-
고효율 바이오부탄올 생산기술 개발
- 균주 생산수율 87%, 바이오에탄올 수준으로 끌어올려 -- 발효 공정 생산성 3배 이상 향상, 반면 분리・정제 비용은 70% 절감 -
친환경 차세대 에너지 ‘바이오부탄올’의 생산성을 기존 바이오에탄올 수준으로 크게 향상시킨 반면 비용은 대폭 줄어 든 기술이 KAIST와 국내기업 연구팀에 의해 개발됐다.
우리 학교 생명화학공학과 이상엽 특훈교수 연구팀이 GS칼텍스, 바이오퓨얼켐(주)와 공동으로 시스템대사공학 기법을 이용해 바이오부탄올의 생산성을 크게 향상시키면서도 경제성을 획기적으로 높인 공정을 개발하는데 성공했다.
바이오부탄올은 자동차 연료 첨가제로 이미 상용화된 바이오에탄올을 능가하는 친환경 차세대 에너지로 각광받고 있다.
바이오부탄올의 에너지밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48%이상 높고 휘발유(32MJ)와 견줄만하다. 또 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출이 가능하기 때문에 식량파동에서도 자유롭다.
특히, 휘발유와는 공기연료비를 비롯해 기화열, 옥탄가 등 여러 가지 연료 성능이 유사해서 현재 사용되고 있는 가솔린 엔진을 그대로 사용해도 되는 게 바이오부탄올의 큰 장점이다.
반면 바이오부탄올 생산을 위한 클로스트리듐 균주는 대장균이나 효모와는 달리 유전자 조작이 쉽지 않고, 또 복잡한 대사회로와 이에 대한 정보가 부족하기에 그동안 대사회로 재설계 자체가 어렵다는 점이 단점으로 꼽혀왔다.
이상엽 특훈교수는 자신이 창시한 시스템대사공학 기법을 도입해 산생성기와 용매생성기로 대변되던 대사회로모델 대신, 바이오부탄올 생산경로에 초점을 둔 대사회로 모델을 새롭게 고안해냈다.
연구팀은 새로운 대사회로 모델에서 바이오부탄올 생산경로를 직접경로(hot channel)와 간접경로(cold channel)로 정의했다.
이 대사회로 모델을 이용해 직접경로를 강화시키기 위한 대사공학을 수행해 이론수율 대비 49%의 생산수율을 나타내던 기존 균주를 87%까지 향상시킨 바이오부탄올 생산균주로 개량하는 데 성공했다.
연구팀은 이와 함께 GS칼텍스와 발효・분리공정 개발을 위한 연구를 수행해 흡착물질을 사용한 실시간 바이오부탄올 회수 및 제거 시스템을 개발하는 데 성공했다.
GS칼텍스와 공동연구 끝에 개발한 발효·분리공정 기술은 포도당 1.8kg을 이용해 585g의 부탄올을 생산했고, 한 시간에 리터당 1.3g 이상 생산했다. 이는 현존하는 세계 최고 수준의 농도, 수율, 생산성으로 발효 공정의 생산성을 3배 이상 향상시키면서 분리·정제 비용은 기존 대비 70%까지 절감했다.
이상엽 특훈교수는 “미국, 유럽 등 선진국에서 바이오연료로 상용화된 바이오에탄올 생산기술은 이론수율 대비 90%인데, 이번에 개발된 기술은 바이오에탄올의 수율에 육박한다”며 “수율측면에서는 차세대 연료인 바이오부탄올 생산 기술이 바이오에탄올 생산기술에 근접했음을 의미한다”고 이번 연구의 의미를 밝혔다.
이 교수는 또 “클로스트리듐 아세토부틸리쿰을 세계 최초로 시스템대사공학 기법으로 개량하고 새로운 발효·분리공정을 접목시켜 생산성을 획기적으로 향상시킨 사례”라며 “재생 가능한 자원으로부터 바이오부탄올 생산 공정의 산업화를 앞당기는 계기가 될 것”이라고 강조했다.
한편, 이번 연구 결과는 미생물분야 세계적 학술지인 ‘엠바이오(mBio)‘지 9·10월호 대표논문으로 선정돼 10월 23일자에 게재됐다.
그림설명. 바이오부탄올 생산 미생물인 클로스트리듐 균주의 전자현미경 사진에 핫채널과 콜드채널을 각각 빨간색과 녹색으로 표현. 화합물 구조는 부탄올.
2012.11.06
조회수 15599
-
공간을 자유자재로 누비는 가상스피커 개발
김양한 교수
- 3D 입체 영상과 결합해 진정한 3D TV 시대 임박 -- 이론적, 실용적 측면 모두 해결해 곧 상용화 예정 -
원하는 공간 어디서나 마치 스피커가 놓여 있는 것처럼 소리를 들을 수 있는 시스템이 개발돼 곧 상용화 예정이다.
우리 학교 기계공학과 김양한, 최정우 교수 연구팀이 공동으로 3차원 공간상에 자유롭게 가상스피커를 배치할 수 있는 ‘사운드 볼 시스템’을 개발했다.
