-
이흥규 교수 연구팀, 수지상세포 자식작용의 역할 규명
우리 연구진에 의해 세포 항상성을 유지해주는 '자식작용'*의 또 다른 기능이 보고됐다. 의과학대학원 이흥규 교수 연구팀이 T세포*의 항바이러스 활성이 유도되는 과정에서 수지상세포 자식작용이 기여함을 규명했다고 밝혔다.
* 자식작용(自食作用, autophagy) : 세포 내 노폐물 및 손상된 세포 소기관을 제거하여 세포의 항상성을 유지하는 과정이다. 자식작용을 처음 발견한 오스미 요시노리(Ohsumi Yoshinori) 교수가 2016년 노벨 생리의학상을 수상하는 등 세계적으로 활발한 연구가 진행되고 있으며, 최근에는 다양한 병원균을 이기는 면역 반응에서도 중요한 기능을 한다고 보고됐다.
* T세포 : 흉선에서 유래하는 림프구로, 세포의 면역에서 주된 역할을 한다.
수지상세포는 병원균이나 암 항원을 인지해 T세포*의 면역반응을 유도하는 세포이다. 바이러스 항원을 수지상세포가 흡수하고, 자신의 표면에 항원을 제시하여 T세포에 전달해주는 기능을 한다.
연구팀은 수지상세포의 자식작용을 통한 세포대사 조절이 T세포 활성화에서 핵심 역할을 한다는 것을 밝히고 항바이러스 효과를 높일 수 있는 원리를 제시했다.
실험결과, 자식작용을 일으키는 Atg5 유전자가 결손될 때 수지상세포의 해당작용이 증가하고, 이를 통해 T세포 활성화 기능이 높아지고 항바이러스 면역반응이 증가했다.
Atg5가 결손되면 수지상세포의 해당작용이 증가하는데, 이로 인해 MHC 클래스 I 분자가 과발현되고 항원 제시를 통한 T 세포 활성화가 증가한다. 이로 인해 호흡기세포융합바이러스(RSV) 감염 시 항바이러스 면역반응이 더 활성화되어 바이러스가 더 빨리 제거되었다.
이흥규 교수는 "이번 연구를 통해 자식작용이 T세포의 항바이러스 면역반응에 관여하는 기능을 새롭게 규명했다”라고 연구의 의의를 설명하며, “향후 자식작용과 세포 대사를 표적으로하는 항바이러스 치료제 개발의 단초가 되길 기대한다”라고 밝혔다.
이번 연구 성과는 과학기술정보통신부·한국연구재단 바이오‧의료기술개발사업의 지원으로 수행되었다. 저명한 국제학술지 ‘오토파지(Autophagy)’ 8월 28일 자에 온라인 게재됐다.
수지상세포는 바이러스를 받아들여 이들을 분해해 MHC class I에 항원을 제시하고 CD8+ T세포를 활성화해 항바이러스 면역반응을 유도함. Atg5 유전자 결손 시 해당작용 의존적인 항원 제시 및 사이토카인 분비가 과활성화되어 MHC class I을 통한 CD8+ T세포의 활성이 증가됨. 수지상세포에서 Atg5 유전자 결손 시 CD8+ T 세포의 활성화가 증가되어 바이러스 제거를 촉진시킴.
가. Atg5 유전자 결손 시 정상과 다른 특이한 특징을 갖는 수지상세포가 폐에 유입됨.
나. 수지상 세포 특이적으로 Atg5 결손 시, 항원제시, 해당작용과 대사와 관련된 유전자들이 증가됨.
다. 수지상 세포 특이적으로 Atg5 결손 시, 수지상세포의 해당작용이 증가함.
라. 바이러스 감염 시 항원제시에 중요한 MHC 클래스 I의 발현이 증가함. 반면, 해당작용 억제제(2-DG) 처리 시 발현이 감소함. 즉, MHC 클래스 I의 발현에 해당작용이 중요한 역할을 함.
마. 수지상세포 특이적 Atg5 유전자 결손 시 CD8+ T 세포의 활성화가 증가함.
바. 수지상세포 특이적 Atg5 유전자 결손 시 바이러스의 제거가 더 빠르게 일어남.
2020.09.11
조회수 26679
-
고접착 패브릭 기반 웨어러블 에너지 하베스팅 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 *핫프레싱 기술을 이용해 가격 경쟁력과 내구성이 높은 패브릭(천) 기반 웨어러블 압전 *에너지 하베스터 제조 방법을 개발하는 데 성공했다고 9일 밝혔다.
☞ 핫프레싱(hot pressing): 온도와 압력을 가해 두 물체를 단단히 점착시키는 공법
☞ 에너지 하베스팅(energy harvesting): 버려지는 에너지를 수집(수확)해 전기로 바꿔 쓰는 기술. 압전 에너지 하베스팅이란 압전체라는 물질을 이용, 생활 주변에서 버려지는 압력과 진동 같은 에너지를 사용 가능한 전기에너지로 변환해주는 것을 말한다.
홍 교수 연구팀 소속 김재규 박사과정 학생이 제1저자로 참여한 이번 연구는 지난 2019년 12월 23일 국내 특허 등록이 됐고, 국제 학술지 '나노 에너지(Nano Energy)' 이번 9월호에 게재됐다(5월 22일 온라인판에 게재). 이번 연구는 DGIST 에너지공학전공 이용민 교수팀과 우리 대학 신소재공학과 노광수·기계공학과 유승화 교수팀과의 협업을 통해 수행됐다. (논문명: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester)
오늘날 웨어러블 소자는 센서, 원동기, 디스플레이에서 에너지 하베스팅에 이르기까지 다양한 응용 분야에서 사용되고 있으며, 4차 산업혁명 도래 이후 소형에서 내장형으로 더욱 급속히 발전하고 있다. 이러한 흐름과 맞물려 기존 옷에 내장형으로 사용될 수 있고, 편안하고 내구성 좋은 패브릭(천)에 기반한 웨어러블 소자가 주목받고 있다.
이러한 장점에도 불구하고, 기존 패브릭 기반 웨어러블 소자는 복잡한 제조 방법과 설비 시설에 따른 공정 및 가격 측면에서 한계를 가져 아직 실용화 단계에 이르지 못하고 있다. 또한, 소자 내의 패브릭과 실제 구동 파트 사이의 결합력 및 효율 테스트의 부재는 소자의 내구성에도 의문을 갖게 한다. 이러한 문제를 보완하기 위해 간단하고 값싼 공정과 재료, 새로운 기계적 특성 분석 기술 등에 관한 연구가 활발히 진행되고 있다.
