테슬라 이하의 회전자기장에서도 폴덱쳐들이 실시간으로 감응하며 정렬해 수용액상에서 실시간 회전운동도 가능함을 최초로 증명했다.
연구팀은 체내에 마그네토좀이라는 자기나침반을 지닌 주자성 박테리아(magnetotactic bacteria)의 행동 양식에 착안해, 순수 유기화합물질인 폴덱쳐를 이용해서 외부 자기장의 방향 변화를 민감하게 가리킬 수 있는 수 밀리미터 크기의 하이드로겔 나침반을 구현하는데 성공했다.
이번 연구에서 밝혀진 펩타이드 자기조립체의 반자성 정렬 현상은 반자성 물질 연구에 대한 새로운 시각을 제시했을 뿐 아니라 폴대머 및 펩타이드 자기조립 연구와 자극반응성 분자기계, 유기나노물질의 움직임 제어 등 다양한 관련 응용연구 분야에 영향을 끼칠 것으로 기대된다.
이 교수는“이번 성과를 통해 자기제어가 가능한 생체 친화적 유기 나노/마이크로소재 연구개발이 활성화될 것으로 기대된다”고 말했다.
KAIST 화학과 권선범 박사가 제 1 저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐고, KAIST EEWS 대학원 김형준 교수팀, 화학과 최인성 교수의 세포피포화 연구단과의 공동연구를 통해 진행됐다.
□ 그림 설명
그림 1. 주사전자현미경을 통해 관찰된 폴덱쳐의 자기정렬 현상
그림2. 펩타이드 1 및 2 의 분자구조식과 이들의 자기조립을 통해 합성된 폴덱쳐의 전자현미경 사진
2015.12.02
조회수 11901
-
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다.
그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다.
이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다.
반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다.
세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다.
학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다.
연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다.
또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다.
나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다.
이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다.
관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다.
연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다.
이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다.
이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다.
연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다.
□ 그림 설명
그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도.
그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12827
-
광섬유로 300조분의 1초 오차의 클럭 개발
〈김 정 원 교수〉
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술로 수백조분의 1초 오차를 가지는 클럭(clock) 원천기술을 개발했다.
이는 클럭 발진기(oscillator)의 성능을 획기적으로 향상시킬 수 있는 원천 기술로 성과를 인정받아 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 11월 4일자 온라인 판에 게재됐다.
클럭 발진기는 일정한 시간 간격의 주기적 신호를 발생시켜 전자시스템이 신호에 맞춰 정확하게 동작하도록 만드는 장치이다. 음악 연주에서 메트로놈과 같은 역할을 한다.
이 클럭 발진기는 오늘날 각종 정보통신 시스템 뿐 아니라 입자가속기나 천체관측장치 같은 거대 과학시설, 초정밀 계측 장비, 레이더, GPS 및 위성항법 시스템 등 전 분야에 걸쳐 핵심적 역할을 하고 있다. 따라서 클럭 발진기에서 발생하는 주기적 신호의 시간 오차를 줄인다면 각종 시스템들의 획기적인 성능 향상과 이전에는 불가능했던 기술 개발도 가능해진다.
기존에는 특수 제작된 공진 회로를 이용한 라디오파 혹은 마이크로파 발진기를 사용하거나 광공진기의 주파수 나눔을 이용한 방식의 기술을 사용했으나, 이 방식은 크기가 클 뿐 아니라 기계적 안정도가 떨어지고 수억 원 이상의 고가였기 때문에 실험실 밖에서의 응용 등에 한계가 있었다.
연구팀은 문제 해결을 위해 신뢰성이 높고 가격경쟁력이 확보된 광통신용 광섬유 부품을 활용한 새로운 방식의 클럭 발진기를 개발했다.
기술의 핵심은 초고속 광섬유 레이저에서 발생하는 넓은 스펙트럼 내의 두 광주파수(optical frequency) 차이를 이용한 것이다. 기존 전자 발진기는 기가헤르츠(GHz, 1초에 109회 진동) 영역에서 동작하지만, 이 기술은 이보다 테라헤르츠(THz, 1초에 1012회 진동) 주파수를 이용하기 때문에 약 1000배 민감한 시간 차 측정이 가능하다.