이번에 개발된 시스템은 원하는 공간상의 위치에 자유자재로 소리를 집중시킬 수 있다. 따라서 3D TV에 적용하면 마치 소리도 사람에게 다가오는 것처럼 느껴져 시각과 청각 모두 3D 기능을 갖춘 진정한 의미의 3D TV를 경험할 수 있게 됐다.
또 오케스트라의 바이올린, 첼로 등 현악기와 플루트, 클라리넷 등의 관악기 소리를 원하는 공간에서 나게 조절할 수 있어 집안에서도 마치 실제 콘서트홀에 온 것 같은 느낌을 받을 수 있다.
게다가 여러 가지 소리를 개별적으로 제어가 가능해 방송국 음향 편집에도 활용될 수 있으며, 자동차에서는 각 좌석별로 네비게이션, 음악, TV 소리 등을 따로 전달하는 등 적용범위가 매우 다양할 것으로 예상된다.
사운드 볼 시스템은 여러 개의 스피커를 이용해 공간상의 원하는 지점에 음향 에너지를 집중시킨 후, 집중된 지점에서 다시 전파되는 소리를 이용해 가상 스피커를 만드는 기술이다.
이 기술은 2002년 김 교수팀이 미국음향학회(Acoustical Society of America)에 발표한 청취공간에 있는 사람만 소리를 듣고, 다른 영역에서는 조용하게 하는 음향 밝기·대조 기술을 발전시킨 것으로 음향 에너지 집중을 통해 소리의 방향, 움직이는 소리 및 소리의 공간감을 제어할 수 있다.
연구팀은 먼저 가상스피커에 대한 이론적 해를 완전한 적분방정식 형태로 세계 최초로 풀어내 3차원 공간 어디에서도 구현 가능하도록 했다.
이와 함께, 여러 개의 단극 음원을 조합한 다극음원(multipole)을 사용하고 지향성(directivity) 조정을 통해 원하는 음장을 만들어 탁월한 청취 선명도를 이끌어 냈다.
김양한 교수는 ”2002년 논문부터 시작된 음향제어분야의 새로운 이론적 토대를 마련한 것은 중요한 의미가 있다“며 ”이 기술을 바탕으로 지난 9월 국내 굴지 전자업체와 TV용 3차원 음향시스템 개발을 착수했다“고 말했다.
최정우 교수는 “앞으로 홈씨어터, 영화관, 공공장소 등에서 개발된 시스템이 사용되면 새로운 3차원 음장 기술이 가지고 있는 효과를 느낄 수 있을 것이다”며 “3차원 영상 기술과 함께 통합돼 새로운 영상과 음향의 세계를 경험할 날이 멀지 않았다”고 말했다.
한편, 연구팀은 이번 기술에 대한 특허출원을 완료했으며, 관련 논문은 지난 달 관련 분야 최대 학술단체인 국제전기전자공학회(IEEE)가 발간하는 국제저널(IEEE Transaction of Audio, Speech, and Language Processing)에 게재됐다.
※ 기술 개요(소리의 공간감을 자유자재로 누구나 요리해 맛볼 수 있는 기술)
오래도록 우리는 완벽한 3D사운드 혹은 소리의 공간감의 완전한 재현이 가능한 이상적인 오디오 시스템을 꿈꾸어 왔다. 그러나 3D사운드는 그 정의가 명확하지 않은 주관적인 개념이며, 그 평가에 대한 절대적인 척도 또한 존재하지 않는다.
최근 다양한 3D sound 기법이 난립하고 있으나, 이는 청취 환경에 따라 변화할 뿐만 아니라, 동일한 환경에서도 청취자가 누구냐에 따라 다르게 인지되는 근본적인 문제점을 내포하고 있다. 음장 재현 방법의 이러한 근본적인 문제는 과거의 스테레오 시스템에서 볼 수 있는 밸런스 노브(balance knob)로부터 그 해결의 실마리를 찾을 수 있다. 즉, 밸런스 노브는 보편적인 최적의 소리를 찾는 대신에 청취자가 원하는 음향 효과를 얻을 때까지 직접적으로 소리를 청취하고, 스스로 조절해 평가할 수 있는 매개체의 역할을 수행한다.
KAIST에서 개발한 Spatial Equalizer는 밸런스 노브와 같이 청취자가 원하는 3D 사운드를 스스로 평가하고 조절하기 위한 것이다. 즉, 청취자가 시공간적으로 원하는 3D사운드를 실시간으로 청취하고 변화시킬 수 있는 인터페이스의 개념 및 구현에 초점을 맞추고 있다. Spatial Equalizer는 인터페이스 상에서 하나의 점 또는 다수의 점으로 표시되는 가상 음원을 사용자가 조종함으로써 소리의 공간감을 제어할 수 있는 길을 열어 주고 있다. 이는 다수의 점 음원들의 위치를 변화시키거나 각 점에 위치한 가상 음원의 크기를 변화시킴으로써 청취자가 원하는 소리를 구현하는 원리다.