이번 연구에서는 복잡한 공정 및 설비 시설 대신 비교적 간단한 방법인 핫프레싱을 이용해 전도성 폴리에스터 패브릭과 압전 고분자 필름(Poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE))이 결합된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 방법을 개발했다. 또한, 기존의 내구성 테스트 방법인 굽힘(bending) 테스트와 더불어 새롭게 도입한 `표면 및 계면 절단 분석시스템(SAICAS, Surface and Interfacial Cutting Analysis System)'을 이용해 패브릭과 고분자 필름 사이 계면 결착력을 측정함으로써 웨어러블 소자의 높은 기계적 내구성을 증명했다.
연구진이 개발한 제조 방법에서 제시하는 핫프레싱은 배터리나 연료전지 셀 제작에 주로 쓰이는 방법으로 2~3분 안에 완료될 정도로 빠르고 간단하며 동시에 높은 접착력을 얻을 수 있는 공정이다. 결정화 온도 근처 이하에서 고분자 필름을 패브릭에 접착시키면, 고분자 필름 표면이 *비정질화되면서 접촉면이 넓은 울퉁불퉁한 패브릭 표면에 빽빽이 접착되고, 날실과 씨실 사이로 새어 나와 못과 같은 형태로 되어 높은 계면 결합력을 가질 수 있게 된다. 이러한 핫프레싱을 이용해 개발된 웨어러블 소자는 기존 의류에 접착할 수 있는 응용 가능성을 가지고 있어 공정 단가를 낮출 수 있을 것으로 기대된다.
☞ 비정질(amorphous): 고체 물질로, 균일한 조성은 가지고 있으나, 원자 배열이 액체와 같이 흐트러져 있는 물질. 유리, 고무, 수지 따위가 있으며 반도체, 자성체, 고강도 재료 따위로 쓴다.
한편, SAICAS를 이용한 계면 결착력 분석은 마이크로 스케일에서 칼날을 이용해 정량적 및 정성적으로 힘을 측정하는 방법으로, 기존 계면 결착력 측정 방법(박리 테스트, 테이프 테스트, 마이크로신축성 테스트)보다 훨씬 정확한 분석 기법으로, 본 연구에서 처음으로 웨어러블 소자에 도입됐다. SAICAS를 이용한 계면 결착력 분석은 향후 고분자를 이용한 웨어러블 소자 내구성 테스트의 새로운 방법으로 쓰일 수 있을 것으로 기대된다.
홍승범 교수는 "본 연구에서 개발된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 기술은 패브릭 기반 소자의 실용화 가능성을 한 단계 높였고, 계면 결착력 분석을 통해 고내구성 웨어러블 소자의 디자인 방향을 제시했다ˮ며 "이 기술은 패브릭과 고분자를 이용한 다른 소자의 제조 공정 및 분석에도 새로운 기틀을 마련할 수 있을 것으로 전망한다ˮ라고 말했다.
이번 연구는 KAIST HRHRP 사업, 과학기술정보통신부 재원 한국연구재단 지원 기초연구사업과 중견연구사업, 웨어러블 플랫폼소재 기술센터 지원 및 KAIST 글로벌 특이점 연구사업 지원으로 수행됐다.
2020.09.09
조회수 28946
-
코로나19 감염 중증도 결정하는 인자 발견
코로나19로 위중, 중증 상태인 중환자가 6일 0시 기준 163명을 기록했다. 지난달 19일 12명이었던 위중, 중증 환자는 20여일 만에 13배 넘게 늘어났다. 이러한 심각한 상황에서 우리 연구진이 코로나19 중증 환자와 경증 환자를 쉽게 판별할 수 있는 바이오 마커(표시물)를 발견해 중증 코로나19에 대한 치료제 개발에 기대감을 높였다.
우리 대학 의과학대학원 이흥규 교수 연구팀이 *'호중구'와 *'당질코르티코이드'의 연관성을 밝혀 코로나19의 중증도를 결정짓는 인자를 발견했다고 7일 밝혔다.
☞ 호중구(neutrophil) : 혈액의 전체 백혈구 중 50~70%를 차지하는 선천 면역세포로, 세균이나 곰팡이 감염 등에 대응하는 면역세포이다.
☞ 당질코르티코이드(glucocorticoid) : 글루코코르티코이드라고도 하며 콩팥 근처 부신의 부신 겉질에서 생성되는 호르몬으로, 다양한 신체 기능 조절에 관여한다. 특히, 면역반응을 억제하는 호르몬으로도 알려져 있다.
WHO에 의해 세계적 대유행(팬데믹)으로 지정된 코로나바이러스감염증(COVID-19)은 사람마다 증상이 판이하다. 따라서, 환자의 중증도를 예상 및 판별하기 위해서는 확실한 바이오 마커의 활용이 중요하며, 이들을 선별적으로 치료할 수 있는 표적 치료제가 매우 중요하다.
중증 코로나19 환자들은 급성 호흡곤란 증후군의 증상을 보이고 특히 폐 조직의 심한 손상이 관찰된다. 이에 대응해 호중구 등 다양한 면역세포들이 바이러스 감염으로부터 숙주를 보호하기 위해 면역반응을 보이지만 사이토카인 폭풍(과잉 염증반응)처럼 과도한 면역반응으로 오히려 장기를 손상시킬 수도 있다.
이 교수 연구팀은 유전자 발현 옴니버스(GEO)에 공개된 코로나19 감염 경증 및 중증 환자의 기관지 폐포 세척액에 존재하는 단일세포 유전 정보를 분석했다. 그 결과, 그동안 곰팡이나 세균 감염에서만 중요성이 알려졌고 바이러스 감염 시에는 상대적으로 중요성이 알려지지 않았던 호중구의 과활성화로 인해 중증 코로나19가 발생함을 밝혔다.
특히 연구팀은 대식세포 등의 골수 유래 면역세포 내에서 발현하는 CXCL8과 같은 *케모카인에 의해 호중구 유입이 증가함을 밝혔다. 연구팀은 골수에서 유래한 면역세포 내의 당질코르티코이드 수용체 발현에 따라 CXCL8의 생성이 조절받으며, 이것이 결과적으로 호중구의 유입 및 활성도와 연관됨을 밝혔다.
☞ 케모카인(chemokine): 백혈구유주작용, 활성화작용을 하는 염기성헤파린 결합성 저분자 단백질
이 교수는 "이번 연구 결과는 코로나19의 중증도를 결정하는 바이오 마커를 발굴한 것 뿐만 아니라, 덱사메타손 등의 당질코르티코이드 억제제를 활용해 중증도를 개선할 치료제 개발에 단초를 제공할 수 있을 것으로 기대한다"고 밝혔다.