또한 광섬유 케이블에서 빛이 전파되는 시간이 매우 일정하게 유지되기 때문에 테라헤르츠 주파수를 이용해 높은 분해능으로 측정된 시간차를 광섬유 케이블 내에서의 빛의 전파 시간에 정확하게 맞췄다.
그 결과 국제전기통신연합(ITU)에서 정의한 클럭 신호원의 성능을 나타내는 0.1초 동안의 시간오차인 타이밍 지터(timing jitter)가 3펨토초(333조분의 1초)로 측정됐으며, 이는 환산하면 100만년 동안 1초의 오차를 갖는 성능에 해당한다.
이를 통해 별도의 특수 제작된 고가 소자 없이도 세계적 수준의 클럭 발진기 성능을 얻을 수 있고, 상용화 시 제작비용을 기존 최고 성능 발진기의 10분의 1 이하 수준으로 낮출 것으로 기대된다.
연구팀은 이 기술의 성능과 안정성이 아날로그-디지털 변환기나 고성능 신호 분석기와 같은 ICT 시스템, 레이더, 원격 탐사, 위성항법 등 국방, 우주, 환경 기술 분야에서도 폭넓게 활용될 수 있을 것이라고 밝혔다.
김 교수는 “이 기술은 군용 레이더, 보안 분야와의 연관성 때문에 주요 장비들의 수출이 금지된 경우가 많아 순수 국내 기술로 자체 개발한 것은 그 의의가 크다.”며 “향후 유리기판 위에 시스템을 구현해 칩 스케일의 고성능 클럭으로 발전시킬 계획이다”고 말했다.
KAIST 기계공학과 정광연 박사과정(1저자)의 참여로 이루어진 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 수백조분의 1초 오차의 광섬유 클럭 발진기 개념도
2015.11.12
조회수 11279
-
기체가 저장물질에 흡착되는 과정 관찰
우리 대학 EEWS 대학원 강정구 교수와 오사무 테라사키 공동 연구팀이 2~5 나노미터(10억분의 1m) 크기의 구멍을 갖는 메조다공성 금속유기골격체(metal organic framework, MOF) 안에 기체가 흡착되는 과정을 관찰하는 데 성공했다.
관찰 과정에서 기체들이 각자의 기공에 일정하지 않은 각기 다른 밀도로 흡착된다는 사실을 발견했다. 이는 기존의 학설과 반대되는 개념으로 금속유기골격체에서 기체가 초격자 구조를 형성한다는 사실을 최초로 발견한 것이다.
이번 연구는 국제 과학 학술지 ‘네이처’ 11월 9일자 온라인 판에 게재됐다.
메조다공성 금속유기골격체는 넓은 비표면적을 갖고 있어 수소나 메탄, 이산화탄소 등의 가스 저장에 용이한 저장물질이다. 효율적인 가스 저장을 위해서는 기체가 저장물질에 어떻게 흡착하는지 이해하는 것이 중요하다.
그러나 일반적인 기체 흡착 측정 장비의 경우에는 흡착 거동을 직접적으로 관찰할 수 없다는 한계가 있었다.
문제 해결을 위해 연구팀은 기존에 존재하는 두 개의 장비를 이용했다. 구조적 정보를 얻을 수 있는 X-선 소각산란(small angle X-ray scattering, SAXS) 측정 장비와 기체흡착 측정 장비를 결합했다.
두 장비가 결합된 실시간 기체 흡착 SAXS 시스템을 개발해 메조다공성 금속유기골격체의 결정에 기체가 흡착하는 과정을 실시간으로 관찰했다.
연구팀은 관찰 과정에서 금속유기골격체의 모든 기공에 기체가 균일하게 흡착되지 않고 각자 다른 밀도로 흡착된다는 사실을 발견했다. 그리고 압력이 증가하면서 급격하게 초격자 구조로 변이된 후 서서히 균일하게 분포하는 것 또한 확인했다.