즉, 사용자가 원하는 소리의 공간감을 공간상에 위치하는 몇 개의 가상 음원의 조합으로 대치하고, 실제로 사용자는 원하는 공간감과 듣는 소리가 부합되도록 하나 또는 다수의 가상 음원의 위치 및 각 음원에 의한 소리의 크기를 조절하는 것이다. 여기서, 원하는 공간감을 얻기 위한 기본적인 요소로서의 가상 음원을 sound ball이라 정의하고 사용하기로 한다.
가상의 sound ball 혹은 가상의 스피커를 자유롭게 공간상에 만들어 내기 위해 스피커 어레이 제어 기술의 혁신이 필요하다. 다수의 스피커로 이루어진 스피커 어레이(loudspeaker array)를 사용하면 소리(sound)가 전파하는 모양을 자유자재로 만드는 것이 가능함은 잘 알려져 있다. 다수의 스피커를 개별적인 크기와 위상으로 구동하면, 각각의 스피커를 중심으로 하는 다수의 파면이 형성되고, 이들이 공간상에서 간섭(interference)되면서 고유의 형상을 갖게 되는 원리이다. 1678년 발표된 호이겐스(Huygens)의 원리로부터, 키르히호프-헬름홀츠(Kirchhoff-Helmholtz) 적분 방정식에 이르는 이론식이 관련 연구의 배경을 이루고 있다. 하지만, 이러한 이론들은 어디까지나 우리가 만들고자 하는 가상의 스피커, 즉 음원(sound source)이 공간 외부에 존재하는 경우에 적용할 수 있으며, 소리를 재현하고자 하는 공간 내부에 음원이 있을 경우는 물리적으로 불가능한 문제가 된다.
기존 WFS(wave field synthesis)등 관련 연구에서는 근사화한 적분 방정식을 사용하여 시간 역전(time-reversal)의 형태로 내부의 음원이 발생시키는 것과 유사한 음장을 만들어 낼 수 있음을 부분적으로 밝혀졌으나, 물리적으로 발생 가능한 이유와 온전한 형태의 해에 대해서는 알려진 바가 없었다. KAIST에서는 온전한 적분 방정식 형태로 일반해가 존재함을 수학적으로 밝혀내었으며, 이에 따라 전 3차원 공간에서 임의의 위치의 sound ball을 형성할 수 있는 이론적 토대를 마련하였다.
개발된 sound ball 형성 알고리듬을 사용하여, Spatial Equalizer를 실제 오디오 시스템의 형태로 구축하였다. 이 시스템의 목적은 다수의 sound ball을 사용자가 원하는 임의의 지점에 형성하는 것이므로, 이것을 고려하여 24개의 스피커로 이루어진 선형 어레이 및 50개 스피커로 구성된 구형 어레이를 제작하였다. 사용자와 Spatial Equalizer® 사이에 피드백이 실시간으로 이루어지는 제어를 수행하기 위해 스마트 폰을 사용하여 원거리에서 sound ball을 제어할 수 있는 장치를 구현하였다. 이 인터페이스는 OSC(Open Sound Control) 프로토콜을 사용함으로써 제어 장치인 스마트 폰과 호스트 PC가 원거리에서도 제어 변수를 주고 받을 수 있도록 하였다. 즉, 각각의 sound ball의 위치 및 크기가 Spatial Equalizer®의 노브로서 작동하게 되어, 사용자는 Sound ball의 위치와 크기를 조절함으로써 의도하는 소리의 공간감을 직관적으로 형성할 수 있다.
음식을 만드는 경우와 비유적으로 설명하면, sound ball을 이용하여 이제는 사용자가 원하는 시.공간적 소리를 만들 수 있게 된 것이다. 종래에는 특별한 청취 능력을 가진 사람이 이러한 소리를 만드는 즉 특별한 요리사 만이 소리의 공간 감을 만들 수 있었다 하면 이제는 이 기술을 이용하여 모든 사람이 자신이 느끼기에 좋다고 생각하는 소리를 공간상에 만들 수 있는 “소리 만들기” 요리 법과 도구를 가지게 된 것이다.
그림1. 여러 개의 스피커를 통해 가상다극음원을 만들었다. 지향성 조정을 통해 수렴음장을 제거했으며, 가상스피커로부터 원하는 음장을 재현했다.
그림2. 사운드 볼 시스템 개념도
그림3. 5.1채널 방식의 서라운드 스피커(좌)와 가상스피커(우) - 실제 피아노가 시청자 바로 앞에 놓인 것과 같은 소리를 들을 수 있다.
그림4. 사운드 볼이 형성 및 이동하면서 소리가 TV에서 튀어나오는 것과 같은 느낌을 받는다.
2012.10.10
조회수 17228
-
이산화탄소 포집저장기술 상용화 속도낸다
- 이산화탄소의 선박 수송 시 발생하는 증발가스 문제 해법 제시-- 원유값 등 다양한 상황에 따른 최적의 재액화율 이론 정립해 -
지구 온난화의 주범이 되는 이산화탄소를 포집한 후 땅속에 주입해 영구 저장하는 기술이 전 세계적으로 관심을 받고 있는 가운데, KAIST 연구진이 이산화탄소의 선박 수송을 위한 최적의 방법을 제시했다.