의과학대학원 박장현 석박사통합과정 대학원생이 제1 저자로 참여한 이번 연구는 국제면역학회연합에서 발간하는 면역학 전문 학술지인 '프론티어스 인 이뮤놀로지(Frontiers in Immunology)' 8월 28일 字 온라인판에 게재됐다. (논문명: Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19)
한편 이번 연구는 과학기술정보통신부의 코리아 바이오 그랜드 챌린지사업, 신약타겟발굴 및 검증사업 및 KAIST 코로나 대응 과학기술 뉴딜사업을 받아 수행됐다.
2020.09.07
조회수 27470
-
언제 어디서든 사람을 살리는 상시 동작형 유해가스 감지 센서 개발
밀폐된 공간에서 유해가스를 감지해 안전사고를 사전에 방지할 수 있는 초 저전력 유해가스 감지 센서가 우리 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀은 독자 기술로 개발한 나노 소재 *'나노린'을 통해 상시 동작이 가능한 초 저전력 유해가스 감지 센서를 개발했다고 1일 밝혔다.
☞ 나노린(Nanolene): 완벽하게 정렬된 나노와이어 다발들이 공중에 떠 있는 구조를 지칭하는 용어. 나노와이어의 Nanoline과 그래핀과 같은 2차원 나노 재료의 접미사 –ene을 합성해 탄생한 단어다.
일산화탄소 등의 유해가스에 의한 안타까운 인명 사고는 과거로부터 현재까지 끊임없이 반복되고 있다. 이에 따라 유해가스를 실시간으로 감지하는 예방 기술에 대한 대중의 관심과 수요가 꾸준히 증가하는 추세인데 학계에서도 유해가스 감지 센서 개발을 위한 연구가 활발하다.
금속산화물을 기반으로 하는 가스 센서는 소형화에 유리하고, 생산 단가가 저렴해서 관련 산업에 활용이 가능한 가스 감지 기술로 주목받아 왔다. 가스 센서는 수백 도 씨(℃) 내외의 고온에서 동작하기 때문에 히터를 통한 열에너지 공급이 필수적이다.
이때 주변으로 방출되는 다량의 열과 히터의 높은 소비 전력 때문에 스마트폰과 같은 휴대용기기에 적용 가능한 실시간 가스 센서를 개발하기는 쉽지 않다. 윤준보 교수팀이 개발한 유해가스 감지 센서는 독자적인 나노 공정 기술을 통해 개발한 나노 소재 `나노린'을 활용해 초 저전력으로 언제, 어디서든 항상 사용이 가능한 게 큰 특징이다.
나노 소재는 독특한 전기적, 화학적 특성 때문에 미래 센서 기술의 핵심 구성 요소로 주목받고 있지만, 제조 방법상 크기를 제어하기가 쉽지 않고 원하는 위치에 정렬된 형태로 구현하는 것 또한 어렵다. 윤 교수 연구팀은 나노린을 통해 이런 문제점을 해결했다. 윤 교수팀이 개발한 이 기술은 기존의 나노 소재 제작 방법과는 다른, 일반적인 반도체 공정을 기반으로 제작하기 때문에 양산성이 뛰어나고(대량생산이 가능) 산업적 활용 가치 또한 매우 높다고 평가받고 있다.
연구팀은 우선 나노린을 초 저전력 나노 히터에 활용했다. 시험과정에서 나노 소재가 지닌 고유의 열 고립 효과를 통해 기존 마이크로히터의 물리적 한계를 뛰어넘는 초 저전력 고온 구동을 실현하는 데 성공했다. 이와 함께 나노 히터에 완벽하게 정렬된 형태의 금속산화물 나노와이어를 일체형으로 집적해 가스 센서로 응용했는데 스마트폰 내장에 적합한 수준의 낮은 소비 전력으로 일산화탄소 가스 검출에 성공했다.
과거 광부들은 유해가스로부터 생명을 지키기 위해 탄광에 들어갈 때마다 카나리아라는 새를 데리고 들어갔다. 카나리아는 메탄, 일산화탄소 가스에 매우 민감해 유해가스에 소량만 노출돼도 죽는다. 광부들은 카나리아의 노래가 들리면 안심하고 채굴했고 카나리아가 노래를 부르지 않을 땐 탄광에서 뛰쳐나와 스스로 생명을 지킬 수 있었다.
윤준보 교수는 "상시 동작형 가스 센서는 언제 어디서나 유해가스의 위험을 알려주는 '스마트폰 속 카나리아'로 활용이 기대된다ˮ고 연구결과를 소개했다.
제1 저자인 전기및전자공학부 최광욱 박사는 이를 휴대용기기에 내장하기 적합한 초 저전력 가스 센서 기술이라고 설명하면서 "이 기술이 가스 사고를 사전에 차단하고 인명 사고를 막는 데 활용되길 기대한다ˮ고 말했다.
KAIST UP 프로그램과 한국연구재단의 중견연구자 지원사업을 통해 수행된 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머터리얼즈 (Advanced Functional Materials)' 8월 12일 字에 온라인으로 게재되는 한편 연구 내용의 우수성을 인정받아 오프라인 저널의 후면 표지논문으로 선정됐다. (논문명: Perfectly Aligned, Air-Suspended Nanowire Array Heater and Its Application in an Always-On Gas Sensor)
2020.09.01
조회수 30128
-
인공지능으로 자폐 증상과 심각도 예측한다
뇌영상 빅데이터를 활용한 딥러닝(Deep Learning)으로 자폐 스펙트럼 장애(ASD)의 증상과 심각도를 예측할 수 있다는 것이 확인됐다. 이번 연구에 따라 ASD 환자들 진단과 예후에 따른 맞춤형 치료가 가능할 것으로 기대되고 있다.
우리 대학 바이오및뇌공학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 세브란스병원 소아정신과 천근아 교수(연세자폐증연구소장) 연구팀은 ASD의 뇌영상 빅데이터를 활용해 자폐의 증상과 예후를 예측할 수 있다고 28일 밝혔다.
이번 연구결과는 ASD 아동들의 뇌영상 빅데이터를 이용한 국내 최초의 AI연구성과로, 국제전기전자기술자협회(IEEE)에서 발행하는 저널인 IEEE 엑세스(Access) 온라인판에 게재됐다.
ASD는 뇌 발달 장애의 하나로 사회적 의사소통의 결함과 제한된 관심사 및 반복적인 행동이 대표적인 특징이다. 2020년도 미국 CDC(미국질병통제예방센터)의 통계자료에 따르면 ASD의 유병률은 54명당 1명으로 매년 증가하는 추세이다. 국내 유병률도 약 2% 내외이다.