이는 모든 기공에 균일하게 기체가 들어간다는 학설을 뒤집는 발견이다. 이것이 가능했던 이유는 메조다공성 금속유기골격체의 경우 골격이 얇고 기공이 커 다른 구멍의 기체분자끼리도 상호작용하기 때문에 발생하는 현상이다.
따라서 메조다공성 금속유기골격체를 사용한다면 기존 저장물질에 비해 더 적은 용량으로 더 많은 가스를 저장할 수 있는 고효율 저장장치를 개발할 수 있게 된다.
이 기술을 기반으로 새로운 고용량 가스저장 물질의 제작이 가능해짐으로써, 여러 운송수단이나 가스를 사용하는 기계의 성능을 끌어올릴 수 있을 것으로 기대된다.
연구를 주도한 조해성 박사는 “단일 기공 내부의 기체 분자 뿐 아니라 다른 기공의 기체 분자 간 상호작용에 의해 기체의 흡착 메커니즘이 발생함을 새롭게 발견했다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업, 인공광합성사업, BK21PLUS의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 실시간 기체흡착 SAXS 시스템 모식도
그림2. 메조다공성 MOF 결정에 기체가 흡착되는 과정
그림3. 메조다공성 MOF 결정에서 기체분자의 상호작용 모델
2015.11.11
조회수 12496
-
복합 처방된 약물의 부작용 예측 기술 개발
〈이 도 헌 교수〉
우리 대학 바이오및뇌공학과 이도헌 교수(유전자동의보감사업단장, 제 1저자 박경현 연구원) 연구팀이 복합 처방된 약물들의 인체 내 간섭현상을 컴퓨터 가상인체로 분석해 부작용을 예측할 수 있는 기술을 개발했다.
이번 연구결과는 미국 공공과학도서관 학술지 플러스 원(PLOS ONE) 10월 15일자에 게재됐다.
의료 현장에서는 여러 약물을 함께 처방받아 복약하는 경우가 많다. 이러한 복합처방은 모든 가능성을 미리 시험할 수 없기 때문에 널리 알려진 대표적 위험사례를 제외하면 완벽한 사전시험이 불가능하다.
기존에는 부작용 사례를 의약품 적정사용평가(DUR)에 등재시켜 의료현장에서 활용하는 사후 추적만이 최선의 방법이었다. 따라서 복합처방으로 인한 의료 사고를 막기 어려웠고 부작용 예측에도 한계가 있었다.
문제 해결을 위해 연구팀은 발생 가능한 상황을 사전에 컴퓨터 가상인체로 예측함으로써 위험을 미리 파악할 수 있는 기술을 개발했다.
연구팀은 컴퓨터 가상인체에서 랜덤워크 알고리즘을 이용해 약물 표적의 생체 내 분자 신호전파를 시뮬레이션 했다. 약물이 투여됨으로써 신체에 영향을 끼치는 정도를 측정한 것인데, 이를 통해 두 개의 약물이 서로 어느 정도의 영향을 주는지 정량화에 성공했다.
따라서 만약 두 약물 간 간섭이 심해 서로 많은 영향을 준다면 부작용이 발생할 가능성이 높기 때문에 신중한 처방을 해야한다는 결론을 얻을 수 있다.
기존 예측 기술들이 단백질 상호작용 네트워크에서 약물 표적사이의 근거리 간섭만을 고려했다면 이 교수 연구팀은 약물 표적의 생체 내 분자 신호전파 시뮬레이션을 통해 원거리 간섭까지 고려해 정확도를 높였다.
연구팀은 이 기술이 다수의 표적을 갖는 복합 천연물의 신호 전파도 분석해 약물과 천연물 사이의 상호작용 예측에도 활용될 것이라고 예상했다.
이 교수는 “이번 기술은 자체 개발한 대규모 컴퓨터 가상인체 시스템을 통해 진행됐다”며 “약물 복합처방의 부작용을 예측할 수 있는 새로운 방법을 제시했다는 의의를 갖는다”고 말했다.