우리 학교는 해양시스템공학과 장대준 교수 연구팀이 포집된 이산화탄소의 선박 운송 중에 발생하는 증발가스의 최적화된 처리를 위한 해법을 제시했다.
이로써 이산화탄소를 포집하는 기술과 유전에 저장하는 기술 뿐 아니라 선박 수송에 대한 해법도 제시돼, 포집-수송-저장의 삼박자를 갖춰 이산화탄소 포집저장 기술이 곧 상용화될 것으로 전망된다.
최근 지구온난화에 의한 자연재해 문제가 심각해지면서 유럽을 중심으로 이산화탄소 배출을 줄이기 위한 연구가 확산되고 있다.
이를 해결하기 위해 발전소와 공장 등으로부터 발생하는 이산화탄소를 포집해 지중에 다시 영구적으로 저장하는 기술인 ‘이산화탄소 포집 및 저장(CCS, Carbon Capture and Storage)‘이 대안으로서 각광받고 있다.
우리나라는 2013년부터 포스트 교토의정서가 발효될 경우 이산화탄소 감축 의무를 면하기 어려울 전망이다. 정부는 이에 따라 오는 2030년까지 3200만 톤(전체 감축 전망치의 10%)의 이산화탄소를 감축한다는 목표를 세우고 있고 KAIST 등 국내 연구팀들도 이를 위한 기술 개발 및 실용화를 위한 연구에 속도를 내고 있다.
장대준 교수 연구팀은 지난 2009년 ‘이산화탄소 해상수송 및 주입터미널 프로젝트’를 통해 지중 저장 원천기술을 개발하는데 성공했고 이어, 이번에 액상 이산화탄소 운반선상에서 발생하는 증발가스의 위험성을 인식하고 이를 최적화하는 해법을 제시했다.
장 교수 연구팀은 선박을 이용해 액화 이산화탄소를 운송할 때 저온(-51℃)・고압(6.5bar)의 상태로 운반돼야 하는 점에 주목했다.
상온보다 낮은 온도로 운반되는 액화 이산화탄소 저장용기는 대기의 열 침투로 증발가스가 발생해 내부 압력이 높아져 용기가 파괴될 수 있기 때문이다.
연구팀은 이 같은 문제를 해결하기 위해 압력용기에서 기화된 이산화탄소 가스를 재 액화 처리해 다시 압력용기로 주입하는 방법을 제시하고 이론적으로 모델링했다.
또 원유값, 탄소세, 원유증진회수를 위한 탄소거래비용 등 CCS 기술 도입을 위해 핵심적으로 고려될 사항을 바탕으로, 선박의 증발 가스 재액화율 결정을 위한 최적화된 해법을 고안해 냈다.
장대준 교수는 “저장된 이산화탄소가 해양에서 누출되면 대형사고로 번지게 된다” 며 “저장된 이산화탄소의 압력 거동을 예측하고 발생한 증발가스의 적절한 처리방안을 만드는 것이 상용화를 위한 필수적인 과정”이라고 말했다.
아울러 “이번 연구에서 정립된 이론은 CCS 상용화를 위한 시스템의 최적화와 액상 이산화탄소 운반 선박의 개발에 활용될 것으로 기대 된다”고 강조했다.
한편, 이번 연구는 KAIST 해양시스템공학과 장대준 교수(제1저자 추봉식 박사과정 학생)가 교육과학기술부의 세계수준 연구중심대학(World Class University)과 국토해양부의 지원을 받아 수행했다.
장 교수 연구팀의 이 연구 성과는 환경 분야에서 세계적 학술지로 꼽히는 ‘국제 온실가스 제어(International Journal of Greenhouse Gas Control)지’ 6월 12일자 온라인 판에 실렸다.
그림 1. 저장된 액화 화물에서의 BOG 발생 및 그 영향
그림 2. 증발가스 생성으로 인한 저장용기 내부 압력 변화 및 열팽창으로 인한 액위 변화
그림 3. 누출 시 속도 및 온도 변화에 의한 주변 구조 및 선체에 미치는 영향
그림 4. 누출 시 이산화탄소의 거동 관측 실험
그림 5. CCS-EOR 병행 기술에서 증발가스 재액화가 미치는 영향
2012.06.27
조회수 18290
-
임춘택 교수, 새로운 무선충전 전달장치 개발
- 온라인 전기차 OLEV 용 ‘I형 무선전력 전달장치’ 개발 -
- 기존의 레일형 플랫폼 대비 공사기간 10분의 1로 단축하고 선로비용 기존의 80% 수준 -
우리 대학이 개발한 온라인 전기차 올레브(이하 OLEV)가 경제성을 더욱 개선한 새로운 무선전력 전달장치 개발로 실용화에 한걸음 더 다가섰다.