ASD는 아동 행동 관찰 및 상담과 정신질환 진단분류매뉴얼(DSM-5)에 근거해 진단한다. 하지만 환자 개인차가 심해 자폐에 대한 정확한 진단이 어렵고 예후를 예측하기도 힘들다.
이상완·천근아 교수 연구팀은 세브란스병원에 구축된 3~11세 ASD 환자 84건의 MRI 빅데이터와 국제컨소시엄으로 구축된 1000여 건의 자폐증 환자 MRI 빅데이터를 활용해 MRI 영상으로 자폐의 진단과 예후를 예측할 수 있는 딥러닝 모델을 개발했다.
연구팀은 공간 변경 네트워크(Spartial Transformer Network, STN)와 3D 컨볼루션 신경망(convolutional neural network, CNN)을 활용한 모델을 구축하고, MRI 빅데이터를 학습시켰다.
이렇게 구축된 모델에 클래스 활성화 매핑(class activation mapping) 기법을 적용해 형태학적인 특징을 추출하고 이를 뇌영상에 투영시키는 방식으로 분석했다. 더 나아가 인자들간의 관계 분석을 위해 강화학습 모델의 일종인 회귀형 주의집중 모델(recurrent attention model)을 학습시켰다.
분석결과 뇌의 기저핵을 포함한 피질 하 구조가 자폐 심각도와 관련이 있음을 확인했다.
이상완 교수는 “진료 현장에서 자폐를 진단하고 연구하는데 구조적 연관 후보를 제공할 수 있게 됐다”며 “이번 연구결과로 자폐 진단에서뿐만 아니라 앞으로 의사나 관련 전문가들이 인공지능을 활용해 복잡한 질병을 이해하고 더 많이 활용할 수 있게 될 것”이라고 설명했다.
천근아 교수도 “자폐스펙트럼장애를 진단함에 있어 뇌 영상 자료는 아직까지 의사들 사이에서 활용가치가 높지 않다는 인식이 보편적인데 이번 연구를 통해 자폐의 하위 증상과 심각도 사이에 뇌영상에서 차이가 있다는 것을 확인했다”며 “이번 연구는 다양한 임상표현형과 심각도를 지닌 자폐증 환자들에게 개별 맞춤 진단과 예후를 예측하는데 의미를 가진다”고 말했다. [보도자료 출처: 세브란스병원 홍보팀]
2020.08.28
조회수 24914
-
이산화탄소 처리로 산화 티타늄 신소재 판형 맥신 합성 성공
우리 대학 생명화학공학과 이재우 교수 연구팀은 나노 신소재 *맥신(MXene)과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 고르게 분포된 판형 구조의 맥신을 합성하는데 성공했다고 25일 밝혔다.
☞ 맥신(MXene): 전자파를 흡수하고 차단하는 신개념 초경량 나노 신소재. 전자 부품간 전자파 간섭을 고성능으로 차단할 수 있어 전자통신 제품에 활용할 수 있다.
이 교수 연구팀은 수용액 상태에서 표면을 벗겨낸(박리된) 맥신과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 맥신 표면에 고르게 분포된 판형 맥신을 합성했다. 연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신은 단일공정으로 매우 경제적일 뿐만 아니라 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
생명화학공학과 이동규 박사과정생이 제1 저자로 참여한 이번 연구결과는 국제 학술지 `ACS 나노 (ACS Nano)' 7월 30일 字 온라인판에 게재됐다. (논문명 : CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption).
맥신은 전기전도도가 높고 유연성이 뛰어나기 때문에 센서·에너지 저장/전환장치·전자기차 폐수처리 재료 등 다양한 분야에서 활용될 수 있는 신물질이면서 특히 그래핀이나 탄소나노튜브를 대체할 수 있는 차세대 물질로 주목받고 있다.
맥신을 리튬-황 전지의 양극 물질로 활용하기 위해서는 활물질인 황을 수용할 수 있는 공간을 제공해줘야 하고 또한 충‧방전 과정에서 생성된 리튬 폴리설파이드가 전해질에 녹아 음극 쪽으로 이동하여 발생하는 *셔틀 현상을 막을 수 있어야 한다.
☞ 셔틀 현상(Shuttle phenomenon): 방전 과정 중 리튬을 말단으로 가지는 황 체인인 중간물질(polysulfides)이 전해질에 녹아 양극과 음극 사이를 확산하면서 전지 내에서 소비되는 것으로서 결과적으로 양극 활물질 손실 및 사이클링 성능 저하를 초래한다.
맥신은 금속 *카바이드 형태로 *다공성이 거의 존재하지 않고 또 리튬 폴리설파이드와 상호작용이 적은 물질이기에 리튬-황 전지의 소재로 이용하기엔 적합하지 않다. 연구팀은 맥신이 포함된 수용액에 초음파를 주입하고, 맥신을 박리시켜 각 단일 맥신 층을 다량으로 제조한 후 충분한 공간을 확보하고 동시에 이산화탄소와 맥신 층을 반응시켜 표면에 리튬 폴리설파이드를 흡착할 수 있는 다량의 산화 티타늄 나노입자를 고르게 합성시켜 문제를 해결했다.
☞ 카바이드(carbide): 탄소와 그 밖의 하나의 원소로 이루어진 화합물.
☞ 다공성(porosity): 고체가 내부 또는 표면에 작은 빈틈을 많이 가지는 성질.
연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신 제작 기술은 맥신 전구체 종류에 상관없이 적용할 수 있다. 연구팀은 이와 함께 이 기술을 사용하면 길이 50~100 나노미터(nm), 지름 20 나노미터(nm)의 땅콩 모양의 나노입자들이 형성된 판형 맥신을 제조 가능함을 이번 연구를 통해 확인했다.
연구팀 관계자는 "산화 금속 판형 맥신 제조공정은 수용액처리 및 이산화탄소와의 반응으로 이뤄진 단순화된 공정이기 때문에 온도, 반응시간 조절로 다양한 판형 소자 제조 및 비용 절감이 가능하고 리튬-황 전지 성능을 강화하는데 기여할 것ˮ이라고 설명했다.
제1 저자인 이동규 박사과정 학생도 "이산화탄소와의 반응을 통해 제조된 산화 금속 판형 맥신은 리튬-황 전지의 양극뿐 아니라 분리막에 필름 형태로 성형해 셔틀 현상을 이중으로 방지할 수 있는 막을 제조할 수 있다ˮ면서 "균일한 금속산화물 나노입자가 형성된 판형 맥신은 전극 및 다양한 에너지 저장장치 소자에 사용될 것ˮ 이라고 소개했다.
한편 이번 연구는 한국연구재단의 Global Research Development Center Program과 Korea CCS R&D Center 기술개발사업의 지원을 받아 수행됐다.