□ 그림 설명
그림 1. 연구팀이 개발한 컴퓨터 가상인체 시스템
그림 2 . 처방된 복합 약물 사이의 신호전파 간섭 예시
2015.10.22
조회수 9813
-
빛을 이용한 실리카 구조체 가공 기술 개발
우리 대학 생명화학공학과 김희탁 교수, 박정기 교수 공동 연구팀이 단순한 빛 조사만으로 실리카(유리)와 같은 단단한 세라믹 구조체의 모양을 정교하게 제어할 수 있는 기술을 개발했다.
이번 연구 성과는 재료과학분야의 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 9월 21일자 온라인판에 게재됐다.
실리카 구조체는 유기물 구조체에 비해 고온, 고압 및 바이오 물질과의 안정성이 좋고 내화학성, 투명성 등이 높아 미세 유체칩 내부 채널, 태양전지 기판 등에 폭넓게 이용되고 있다.
그러나 실리카 특유의 높은 경도 때문에 실리카 구조체의 모양과 크기를 변화시키기 어려웠다. 특히 나노 스케일 구조 가공은 매우 어려운 것으로 여겨졌다.
연구팀은 문제 해결을 위해 아조 분자(질소 원자 두 개가 이중 결합된 아조기 양 끝에 벤젠링이 결합된 형태의 분자)를 이용했다. 아조 분자는 빛을 받았을 때 빛의 방향과 나란히 배열돼 편광 방향과 동일한 방향으로 움직이는 특성을 갖는다. 이를 응용하면 아조 분자와 결합된 실리카 전구체 분자가 빛의 방향에 따라 움직이는 특성을 갖게 된다.
연구팀은 이 아조 분자와 결합된 실리카 전구체를 용액-마이크로 임프린팅 기법의 잉크로 사용해 도장처럼 찍혀 나오듯 정해진 패턴의 형태로 제작했다.
이후 제작된 물질을 빛으로 가공한 뒤 열처리 하면 아조 분자가 포함된 유기물이 열분해돼 사라지게 된다. 결과적으로 무기물 전구체들만 남아 반응해 유리 구조체가 완성되는 것이다.
이 방법을 통해 30나노미터 이하 크기의 나노 구조를 갖는 대 면적 실리카 구조체를 제작했다. 또한 원형의 홀에 빛을 조사해 타원형의 홀 및 기둥 구조를 구현했다.
연구팀은 개발된 기술이 초소수성 기판, 미세유체칩 내의 미세채널 등 물리적 및 화학적 내구성이 요구되는 소자에 광범위하게 응용될 수 있을 것이라고 밝혔다.
김 교수는 “기존에 없었던 새로운 방식의 실리카 구조체 가공 방법을 개발했다”며 “세라믹을 나노 영역에서 다양한 형태로 구조 가공이 가능한 최초의 방식이다”고 말했다.
강홍석 박사 후 연구원이 1저자로 참여한 이번 연구는 한국연구재단의 일반연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 빛 조사 및 열처리를 통해 원형형태의 구조체로부터 타원형태의 실리카 구조체 제작
그림 2. 광학 사진 이미지. 전자현미경 사진을 통해 실리카 전구제 구조 변형 및 실리카 구조체 제작 확인
그림 3. 빛을 이용해 실리카 전구체 구조 가공 및 열처리를 통한 실리카 구조체 제작과정
2015.10.06
조회수 11563
-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14481
-
빛 이용해 알츠하이머 완화 가능성 열어
박 찬 범 교수
우리 대학 신소재공학과 박찬범 교수 연구팀과 한국생명공학연구원(원장 오태광) 바이오나노센터 유권 박사팀이 빛과 유기분자인 포르피린을 이용해 알츠하이머 증후군의 원인 물질로 알려진 베타-아밀로이드(beta-amyloid)의 응집 과정을 억제하는 데 성공했다.
이 기술을 통해 알츠하이머 증후군을 비롯한 여러 가지 퇴행성 뇌질환 치료에 새로운 가능성을 제시할 것으로 기대된다.