우리 대학 원자력및양자공학과 임춘택 교수(49세)가 기존의 레일형 급전선로와 형태가 다른 ‘I형 무선전력 전달장치’를 개발했다
임 교수 연구팀이 개발에 성공한 I형 무선전력 전달장치는 모듈형 제작이 가능하기 때문에 기존의 급전선로에 비해 콘크리트 공사가 필요 없고 아스팔트 시설비용도 절약할 수 있어 온라인 전기차에 적용할 경우 설치비용을 크게 절감할 수 있는 이점이 있다.
KAIST OLEV는 도로 밑 약 15cm 지점에 매설한 전선에서 발생하는 자기장을 차량하부에 장착한 집전장치에서 전기에너지로 변환해 운행하는 새로운 개념의 친환경 전기차인데, KAIST가 지난 2009년 세계 최초로 도로주행용 무선전기차 개발에 성공했다. KAIST OLEV는 신호대기 등 정차 중에 충전할 수 있으며 주행 중에는 실시간으로 전력을 전달받아 운행한다.
현재 대전 KAIST 문지캠퍼스를 비롯해 여수 엑스포전시관, 서울대공원에서 각각 시범운행 중인 OLEV는 레일형으로 급전선로 폭이 80cm이며 공극간격 20cm에서 집전장치 당 15kW까지 충전이 가능하다.
KAIST OLEV는 그 동안 기술력과 아이디어 면에서는 크게 인정을 받은 반면 기존 도로에 설치하기 위해선 도로를 파고 시스템을 설치해야 하는 등 경제성 문제로 상용화에 어려움이 있다는 지적을 받아왔다.
임 교수팀이 이번에 새로 개발한 ‘I형 무선전력 전달장치’는 급전선로 폭을 10cm로 줄여 기존선로 폭의 1/8로 줄였으며 무선전력도 공극간격 20cm에서 25kW까지 전달할 수 있도록 성능이 대폭 향상됐다. 또한 차량의 좌우 허용편차도 24cm로 넓어졌으며 전자기장도 국제적 설계 가이드라인을 충족해 인체안전성에도 문제가 없다.
급전선로 폭이 획기적으로 줄어들고 공장에서 대량으로 모듈제작이 가능해진 만큼 그동안 경제성 측면에서 지적을 받아 온 KAIST OLEV로서는 새로운 급전시설 개발이 실용화에 큰 도움이 될 것으로 전문가들은 예상하고 있다. 임춘택 교수도 “기존 레일형에 비해 공사시간은 10분의 1로 크게 단축되고 급전선로 비용도 80%에 불과해 시공성과 경제성이 모두 크게 개선됐다”고 강조했다.
임 교수 연구팀의 이번 연구성과는 작년 12월 국제전기전자공학회 전력전자 저널 (IEEE Trans. on Power Electronics)에 게재됐다. 임 교수는 올 2월 미국에서 열린 국제 전기차학회 (Conference on Electric Roads & Vehicles)에 초청돼 관련기술에 대해 강연도 진행했다. 한편, 이번 연구는 지식경제부가 지원한 온라인 전기자동차(OLEV) 원천기술개발과제를 통해 수행됐다.
2012.06.22
조회수 14834
-
KAIST, 선박 수중폭발 연구 박차
해양시스템공학전공 신영식 교수
- 15일, 국내최초로 모형 선박을 이용해 수중폭발 실험해 -- “우리나라 수중폭발 분야 기초연구에 시발점 될 것” -
KAIST가 국내에서는 처음으로 선박 수중폭발 연구를 본격화한다.
우리 학교 해양시스템공학전공 신영식 교수가 지난 15일 국내 최초로 모형 선박을 이용해 폭약의 수중폭발로 인한 충격이 선박에 미치는 영향을 분석하기 위한 실험을 실시했다.
연구팀은 가로 X 세로 1m X 2m 크기의 알루미늄 재질 모형 선박을 만들어 속도, 가속도, 압력 측정 센서를 부착했다. 그 후, 물에 모형선을 띄운 상태에서 선박과 폭약의 수평, 수직 거리를 바꿔가며 수중에서 폭약을 폭발시켜 각 센서의 응답 데이터를 기록했다.
신 교수 연구팀은 이번 실험을 통해 컴퓨터 시뮬레이션만으로는 얻을 수 없었던 실제 실험 데이터를 얻어냈다. 이 데이터는 컴퓨터 시뮬레이션의 결과와 비교해 계산 값의 검증에 사용될 계획이다.
KAIST는 이번 실험을 계기로 향후 수중폭발 관련 시뮬레이션 기법을 점차 고도화 해 보다 정확한 수중충격에 대한 예측이 가능해질 것으로 기대하고 있다.
아울러 충격 등의 수중폭발 현상에 대한 이해를 높여, 선박의 탑재장비의 생존성 확보를 위한 연구와 내충격성 향상을 위한 설계의 검토, 변경의 기초자료 등으로 활용할 예정이다.
연구팀은 이번 결과를 바탕으로 근접수중폭발에 의해 발생하는 현상 중 하나로 선박의 침몰을 유발할 수 있는 휘핑현상을 재현하는 실험을 계획하고 있다. 이 연구가 완료되면 휘핑현상에 대한 보다 정확한 이해를 통해 선박의 디자인을 검토, 보완해 함정과 승조원의 생존능력을 확보하는 데 크게 기여할 수 있을 것으로 예상된다.