2020.08.25
조회수 31734
-
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다.
우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents)
우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다.
☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다.
미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다.
튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다.
미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다.
연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다.
☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다.
연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다.
연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다.
적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다.
공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다.
이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 31414
-
바이오및뇌공학과 김진우 학사과정, 국제 학술지 표지 논문 게재
우리 대학 바이오및뇌공학과 백세범 교수 연구팀에 소속된 대학생(학사과정)의 연구논문이 뇌신경과학 분야 저명 국제학술지에 게재됐음은 물론 해당 저널의 표지 논문으로 선정돼 화제가 되고 있다.
바이오및뇌공학과 4학년에 재학 중인 김진우 학생(22세)이 백세범 교수의 지도하에 수행한 학부생 개별연구 프로젝트에서 두뇌의 *시각 피질에서 관측되는 주요 신경망 연결 구조 중 하나인 '장거리 수평 연결(Long-range horizontal connection)'이 두뇌 발생 초기에 형성되는 원리를 규명한 연구결과가 뇌신경과학 분야 '저널 오브 뉴로사이언스'의 표지 논문으로 선정됐다.
☞ 시각 피질(Visual Cortex): 두뇌에서 시각 정보처리를 담당하는 영역. 망막 신경망 영역을 통해 입력받은 외부 공간에 대한 시각 정보를 처리하여 인지 과정을 구현하는 기능성 신경망 구조로 이루어져 있다.
연구팀은 이번 연구를 통해 어린 포유류 동물이 눈을 뜨기 전, 시각적인 학습이 전혀 이뤄지지 않은 상태, 즉 두뇌 발생 초기 상태에서 *망막 내 신경세포들의 자발적인 활동으로부터 발생하는 '*망막 파동'이 두뇌 시각 피질의 신경세포들을 특정한 공간적 패턴으로 자극하고, 이를 통해 시각 정보 처리에서 중요한 역할을 담당하는 '장거리 수평 연결'을 형성한다는 사실을 밝혀냈다.
☞ 망막(Retina): 눈의 안쪽을 둘러싸고 있는 신경세포의 얇은 층으로, 시각 시스템에서 외부 시각 정보가 신경세포 신호로 처음 변환되는 영역
☞ 망막 파동(Retinal Wave): 포유류의 초기 발달과정의 망막에서 나타나는, 신경절 세포들이 차례대로 발화하며 파도와 같은 파형으로 활동패턴이 확산하는 현상
김진우 학생과 송민 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 뇌신경과학 분야의 대표 국제학술지인 '저널 오브 뉴로사이언스 (Journal of Neuroscience)' 19일 字에 게재되는 한편 해당 호 표지 논문으로 선정됐다. (논문명: Spontaneous retinal waves generate long-range horizontal connectivity in visual cortex)
포유류의 시각 피질에서는 신경세포들이 외부 시각 자극의 특정 요소에만 선택적으로 반응하는 신경 선택성(neural tuning)을 보이는데, 비슷한 신경 선택성을 가지는 세포들은 공간적으로 멀리 떨어져 있어도 '장거리 수평 연결'이라는 특별한 상호 연결망 회로로 이어져 있다. 이처럼 특이한 신경망 연결 구조는 포유류의 시각 인지기능에 중요한 역할을 하는 것으로 생각돼왔지만, 이러한 회로가 뇌의 발생 초기 단계에서 외부 시각 정보에 의한 자극 없이 어떻게 자발적으로 발생하는지는 아직까진 명확히 알려진 바가 없었다.
백 교수 연구팀은 망막 내 신경망 구조를 모델화하고, 이를 통해 망막 파동의 패턴이 시각 피질 내 구조 형성에 미치는 영향을 시뮬레이션했다. 그 결과, 연구팀은 망막의 신경절에서 자발적으로 발생하는 망막 파동이 시각 피질로 전달되는 과정에서 형성되는 선택적 활동 패턴이 시각 피질 내의 장거리 연결 구조를 형성함을 밝혀냈고, 이 모델을 기반으로 동물실험에서 관측되는 초기 시각 피질의 특징적인 신경 활동 패턴을 재현하는 데 성공했다.
이 연구를 통해 연구팀은 동물실험에서 관측된 시각 피질의 장거리 수평 연결이 형성되는 과정과 주요 인자들을 정확히 확인했다. 이 결과를 기반으로 연구팀은 뇌 피질 내에서의 활동 패턴이 피질 구조를 결정한다는 기존 모델의 오류를 지적하는 한편, 망막에서 전달된 활동 패턴이 시각 피질의 구조를 형성하는 데 결정적인 영향을 끼친다는 새로운 발생 모델을 제시했다.
백세범 교수는 "외부의 정보를 학습할 수 없는 감각 신경망의 발생 초기 단계에서, 감각기관 말단의 신경 활동 패턴이 뇌 신경망의 주요 구조 형성에 결정적으로 기여한다는 새로운 뇌 구조 발생 모델을 제시한 연구라는 점에서 의미가 크다ˮ고 설명했다.
김진우 학생은 "이번 연구는 뇌가 외부 세계에 대한 감각 정보를 처음으로 경험하기 이전에 어떻게 비 지도적으로 학습을 하는지에 대해, 알려진 실험 데이터에 기반한 명확한 이론적 설명을 제공한다는 점에서 흥미롭다ˮ고 말했다. 그는 이어 "이와 같은 방향의 연구가 향후 데이터 학습에 의존하지 않는 새로운 형태의 인공신경망 연구에도 큰 도움이 될 것으로 기대가 된다ˮ고 덧붙였다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.08.23
조회수 27641
-
코로나19 해외유입 확진자 수 예측 기술 개발
최근 전 세계적으로 코로나바이러스감염증-19(COVID-19) 확진자 수가 2,000만 명을 넘어선 가운데 최근 국내에서도 코로나19 확진자 수가 급증해 2차 대유행 조짐을 보이면서 정부는 8월 23일부터 전국 대상으로 사회적 거리두기 단계를 2단계로 격상해 시행 중이다.
중앙재난안전대책본부(중대본)에 따르면 국내 코로나 누적 확진자 수는 8월 23일 오전 0시 기준으로 총 1만7,399명이다. 이 중 해외유입 감염자 수는 2,716명(8월 22일 오전 0시 기준)으로 전체 확진자의 약 16%를 차지한다. 대륙별로 보면 아시아(중국 외), 미주, 유럽, 아프리카 순이다. 지난 14일 이후 국내 지역 발생 신규확진자 수가 급증하고 있지만 향후 해외유입 확진자 수의 확산추세 또한 결코 장담할 수 없는 상황이다.