이번 연구결과는 독일의 국제 저명 학술지인 앙케반테 케미(Angewandte Chemie) 21일자 표지논문에 게재됐다.
빛을 이용한 치료는 시간과 치료 부위를 조절하기 쉽다는 장점이 있다. 암과 같은 경우에는 유기 광감응제를 투여하고 빛을 병변 부위에 조사하는 광역학 치료(photodynamic therapy)가 활용되고 있다. 하지만 광역학 치료가 알츠하이머병과 같은 퇴행성 뇌질환에 적용된 사례는 없었다.
알츠하이머 증후군은 환자의 뇌에서 생성되는 베타-아밀로이드라는 단백질이 응집돼 뇌에 침착하면서 시작된다. 이렇게 형성된 응집체는 뇌세포에 유해한 영향을 주고 손상을 일으켜 치매와 같은 뇌 기능 저하를 일으킨다.
이 과정에서 베타-아밀로이드의 응집 과정을 억제하면 아밀로이드 퇴적물의 형성을 막을 수 있고, 따라서 알츠하이머 증후군을 예방하거나 완화시킬 수 있다.
연구팀은 생체 친화적 유기 화합물인 포르피린 유도체와 청색 LED 광을 이용해 베타-아밀로이드 응집을 효과적으로 억제했다.
포르피린과 같은 광감응제는 빛 에너지를 흡수해 여기 상태가 된 후 바닥상태로 돌아가며 활성 산소를 생성한다. 생성된 활성 산소가 베타-아밀로이드 단량체와 결합해 산화시킴으로써 베타-아밀로이드의 응집을 방해하는 원리이다.
연구팀은 이를 무척추 동물에 적용해 알츠하이머 초파리 모델에서 신경 및 근육 접합부의 손상, 뇌 신경세포의 사멸, 운동성 및 수명 감소 등 알츠하이머 증후군에서 발견되는 증상의 완화를 확인했다.
빛을 이용한 치료법은 기존 약물 치료에 비해 적은 양의 약물로도 높은 치료효과를 볼 수 있고 부작용이 적다는 장점이 있다. 뇌질환에 적용할 수 있는 기술 개발이 완료된다면 그 활용도가 높을 것으로 예상된다.
박 교수는 “빛과 광감응화합물을 사용해 무척추 동물(초파리)에서 베타-아밀로이드 응집과 독성을 막는 것을 세계 최초로 확인한 것에 의의가 있다”며 “향후 다양한 유기 및 무기 광감응소재들의 적용가능성을 알아보고, 알츠하이머 마우스 등 척추동물을 대상으로 알츠하이머병의 광역학적 치료 가능성을 연구하고 싶다"고 말했다.
□ 그림 설명
그림 1. 포르피린과 빛을 이용해 알츠하이머 원인 물질의 응집을 제어한 모식도
그림2. 앙케반테 케미에 게재된 표지논문
2015.09.21
조회수 11121
-
KAIST, 대학 캠퍼스 내 실내외 통합 내비게이션 개발
한 동 수 교수
석사과정 면접을 앞둔 김 모 군은 면접 당일 교내에서 곤욕을 치렀다. 캠퍼스가 넓어 길 찾기가 어려웠을 뿐 아니라 실내에 도착한 이후에도 정확한 면접장 위치를 찾지 못해 지각을 겨우 면했기 때문이다.
우리 대학 전산학부 한동수 교수 연구팀은 위와 같은 문제를 해결할 수 있는 실내외 통합 내비게이션 시스템 ‘캠퍼스 아틀라스(가제)’를 개발했다.
이번에 개발된 실내외 통합 내비게이션 시스템은 우리 대학 캠퍼스에 적용돼 방문자의 이름 혹은 목적지의 방 번호를 입력하면 도착할 때까지 실내외가 연결된 길 안내 서비스를 제공한다.
또한 교내에서 열리는 학회나 강연 등을 행사 장소와 함께 등록해 행사명만으로도 목적지를 검색하는 기능을 삽입했다. 이를 통해 방문객들이 어려움 없이 행사 장소를 찾을 수 있게 만들었다.