신영식 교수는 “미국, 러시아 등 군사강국에서는 실제 함선을 이용한 수중폭발실험이 활성화돼 있어 함정의 내충격성 강화 및 탑재장비의 생존성여부에 관한 자료로 폭넓게 활용되고 있지만 군사기밀로 다뤄져 공개되지 않고 있다“며 ”국내 최초로 실시되는 이번 수중폭발 실험은 이 분야 기초연구의 시발점이 될 것“이라고 이번 실험에 의미를 부여했다.
이번 연구를 주도한 수중충격분야 세계적 석학인 신영식 초빙교수는 미 해군대학원에서 약 30년 동안 교수로 재직하면서 수중폭발, 탑재 전자 장비의 충격 내구성 검증, 충격 및 진동문제해결 등의 성과를 인정받아 2005년 이 대학 최고의 영예직인 특훈교수로 임명되기도 했다.
현재 KAIST 해양시스템공학전공 초빙교수로 재직 중인 신 교수는 미국에서의 경험을 바탕으로 수중폭발이 선박이나 해양구조물에 미치는 영향 등 국내에서는 수행하기 어려운 연구를 수행하고 있다.
한편, 이번 연구를 지원한 KAIST 해양시스템공학전공(학과장 한순흥)은 WCU사업으로 설립됐는데 최고의 자질과 잠재력을 지닌 학생들을 교육시키되 기존의 조선해양 관련학과와 차별화된 미래지향적 교육 프로그램을 통해 우리나라 조선해양공학의 미래를 개척할 수 있는 세계적 수준의 엔지니어와 학자 배출을 목표로 하고 있다.
그림1. 각종 센서를 부착해 만든 알루미늄 모형 배를 물 위에 띄운 모습
그림2. 실험에 사용한 모형 선박의 3D 모델과 수중폭발 컴퓨터시뮬레이션
그림3. 수중폭발실험 장면(수중에서 폭약을 폭파해 버블제트가 생겨 물기둥이 솟구치고 있다.)
그림4. 연구팀 사진(신영식 교수가 모형 선박을 가리키면서 연구진들에게 설명하고 있다.)
2012.03.26
조회수 13896
-
전자기기용 ‘그래핀’ 실용화에 한걸음 다가서다
- Nano Letters지 발표, 금속 위에 합성된 그래핀의 친환경, 저비용 분리기술 개발 -
금속 위에서 합성된 넓은 면적(대면적)의 그래핀*을 실용화하기 위한 최대의 걸림돌인 그래핀 분리기술을 저렴하면서도 친환경적으로 처리할 수 있는 획기적인 방법이 국내 연구진에 의해 개발되었다.
※ 그래핀(Graphene) : 흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불림
우리 학교 김택수 교수와 조병진 교수 연구팀이 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)과 글로벌프론티어사업의 지원으로 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters"지 온라인 속보(2월 29일자)로 게재되었다.
(논문명 : Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process)
특히 이번 연구성과는 그동안 어떠한 연구팀도 정확히 측정할 수 없었던 그래핀과 촉매금속간의 접합에너지를 처음으로 정밀히 측정하는데 성공하고, 이를 이용해 촉매금속을 기존처럼 일회용으로 사용하는 것이 아니라, 무한대로 재활용할 수 있게 하여 친환경적이면서도 저렴한 고품질 대면적 그래핀 생산의 원천기술을 개발하였다는 점에서 의미가 크다.
촉매금속 위에서 합성된 대면적 그래핀은 디스플레이, 태양전지 등에 다각적으로 활용될 수 있어 이에 대한 연구가 전 세계적으로 활발히 진행되고 있다. 그러나 이 대면적 그래핀을 실제 전자기기에 응용하기 위해서는 단원자 층인 그래핀을 촉매금속으로부터 손상 없이 떼 내는 것이 무엇보다도 중요하다.
지금까지는 화학약품을 이용해 금속을 녹여 제거함으로써 그래핀을 촉매금속으로부터 분리해왔다. 그러나 이 방법은 금속을 재활용할 수 없을 뿐만 아니라 생산단가도 높아 경쟁력이 없고, 특히 금속을 녹이는 과정에서 많은 양의 폐기물이 발생하여 환경문제를 일으킬 수 있으며, 공정단계 또한 매우 복잡해 그래핀의 양산화에 큰 장벽으로 작용하였다.
김택수, 조병진 교수팀은 금속위에서 합성된 그래핀의 접합에너지를 정밀측정한 후 이를 이용하면 그래핀을 금속으로부터 쉽게 분리할 수 있다는 사실을 밝혀냈다.
또한 이 방법을 사용해 기계적으로 분리된 그래핀을 다른 기판에 전사하지 않고 곧바로 그 위에 전자소자를 제작하는데 성공하여, 기존의 복잡한 그래핀 생산단계를 획기적으로 줄였다. 아울러 그래핀을 떼어낸 후 그 금속기판을 수차례 재활용하여 그래핀을 반복적으로 합성하여도 처음과 같은 양질의 그래핀을 합성할 수 있음을 확인하여 친환경, 저비용 그래핀 양산기술에 새로운 길을 열었다.