이런 가운데 우리 연구진이 해외유입 확진자 수를 예측할 수 있는 관련 기술을 개발했다. 우리 대학 산업및시스템공학과 이재길 교수 연구팀이 코로나19 해외유입 확진자 수를 예측하는 빅데이터‧인공지능(AI) 기술을 개발했다고 19일 밝혔다.
이재길 교수 연구팀이 개발한 이 기술은 해외 각국의 확진자 수와 사망자 수, 해외 각국에서의 코로나19 관련 키워드 검색빈도와 한국으로의 일일 항공편 수, 그리고 해외 각국에서 한국으로의 로밍 고객 입국자 수 등 빅 데이터에 인공지능(AI) 기술을 적용해 향후 2주간의 해외유입 확진자 수를 예측한다.
코로나19 확진자 수가 급증할수록 해외유입에 의한 지역사회 확산의 위험성도 항상 뒤따르기 마련이다. 이에 따라 이재길 교수 연구팀이 개발한 정확한 해외유입 확진자 수 예측기술은 방역 시설 및 격리 시설 확충, 고위험 국가 입국자 관리 정책 등에 폭넓게 응용 및 적용될 수 있을 것으로 기대가 크다.
우리 대학 지식서비스공학대학원에 재학 중인 김민석 박사과정 학생이 제1 저자로, 강준혁, 김도영, 송환준, 민향숙, 남영은, 박동민 학생이 제2~제7 저자로 각각 참여한 이번 연구는 최고권위 국제 학술대회 'ACM KDD 2020'의 'AI for COVID-19' 세션에서 오는 24일 발표된다. (논문명 : Hi-COVIDNet: Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea)
해외유입 확진자 수는 다양한 요인에 의해서 영향을 받는다. 일반적으로 해외 각국에서의 코로나19 위험도와 비례하며, 해외 각국에서 한국으로의 입국자 수와도 비례한다. 그러나 코로나19 위험도와 입국자 수를 실시간으로 알아내기에는 많은 제약이 따르므로 연구진은 쉽게 구할 수 있는 종류의 빅데이터를 기반으로 하는 인공지능(AI) 모델을 구축하는 데 성공했다.
연구진은 기본적으로 해외 각국의 코로나19 위험도를 산출할 때, 보고된 확진자 수와 사망자 수를 활용했다. 그러나 이러한 수치는 진단검사 수에 좌우되기 때문에 코로나19 관련 키워드 검색빈도를 같이 입력 데이터로 활용해 해당 국가의 코로나19 위험도를 실시간으로 산출했다.
이와 함께 실시간 입국자 수는 기밀정보로서 외부에 공개되지 않기 때문에 매일 제공되는 한국에 도착하는 항공편수와 로밍 고객 입국자 수를 통해 이를 유추해냈다. 로밍 고객 입국자 수 데이터는 KT로부터 제공 받았지만 KT 고객 입국자만을 포함한다는 한계를 일일 항공편수를 함께 고려함으로써 이 문제를 해소했다.
이밖에 해외유입 확진자 수 예측을 위해서는 국가 간의 지리적 연관성도 매우 중요하게 고려해야 한다. 어느 특정 국가의 코로나19 발병이 이웃 국가로 더 쉽게 전파되며, 국가 간의 교류도 거리에 따라 영향을 받기 때문이다. 연구팀은 이러한 문제해결을 위해 지리적 연관성을 학습하도록 국가-대륙으로 구성되는 지리적 계층구조에 따라 우선 각 대륙으로부터의 해외유입 확진자 수를 정확히 예측함으로써 궁극적으로 전체 해외유입 확진자 수를 정확히 예측하도록 하는 인공지능(AI) 모델을 설계했다. 연구팀은 이 인공지능 모델을 'Hi-COVIDNet'라고 이름 붙였다.
이후 연구팀은 약 한 달 반에 걸친 단기간의 훈련 데이터만으로 생성된 `Hi-COVIDNet'을 통해 향후 2주 동안의 해외유입 확진자 수를 예측한 결과, 이 모델이 기존의 시계열 데이터기반의 예측 기계학습이나 딥러닝 기반의 모델과 비교했을 때 최대 35% 더 높은 정확성을 지니고 있음을 확인했다.
제1 저자인 김민석 박사과정 학생은 "이번 연구는 최신 AI 기술을 코로나19 방역에 적용할 수 있음을 보여준 사례ˮ 라면서 "K-방역의 위상을 높이는데 기여할 것으로 기대한다ˮ 고 밝혔다.
이번 연구는 KAIST 글로벌전략연구소(소장 김정호)의 코로나19 AI 태스크포스팀의 지원을 받았고, KT(담당 변형균 상무)와 과학기술정보통신부(담당 김수정 서기관)의 '코로나19 확산예측 연구 얼라이언스'를 통해 로밍 데이터 세트를 지원받아 이뤄졌다.
2020.08.23
조회수 36861
-
스스로 납작해지는 똑똑한 2차원 그래핀 섬유 개발
그래핀(Graphene)은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)이다. 이론적으로 강철보다 100배 강하고 열·전기 전도성이 뛰어나기 때문에 꿈의 신소재로 불린다. 최근에는 그래핀 마스크, 그래핀 운동화, 그래핀 골프공 등 다양한 응용제품들이 출시되고 있지만, 아직까지는 소량의 그래핀이 첨가된 것들이 대부분이다.
우리 대학 신소재공학과 김상욱 교수 연구팀이 그래핀의 기존 응용범위와 한계를 뛰어넘는 새로운 형태의 그래핀 섬유를 개발하는데 성공했다고 13일 밝혔다. 김상욱 교수 연구팀이 개발한 이 기술은 연필심 등에 쓰이는 값싼 흑연으로부터 손쉬운 용액공정을 통해 얻을 수 있고 기존 탄소섬유보다 값이 싸며 유연성 등 차별화된 물성을 지니고 있어 경제성까지 갖췄다는 게 가장 큰 특징이다.
김상욱 연구팀의 이번 성과가 높게 평가받는 이유는 100% 그래핀으로 이뤄진 섬유가 만들어지는 과정에서 스스로 납작해져서 벨트와 같은 단면을 갖는 현상을 세계 최초로 발견했다는 점이다. 통상적으로 일반섬유는 그 단면이 원형으로 이루어져 있는 반면 원자단위의 평평한 2차원 소재인 그래핀으로 이루어진 섬유는 단면이 납작한 형태가 안정적인 구조라는 점을 김 교수 연구팀이 규명한 것이다.
