< 박주용 교수, 박도흠 박사 >
우리 대학 문화기술대학원의 박주용 교수 연구팀이 네트워크 과학과 빅데이터에 기반해 인간의 문화⋅예술 창작물의 혁신성과 영향력을 계산하는 이론물리학 알고리즘을 개발했다.
연구팀은 이 알고리즘을 통해 클래식 음악가들의 창작물의 창의성, 혁신성을 계산함으로써 음악의 발전에 베토벤이 끼친 영향력을 수치적으로 규명하고, 후기 낭만파 시대의 거장인 세르게이 라흐마니노프가 끊임없이 혁신을 시도한 대표적 예술가임을 밝혀냈다.
연구팀의 알고리즘은 예술 작품의 빅데이터로부터 창의성을 직접 계산함으로써 빠르게 증가하고 있는 창작 콘텐츠의 우수성을 효율적으로 판단할 수 있을 것으로 기대된다.
박도흠 박사과정이 1 저자로 참여한 이번 연구는 스프링어-네이처(Springer Nature) 그룹의 데이터 과학 전문 학술지인 ‘EPJ 데이터 사이언스(EPJ Data Science)’ 1월 30일 자 온라인판에 게제됐다. (논문명: Probabilistic Influence Networks and Quantifying Patterns of Advances in Works)
인간 고유의 영역으로 알려진 문화예술 창작에서도 인공지능 등의 컴퓨터 알고리즘이 널리 활용되며 예술 작품의 창의성을 과학적으로 평가하는 방법의 필요성이 커지고 있다.
그동안 인간 창의성의 산물인 문화예술은 수치적인 평가가 어려워 인공지능을 한 단계 발전시킨 ‘인공창의성’ 연구에 큰 장벽이 되어왔다. 개별 창작품들에 대한 사람들의 심리적 반응을 측정하는 시도는 종종 있었지만, 대규모의 객관적 실험을 수행하기에는 한계가 있다.
위와 같은 문제 해결을 위해 창작품 자체를 빅데이터화 한 뒤 그로부터 창의성을 평가하는 과학적 방법론 개발의 필요성이 커지고 있다.
연구팀은 1700년~1900년 사이에 작곡된 서양 피아노 악보로부터 동시에 연주되는 음정으로 만들어진 ‘코드워드(codeword)’를 추출하고 이론물리학의 한 분야인 네트워크 과학을 적용했다.
그리고 난 뒤 작품들 사이의 유사도를 측정해 작품들이 서로 얼마나 영향을 주고받았는지를 나타내는 네트워크를 만들어 각 작품이 얼마나 혁신적인지, 또한 후대의 작품에 얼마나 큰 영향을 끼쳤는지를 통해 창의성을 평가했다.
연구팀은 현대에도 큰 영향을 끼치고 있는 핵심적 음악 스타일이 확립된 200년에 걸쳐 음악 창작의 패러다임이 어떻게 변화해왔는지 이해했다고 밝혔다.
이 연구에서는 바로크⋅고전기(1710-1800년)의 대표 작곡가인 핸델과 하이든, 모차르트를 거쳐 고전-낭만 전환기(1800-1820년) 이후 베토벤이 최고의 영향력을 가진 작곡자로 떠오르고, 베토벤의 영향을 받아 리스트와 쇼팽 등 낭만기(1820-1910년)의 거장들이 등장하는 과정을 규명하였다. 올해로 탄생 250주년을 맞은 베토벤은 사후에도 100년 가까이 최고의 영향력을 유지한 것으로 밝혀졌다.
또한, 연구팀은 후기 낭만파의 거장인 라흐마니노프가 과거의 관습은 물론 자신의 작품으로부터 차별화를 끊임없이 시도한 최고의 혁신적 작곡가였음을 밝혀냈다.
코드워드에 기반한 네트워크로부터 음악의 창의성을 계산해내는 이 알고리즘은 낱말, 문장, 색상, 무늬 등으로 만들어진 문학 작품이나 그림, 건축, 디자인 등의 시각 예술의 창의성 연구에도 적용할 수 있을 것으로 보인다.