이번 연구결과를 통해 매우 간단한 단일 공정만으로 그래핀을 금속으로부터 손쉽게 떼 내어 그래핀 응용소자를 제작할 수 있음에 따라, 향후 그래핀 상용화를 크게 앞당길 수 있을 것으로 전망된다. 조병진 교수는 “이번 연구는 그래핀과 촉매금속간의 접합에너지를 정밀 측정하는데 성공하여 그 결합상태를 규명하였다는 점에서 학문적 의의가 있을 뿐만 아니라, 이를 실제 그래핀 생산기술에 활용하여 지금까지 대면적 그래핀 실용화의 가장 큰 기술적 문제를 해결하였다는 점에서도 의미가 크다”고 연구의의를 밝혔다.
2012.02.28
조회수 19100
-
화학과 학부생, 세계적 저널에 표지논문 게재
- 화학과 4학년 조상연, 물리학과 4년 김수민 학생, 말라리아 연구를 위한 광학영상 기술을 분석해 셀(Cell) 자매지 표지논문에 게재 -- 국내최초 소방관인 故 조용완씨 손자, 3월 의무소방요원으로 입대예정 -
“교수님, 하이젠 베르크(Werner Heisenberg) 같은 역사 속 과학자들은 20대 초반에 세계적인 연구 성과를 냈는데 저는 이대로 가다간 늦어버릴 것 같습니다. 교수님 연구실에서 융합연구를 할 수 있게 도와주세요”
우리 학교 화학과 4학년에 재학 중인 조상연(22) 君이 1학년 때 이 대학에서 물리화학 분야 융합연구의 세계적인 석학인 이효철 화학과 교수를 찾아 와 당차게 부탁한 한 마디다.
조상연 학생이 말라리아 연구와 관련해 제1저자로 발표한 논문이 셀(Cell)지가 발행하는 생명공학분야 최고 권위 학술지인 ‘생명공학의 동향(Trends in Biotechnology, IF=9.644)’ 2월호 표지논문으로 선정됐다.
근래 들어 학부생의 연구 참여가 활발해진 까닭에 과학기술논문인용색인(SCI)급 국제학술지에 논문이 실리는 경우가 가끔씩은 있었지만, 셀 자매지와 같은 세계적인 학술지에, 그것도 표지논문으로 실리는 경우는 거의 없었다. 하지만 오랜만에 KAIST 학부재학생인 조상연 君이 큰일을 이뤄내 학교 안팎으로부터 많은 화제를 모으고 있다.
광주과학고를 2년 만에 조기 졸업하고 2008년 KAIST에 입학한 조 군은 평소 연구에 대한 높은 관심으로 신입생 때부터 KAIST내 다양한 학과를 넘나들며 연구거리를 찾아다녔다.
2학년 때는 화학과 이효철 교수의 지도아래 학부생 연구지원 프로그램인 URP에 참여, ‘시간분해회절에 의한 용액 상 구조 동력학 분석’에 관한 탁월한 연구 성과를 거뒀다. 이 연구로 조 君은 2학년 학생으로는 이례적으로 최우수상을 수상하는 한편 후속연구비 1000만원과 해외학회 참가라는 특전을 받으며 두각을 보이기 시작했다.
바이오 및 뇌 공학과 김동섭 교수와 ‘알카인 수화반응을 촉매하는 단백질의 컴퓨터 디자인’에 대한 연구를 진행하는 한편 EEWS대학원 정유성 교수와는 ‘전산모사를 통한 이산화탄소 흡착 촉매 디자인’ 등에 대한 연구를 수행하기도 했었다.
이후 조상연 君은 2011년 2월부터 약 1년간 바이오광학분야 융합 연구에 대한 세계적 학자인 물리학과 및 광기술연구소 박용근(32) 교수의 지도를 받아 왔다. 이번 셀 자매지에 게재한 논문은 박용근 교수의 지도를 받으며 수행한 연구과제 중 하나다. 같은 공동저자 중 한명인 김수민 학생(24, 제2저자) 역시 물리학과 학부생으로 ‘개별연구제도’를 통해 연구에 참여했다.
조상연 학생은 ‘말라리아 연구를 위한 광학 영상기술’이라는 제목의 이번 논문을 통해 “학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 또 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다”며 문제를 제기했다.
이와 함께 첨단 광학기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 말라리아 연구를 크게 3가지로 나눠 체계적으로 광학기술을 이용하는 전략을 제시했다.
조 君의 이번 연구는 바이오 이미징 기술을 말라리아 감염질환 연구에 통합 적용하고, 말라리아 연구에 적용 가능한 광학영상 방법들을 소개함으로써, 다 학제 간 융합 연구시대에 경쟁력을 갖는 광학-의학연구 전략을 체계적으로 제시한 것으로 높이 평가받고 있다.