한 교수의 지능형 서비스 연구실은 평균 4~5층으로 구성된 40여 개 건물이 있는 우리 대학 캠퍼스를 대상으로 기술을 구현했다.
200여 개의 실내 지도, 4천 여 개의 관심지점(POI: Point Of Interest) 정보, 7천 여 개의 노드로 구성된 실내외 경로, 약 40여 개의 건물별 무선랜 신호지도 구축 작업을 수행했다.
이렇게 수집된 정보는 작년 3월 연구팀이 개발한 글로벌 실내 위치인식 시스템인 KAILOS(KAIST Indoor Locating System)에 적용해 일반에 공개하고 있다.
KAILOS는 사용자 참여 방식(크라우드 소싱)으로 전 세계 실내지도와 신호지도를 모아 실내 내비게이션 서비스를 제공하는 실내 GPS 시스템이다. 실내지도 등록, 무선신호 수집 툴, 실내 경로 설계 툴 등을 갖추고 있다.
그 외에도 위치인식 정확도 가시화 툴, 실내외 통합 위치인식 시스템 등을 추가할 예정이다.
연구팀은 대학 뿐 아니라 지하철 및 버스 환승 구역, 실내 외 쇼핑몰이 공존하는 지역 등 통합 내비게이션 서비스가 요구되는 지역을 대상으로 적용 영역을 넓힐 예정이다. 궁극적으로는 상용 실외 내비게이션 시스템과 연계시키는 것을 목표로 한다고 밝혔다.
한 교수는 “길 안내 서비스에 머무르지 않고 캠퍼스 라이프 로깅, 출결 체크 자동화 등으로 발전시킬 것이다”며 “새로운 교육 및 연구 환경을 제공하는 위치 기반 스마트 캠퍼스로 발전시킬 계획이다”고 말했다.
□ 그림 설명
그림 1. Campus Atlas 앱 주요 화면
그림 2. KAIST 캠퍼스 외부 경로 설계가 완성된 모습
2015.09.02
조회수 10477
-
대장균 이용 농·의약품 및 나일론 전구체 제작 원천기술 개발
<이 상 엽 특훈교수>
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 11일 세계 최초로 미생물을 이용한 1,3-다이아미노프로판(원, 쓰리-다이아미노프로판) 생산에 성공했다.
이번 연구결과는 사이언티픽 리포트(Scientific Reports) 11일자에 게재됐다.
1,3-다이아미노프로판은 에폭시 수지의 가교제와 의약 및 농약제품 제작에 이용되는 핵심 화학물질이다. 또한 중합반응을 통해 의료용 접착제, 엔지니어링 플라스틱 등으로 이용되는 나일론(폴리아마이드)을 제작할 수 있다.
이 1,3-다이아미노프로판은 현재 석유를 통해 생산된다. 그러나 기후변화와 환경문제를 유발하고 한정자원인 석유화학공정을 이용한다는 한계가 있어 연구팀은 지속가능한 친환경 바이오화학공정으로 재편에 힘쓰고 있다.
이상엽 교수 연구팀은 세계 최초로 대장균을 이용한 1,3-다이아미노프로판 생산에 성공해 지속가능한 자원인 바이오매스로부터 생산 가능성을 열었다.
연구팀은 자체적으로 1,3-다이아미노프로판을 생산할 수 없는 대장균의 문제점 해결을 위해 시스템 대사공학을 이용했다. 시스템 대사공학은 세포전체 대사회로를 정량, 정성적 분석 후 시스템 수준에서 총체적으로 조작해 원하는 화합물을 대량생산하는 기술이다.
연구팀의 생산 과정은 ▲외래 미생물의 1,3-다이아미노프로판 생산 대사회로를 컴퓨터 가상 세포에 도입해 가장 효율적인 대사회로를 결정한 후 ▲이 대사회로를 실제 대장균에 도입해 1,3-다이아미노프로판 생산 ▲마지막으로 추가적인 시스템 대사공학을 통해 약 21배 이상 생산량을 증가시켜 최종 발효를 통해 배양액 1 리터당 13그램의 1,3-다이아미노프로판 생산에 성공했다.