연구팀이 개발한 납작한 벨트형 그래핀 섬유는 내부에 적층된 그래핀의 배열이 우수해 섬유의 기계적 강도와 전기전도성이 대폭 향상됐다. 연구팀은 원형 단면을 갖는 일반섬유와 대비해 각각 기계적 강도는 약 3.2배(320%), 전기전도성은 약 1.5배(152%) 향상된 결과를 얻었다. 또 납작한 면 방향으로 매우 쉽게 구부러지는 유연한 섬유를 만들 수 있어 플렉시블 소자(유연 소자)나 웨어러블 소자 등에 유용하게 쓰일 수 있다고 연구팀 관계자는 설명했다.
연구책임자인 김상욱 교수는 "그래핀과 같은 2차원 소재로 섬유를 만들면 납작한 벨트 형태가 이상적인 배열구조다ˮ라고 말하면서 "납작한 그래핀 섬유는 납작한 면 방향으로 유연한 성질을 가지고 있어 기존의 잘 부러지는 탄소섬유의 문제를 해결할 수 있고 최근의 이슈인 마스크의 필터 소재로도 유용하게 사용할 수 있다ˮ고 덧붙였다.
우리 대학 신소재공학과 정홍주 박사과정이 제1 저자로 참여한 이번 연구는 종합화학 분야 저명 국제학술지인 `ACS 센트럴 사이언스(ACS Central Science, IF: 12.685)' 6월 11일 字 온라인판에 게재됐다. (논문명: Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration) 또 연구성과의 중요성을 인정받아 7월 22일 字로 발간된 동 학술지 7월호 표지논문(Front cover)으로 선정되는 한편 에디터에 의해 하이라이트 됐다. (First Reaction: High-Performance Graphene Fibers Enabled by Hydration)
이번 연구는 한국연구재단 리더연구자지원사업인 창의연구지원사업(다차원 나노조립제어 창의연구단)과 나노·소재원천기술개발사업의 지원을 통해 수행됐다.
2020.08.13
조회수 30706
-
SSD보다 더 빠른 차세대 저장장치 만드는 기술 개발
데이터(DB)의 초고속·대용량 처리에 적합한 정보저장장치인 기존의 *NVMe 컨트롤러를 차세대 메모리 개발에 적합하도록 초당 입출력 처리 능력 등 각종 기능적 측면에서 성능을 대폭 향상시킨 차세대 NVMe 컨트롤러 관련 기술이 우리 연구진에 의해 세계 최초로 개발됐다. 연구진은 이와 함께 이 기술을 국내·외 대학과 연구소에 무상으로 공개함으로써 관련 연구비용을 대폭 절감할 수 있게 했다.
☞ NVMe(Non Volatile Memory express): 비휘발성 메모리 익스프레스. PCI 익스프레스(PCIe) 인터페이스를 기반으로 한 저장장치를 위한 통신 규격(프로토콜)이다. SATA 인터페이스 대비 최대 6배 이상의 속도를 낼 수 있어 초고속, 대용량 데이터 처리에 적합하다.
전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 *SSD의 데이터 병렬 입출력 처리를 순수 하드웨어로 구현한 차세대 NVMe 컨트롤러 'OpenExpress'를 개발하는 데 성공했다고 4일 밝혔다.
☞ SSD(Solid State Drive): 자기디스크를 이용하는 데이터 저장장치인 하드디스크(HDD)와는 달리 반도체를 이용해 데이터를 저장하는 장치로서 빠른 속도로 데이터의 읽기와 쓰기가 가능하다. 발열과 소음도 적으며, 소형화‧경량화할 수 있는 장점이 있으나, 비싼 가격이 단점으로 꼽힌다.
정 교수의 관련 논문(논문명: OpenExpress: Fully Hardware Automated Open Research Framework for Future Fast NVMe Devices)은 지난달 18일 열린 시스템 분야 최우수 학술대회인 'The USENIX Annual Technical Conference (ATC), 2020'에서 발표됐는데 아시아권 단일저자가 작성한 논문이 USENIX ATC 학술대회에 채택된 것은 해당 학술대회가 시작된 1993년 이후 27년 만에 처음이다.
빠른 입출력 장치에 특화된 NVMe 인터페이스 기술은 하드디스크(HDD)용으로 설계된 기존의 SATA(Serial ATA) 규격이 SSD에서 제대로 성능을 발휘하지 못하자 이를 대체하기 위해 개발됐다. NVMe는 SSD 성능을 최대한 활용할 수 있도록 개발된 초고속 데이터 전송규격으로 자리를 잡았으며 현재 다양한 플래시 기반 저장장치에 적용되고 있다. NVMe는 또 학계와 산업계에서 차세대 메모리를 기반으로 한 시스템 장치 구성을 위해 계속 연구되고 있다.
전 세계 ICT 분야의 주요 기업들은 NVMe를 사용하는 데 필요한 하드웨어 NVMe 컨트롤러 관련 지식 재산권(IP) 확보를 위해 막대한 비용을 투자해 독자적인 개발에 나서고 있다. 하지만 해당 IP는 외부에 공개가 되지 않아 대학이나 연구소 등에서 이를 연구목적으로 사용하기에는 어려움이 많다. 미국 실리콘밸리에 있는 소수의 벤처기업이 자체적으로 개발한 IP를 일부 제공하지만 한 달에 약 4천만 원의 이용료를 내야 한다. 또 IP 수정을 위한 단일 사용 소스 코드를 받기 위해서는 복사본 당 약 1억 원을 지급해야 하는 등 막대한 비용지출이 필요하다.
이러한 문제해결을 위해 정명수 교수 연구팀은 자유롭게 수정이 가능한 하드웨어 NVMe 컨트롤러 지식 재산권(IP)인 `OpenExpress'를 개발하고 이를 무상으로 공개했다. 이 공개용 컨트롤러는 수십 개 이상의 하드웨어 기본 IP들과 여러 핵심 NVMe IP 코어로 구성돼 있다. 정 교수팀은 실제 성능평가를 위해 OpenExpress를 이용한 NVMe 하드웨어 컨트롤러를 프로토타입(시제품)으로 제작하고, OpenExpress에서 제공되는 모든 로직은 높은 주파수에서 동작하도록 설계했다.
'OpenExpress'를 이용해 개발한 FPGA 스토리지 카드 시제품은 최대 7GB/s의 대역폭을 지원한다. 따라서 초고속 차세대 메모리 등의 연구에 적합하며, 다양한 스토리지 서버 작업 부하를 비교 테스트에서도 인텔의 새로운 고성능 저장장치인 옵테인 SSD(Optane SSD)보다 76% 높은 대역폭과 68% 낮은 입출력 지연시간을 보였다. 사용자의 필요에 따라 실리콘 장치 합성을 하게 되면 훨씬 더 높은 성능을 도출할 수 있을 것으로 예상된다.