박주용 교수는 “문화예술 창작물의 과학적 연구에 장벽이 되어온 창의성 평가라는 난제를 네트워크 과학과 빅데이터를 활용해 해결할 수 있음을 보였다”라며 “특히 문화예술 창작 영역에서 컴퓨터의 활약이 커지는 상황에서 인간의 단순 계산력만을 따라하는 인공지능의 한계를 극복함으로써, 인간 창의성과 미적 감각의 잠재력을 극대화하는 인공창의성 발전에 큰 도움이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 국제연구네트워크(GRN)와 한국사회과학연구지원(SSK) 사업, BK21 플러스사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1.시대별 작곡가들 사이의 영향력을 나타내는 네트워크
그림2. 연도별 대표적 작곡가들의 영향력 변천사
우리 몸의 세포는 평생 동안 DNA 돌연변이를 지속적으로 축적하며, 이는 세포 간의 유전적 다양성(모자이시즘) 및 세포 노화를 초래한다. 한국 연구진이 세포소기관 미토콘드리아 DNA의 인체 내 모자이시즘 현상을 최초로 규명했다. 우리 대학 의과학대학원 주영석 교수 연구팀 안지송 박사과정이 미토콘드리아 DNA 돌연변이 연구를 주도해 국제 과학학술지 ‘네이처 지네틱스(Nature Genetics)’ 7월 22일 字 온라인판에 게재했다고 24일 밝혔다. (논문명: Mitochondrial DNA mosaicism in normal human somatic cells). 이번 연구에는 서울대학교 의과대학, 연세대학교 의과대학, 고려대학교 의과대학, 국립암센터, 그리고 KAIST 교원창업기업 이노크라스의 연구자들도 참여했다. 미토콘드리아는 세포 에너지 대사 및 사멸에 관여하는 세포소기관으로, 세포핵과 독립적으로 자체 DNA를 가지고 있으며 돌연변이도
2024-07-24각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다. ‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다. 공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수
2023-12-14우리 대학 제조AI빅데이터센터가 중소 제조기업의 애로사항을 창의적인 인공지능(AI) 아이디어로 해결하는 '제3회 K-인공지능 제조데이터 분석 경진대회' 시상식을 지난달 28일 서울 양재동 aT센터에서 개최했다. 중소벤처기업부(장관 이영, 이하 중기부), 스마트제조혁신추진단(단장 안광현, 이하 추진단)과 공동 주최한 이번 경진대회는 우수한 제조 인공지능 분석 인재를 발굴 및 육성하기 위해 올해 세 번째로 개최됐다.제조데이터 인공지능 분석에 관심 있는 19세 이상의 국민을 대상으로 지난 9월 말부터 참가자를 모집한 결과 3인 이내로 자유롭게 구성된 184개 팀, 389명이 신청을 완료했다. 각 팀은 10월 23일 KAMP*의 열처리 품질보증 제조AI데이터셋**을 활용해 뿌리기업 현장 개선 아이디어를 제시하고 알고리즘으로 구현하는 과제를 부여받아 본격적인 대회 일정에 돌입했다. ☞ KAMP: 인공지능(AI) 중소벤처 제조 플랫폼(Korea AI Manufacturin
2023-12-04우리 대학 제조AI빅데이터센터(센터장 김일중)가 ʻ제조데이터 촉진자 동문 네트워킹 데이 및 표준화 포럼(이하, 네트워킹 데이)ʼ를 29일 개최했다. 네트워킹 데이는 제조AI빅데이터센터가 작년부터 운영하고 있는 ‘제조데이터 촉진자 양성사업’의 교육 수료생 170명을 대상으로 진행되었다. 제조데이터 촉진자 양성사업은 제조AI 빅데이터교육에 제조 도메인 지식과 창의적 문제해결 능력을 접목하여 미래 제조혁신을 이끌어갈 인재인 제조데이터 촉진자를 양성하기 위한 교육사업이다. 교육은 중소·중견 제조기업 및 솔루션 공급기업의 재직자를 교육대상으로 한다. 교육과정은 제조AI 이론 교육 및 현장실습으로 구성되어 있으며, 제조AI가 적용된 우수현장을 견학할 수 있는 기회도 제공하고 있다. 제조AI빅데이터센터는 해당 사업으로 220여명의 제조데이터 촉진자를 양성할 예정이다. 이미 2022년 한 해 동안 101명, 2023년 상반기동안 70명의 교육 수료생을
2023-11-30유엔기구(UN)의 지속가능발전목표(SDGs)에 따르면 하루 2달러 이하로 생활하는 절대빈곤 인구가 7억 명에 달하지만 그 빈곤의 현황을 제대로 파악하기는 쉽지 않다. 전 세계 중 53개국은 지난 15년 동안 농업 관련 현황 조사를 하지 못했으며, 17개국은 인구 센서스(인구주택 총조사)조차 진행하지 못했다. 이러한 데이터 부족을 극복하려는 시도로, 누구나 웹에서 받아볼 수 있는 인공위성 영상을 활용해 경제 지표를 추정하는 기술이 주목받고 있다. 우리 대학 차미영-김지희 교수 연구팀이 기초과학연구원, 서강대, 홍콩과기대(HKUST), 싱가포르국립대(NUS)와 국제공동연구를 통해 주간 위성영상을 활용해 경제 상황을 분석하는 새로운 인공지능(AI) 기법을 개발했다고 21일 밝혔다. 연구팀이 주목한 것은 기존 통계자료를 기반으로 학습하는 일반적인 환경이 아닌, 기초 통계도 미비한 최빈국(最貧國)까지 모니터링할 수 있는 범용적인 모델이다. 연구팀은 유럽우주국(ESA)이 운용하며 무료로
2023-11-21