이 기술로 재생 가능 비식용 바이오매스를 이용한 1,3-다이아미노프로판 생산이 가능해져 기존 석유기반 화학 산업을 바이오리파이너리(Bio-refinery)로 대체할 수 있을 것으로 기대된다.
이 교수는 “이번 연구는 세계 최초로 KAIST 연구실에서 바이오리파이너리를 통해 1,3-다이아미노프로판 생산 가능성을 제시한 점에서 의의를 갖는다”며 “더 많은 연구를 통해 생산량 및 생산성을 증산할 계획이다”고 말했다.
이번 연구는 미래창조과학부의 기후변화대응 기술개발사업의 지원을 받아 수행됐고, KAIST 채동언(박사과정) 학생이 제 1저자로 참여했다.
□ 그림 설명
그림 1. C4 대사회로를 이용하여 1,3-다이아미노프로판을 생산하기 위한 대사공학 전략들
그림 2. 최종적으로 엔지니어된 대장균들의 발효 프로파일
2015.08.11
조회수 11548
-
섬유 유기 발광 디스플레이 제작 기술 개발
최 경 철 교수
우리 대학 전기 및 전자공학부 최경철 교수 연구팀이 웨어러블 디스플레이에 적용할 수 있는 섬유 기반의 유기 발광 디스플레이 원천기술을 개발했다.
이 기술은 섬유 자체에 유기 발광 디스플레이를 제작할 수 있는 원천 기술로, 성과를 인정받아 나노 전자기술 분야 국제학술지인 ‘어드밴스드 일렉트로닉 머터리얼스(Advanced electronic materials)’ 7월 14일자 온라인 판에 게재됐다.
기존 웨어러블 디스플레이는 심미적 디자인 구현을 위해 옷 위에 부착하는 방식이다. 이 방법은 딱딱하고 유연하지 않아 실생활 적용이 어렵고, 직물의 특성을 유지하기 어렵다는 한계가 있었다.
연구팀은 문제 해결을 위해 평평한 기판 위에 유기 발광 디스플레이를 제조하는 기존 방식을 탈피했다. 대신 직물을 구성하는 요소인 섬유에 주목해 섬유 자체에 유기 발광 디스플레이를 제작했다.
이를 통해 섬유의 특성을 그대로 유지하면서도 디스플레이 기능을 살릴 수 있는 섬유 디스플레이를 구현했다.
이 기술의 핵심은 딥 코팅 공정법으로 실과 같은 3차원 형상의 기판을 용액에 담궜다 빼내며 일정한 유기물 층을 형성하는 방법이다.
이를 통해 기존 열 증착방식을 통해 제작이 어려웠던 원기둥 형상과 같은 3차원 기판에도 손쉽게 유기물 층을 형성할 수 있다. 또한 인출속도 조절을 통해 수십-수백나노 단위의 두께 조절이 가능하다.
이 기술은 두루마리 가공 기술(Roll to Roll)을 통한 연속 생산으로 저비용, 대량 생산이 가능해 섬유 기반 웨어러블 디스플레이의 상용화를 앞당길 것으로 기대된다.
최 교수는 “직물 구성 요소인 섬유에 유기발광 디스플레이를 제조할 수 있는 원천기술이다.”며 “웨어러블 디스플레이의 진입 장벽을 크게 낮출 것이다”고 말했다.
제 1 저자인 권선일 박사과정 학생은 “이 기술을 활용해 옷처럼 편안하게 입을 수 있는 웨어러블 디스플레이 제조가 가능할 것이다”고 말했다.
□ 그림 설명
그림 1. 섬유 기반의 유기 발광 다이오드를 적용한 미래 웨어러블 디스플레이 개념도
그림 2. 딥 코팅 법을 이용한 섬유 기반의 유기 발광 다이오드 공정 모식도
그림 3. 제작된 섬유 기반의 유기 발광 다이오드의 사진
2015.08.05
조회수 9622