정 교수팀이 개발한 이 컨트롤러는 비영리를 목적으로 하는 대학 및 연구소들이라면 `OpenExpress' 공개 소스 규약 내에서 자유로운 사용과 함께 수정사용도 가능해서 차세대 메모리를 수용하는 NVMe의 컨트롤러와 소프트웨어 스택에 관한 연구에 적합하다.
정명수 교수는 "이번 연구성과를 공개했기 때문에 기존 SSD 기술을 이끄는 몇몇 세계 최고 기업들만이 갖고 있던 컨트롤러를 대학과 연구소에서도 이젠 무상 사용이 가능하다ˮ면서 "초고속 차세대 메모리 등 저장장치 시스템의 연구를 위한 초석을 다졌다는 점에서 의미가 있다ˮ고 강조했다.
한편 이번 연구는 차세대 메모리 개발 및 공급업체인 '멤레이(MemRay)'의 지원을 받아 진행됐으며 해당 연구에 대한 자세한 내용은 웹사이트(http://camelab.org)에서 확인할 수 있다.
2020.08.04
조회수 26708
-
딥러닝 기반 실시간 기침 인식 카메라 개발
우리 대학 기계공학과 박용화 교수 연구팀이 ㈜에스엠 인스트루먼트와 공동으로 실시간으로 기침 소리를 인식하고 기침하는 사람의 위치를 이미지로 표시해주는 '기침 인식 카메라'를 개발했다고 3일 밝혔다.
작년 말부터 시작된 세계적 유행성 전염병인 코로나19가 최근 미국·중국·유럽 등 세계 각국에서 재확산되는 추세로 접어들면서 비접촉방식으로 전염병을 감지하는 기술에 대한 수요가 증가하고 있다.
코로나19의 대표적인 증상이 발열과 기침인데, 현재 발열은 열화상 카메라를 이용해 직접 접촉을 하지 않고도 체온을 쉽게 판별할 수 있다. 문제는 비접촉방식으로는 기침하는 사람의 증상을 쉽사리 파악하기 어렵다는 점이다. 박 교수 연구팀은 이런 문제를 해결하기 위해 기침 소리를 실시간으로 인식하는 딥러닝 기반의 기침 인식 모델을 개발했다. 또한 열화상 카메라와 같은 원리로 기침 소리와 기침하는 사람의 시각화를 위해 기침 인식 모델을 음향 카메라에 적용, 기침 소리와 기침하는 사람의 위치, 심지어 기침 횟수까지를 실시간으로 추적하고 기록이 가능한 '기침 인식 카메라'를 개발했다.
연구팀은 기침 인식 카메라가 사람이 밀집한 공공장소에서 전염병의 유행을 감지하거나 병원에서 환자의 상태를 상시 모니터링 가능한 의료용 장비로 활용될 것으로 기대하고 있다.
연구팀은 기침 인식 모델 개발을 위해 *합성 곱 신경망(convolutional neural network, CNN)을 기반으로 *지도학습(supervised learning)을 적용했다. 1초 길이 음향신호의 특징(feature)을 입력 신호로 받아, 1(기침) 또는 0(그 외)의 2진 신호를 출력하고 학습률의 최적화를 위해 일정 기간 학습률이 정체되면 학습률 값을 낮추도록 설정했다.
이어서 기침 인식 모델의 훈련 및 평가를 위해 구글과 유튜브 등에서 연구용으로 활발히 사용 중인 공개 음성데이터 세트인 `오디오세트(Audioset)'를 비롯해 `디맨드(DEMAND)'와 `이티에스아이(ETSI)', `티미트(TIMIT)' 등에서 데이터 세트를 수집했다. 이 중 `오디오세트'는 훈련 및 평가 데이터 세트 구성을 위해 사용했고 다른 데이터 세트의 경우 기침 인식 모델이 다양한 배경 소음을 학습할 수 있도록 데이터 증강(data augmentation)을 위한 배경 소음으로 사용했다.
☞ 합성 곱 신경망(convolutional neural network): 시각적 이미지를 분석하는 데 사용되는 인공신경망(생물학의 신경망에서 영감을 얻은 통계학적 학습 알고리즘)의 한 종류
☞ 지도학습(Supervised Learning): 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법
데이터 증강을 위해 배경 소음을 15%~75%의 비율로 `오디오세트'에 섞은 후, 다양한 거리에 적응할 수 있게 음량을 0.25~1.0배로 조정했다. 훈련 및 평가 데이터 세트는 증강된 데이터 세트를 9:1 비율로 나눠 구성했으며, 시험 데이터 세트는 따로 사무실에서 녹음한 것을 사용했다.
모델 최적화를 위해서는 '스펙트로그램(spectrogram)' 등 5개의 음향 특징과 7개의 최적화 기기(optimizer)를 사용해 학습을 진행하고 시험 데이터 세트의 정확도를 측정, 성능을 확인한 결과 87.4%의 시험 정확도를 얻을 수 있었다.
연구팀은 이어 학습된 기침 인식 모델을 소리를 수집하는 마이크로폰 어레이와 카메라 모듈로 구성되는 음향 카메라에 적용했다. 그 결과 수집된 데이터는 음원의 위치를 계산하는 빔 형성 과정을 거쳐 기침 인식 모델이 기침 소리로 인식할 경우 기침 소리가 난 위치에 기침 소리임을 나타내는 등고선과 라벨이 각각 표시된다.
박 교수팀은 마지막 단계로 기침 인식 카메라의 예비 테스트를 진행한 결과, 여러 잡음 환경에서도 기침 소리와 그 이외의 소리로 구분이 가능하며 기침하는 사람과 그 사람의 위치, 횟수 등을 실시간으로 추적해 현장에서의 적용 가능성을 확인했다. 이들은 추후 병원 등 실사용 환경에서 추가 학습이 이뤄진다면 정확도는 87.4%보다 더 높아질 것으로 기대하고 있다.
박용화 교수는 "코로나19가 지속적으로 전파되고 있는 상황에서 공공장소와 다수 밀집 시설에 기침 인식 카메라를 활용하면 전염병의 방역 및 조기 감지에 큰 도움이 될 것ˮ이라고 말했다. 박 교수는 이어 "특히 병실에 적용하면 환자의 상태를 24시간 기록해 치료에 활용할 수 있기 때문에 의료진의 수고를 줄이고 환자 상태를 더 정밀하게 파악할 수 있을 것ˮ 이라고 강조했다.
한편, 이번 연구는 에너지기술평가원(산업통상자원부)의 지원을 받아 수행됐다.
2020.08.03
조회수 30372