조상연 학생은 “고등학교 시절 SEE-KAIST 과제에 출품해 수상하면서 연구에 대한 재미를 느꼈고, 2학년 1학기까지 특정한 학과가 없는 무학과 제도를 운영해 다양한 분야의 융합연구를 할 수 있는 조건을 갖춘 국내 최고의 연구중심대학 KAIST로 진학을 결심했다”며 “특히, 학부생에게 관련분야 최고 교수와 연구기회를 주는 URP 및 개별연구제도로 인해 뛰어난 교수들의 지도와 학교의 충분한 재정적 지원 덕분에 큰 어려움 없이 마음껏 연구를 펼칠 수 있었다”고 말했다.
조 君은 이와 함께 “앞으로 목표는 세상에서 제일 재미있는 융합연구를 하는 과학자가 되는 것”이라며 “제가 하는 연구를 통해 전 세계 어려운 상황에 놓인 많은 사람들을 도우는 데 노력할 것”이라고 말했다.
조 君은 바쁜 학업생활 속에서도 지역사회를 위해 저소득층 중학생들을 위한 봉사단체인 ‘배움을 나누는 사람들’에서 2년간 꾸준히 봉사를 해왔으며, KAIST 자연과학 학술동아리인 ‘KINS’를 설립했고, 자연과학대학 소식지인 ‘KAIST Science’ 기자로도 활동해 왔다.
조 君은 현재 해외 대학원 입학을 계획하고 있으며 올 3월 입대해 의무소방요원으로 군복무를 할 예정이다. 조 君의 할아버지는 우리나라 최초의 소방관인 故 조용완 씨로 소방관에 대한 남다른 인연으로 군 생활을 시작할 예정이다.
한편, 이번 연구는 KAIST ‘신임교원정착연구사업‘과 ’광기술연구소연구사업‘의 일환으로 이뤄졌으며 화학과 학사과정 조상연(22, 제1저자) 君을 포함해 물리학과 학사과정 김수민(24, 제2저자) 학생과 물리학과 김영찬 박사(30, 공저자)가 함께 수행했다.(끝)
붙임 : 논문요약, 보충자료, 사진설명
<논문요약>
논문주제 : 말라리아 연구를 위한 광학 영상기술
학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다. 세계 각국은 말라리아 감염을 연구하고, 말라리아를 진단하고 치료하는 장비 개발에 박차를 가하고 있다.
빌게이츠 Microsoft사 전 회장 부부가 설립한 Bill & Melinda Gates 재단에서 말라리아 연구에 막대한 연구비를 지원하기 시작했으며, Apple, Google, Intel사 등이 연합 설립한 Intellectual ventures사에서도 빛을 이용한 말라리아 진단 연구를 진행하고 있는 것이 그 사례들이다.
최근에는 첨단 광학 기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 박 교수 연구팀은 말라리아 연구를 크게 3가지로 나누어 체계적으로 광학기술을 이용하는 전략을 제시했다.
▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하여 체외에서 광학 영상을 측정하는 방법과 ▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하지 않고, 적혈구 자체의 광학적 신호를 이용하여 체외에서 영상을 획득하는 방법 그리고 ▲체내에서 말라리아 기생충이 숙주 세포를 감염시키는 과정의 광학 영상을 획득하는 방법이다.
이 논문에서는 물리학(광학)과 의학(감염질환)의 효과적인 융합 연구를 위한 체계화된 전략을 소개했기 때문에 실제 말라리아를 연구하는 연구자들에게 실질적인 도움이 될 수 있을 것이라고 평가받고 있다.
제1저자로 참여한 조상연 학생은 “이번 논문은 연구팀에서 수행하고 있는 굴절률 차이를 이용한 광학영상기술 및 최신 광학영상 기술들이 말라리아에 어떻게 이용될 수 있는가를 소개함으로써, 말라리아 진단 및 치료 연구에 힘을 실어줄 수 있을 것으로 기대한다”고 말했다.
<보충자료: 용어설명>
○ SEE-KAIST1992년 첫 행사를 시작으로 `Open-KAIST`와 번갈아 격년제로 실시해오는 행사로 KAIST 연구 성과, 과학고 탐구 성과, 산업체 연구개발 제품 등을 직접 보고 체험할 수 있는 KAIST의 대표적인 과학문화 대중화 행사다.
○ 무학과제도학사과정의 우수한 학생들에게 학과선택의 자율성을 보장하기 위해 학과 구 분 없이 입학해 개인의 적성 등을 고려해 2학년 1학기를 마친 후 학과를 선택하는 제도.
○ URP
학사과정 학생들이 지도교수와 지도조교의 지도하에 실질적인 실험 및 연구를 할 수 있도록, 연구비 지원 및 학점 연계를 통해 학부생의 연구를 현실적으로 지원하는 프로그램
① Long-Term URP 프로그램 (연 1회 실시)
가. 연구기간 : 12개월 (2011년 12월 26일~2012년 12월 21일)
나. 지원내역
* 단독 : 장학금 1,500천원+연구비 3,000천원
* 팀 : 1인당 장학금 1,200천원+연구비 4,000천원
② 겨울/봄학기, 여름/가을학기 URP 프로그램
가. 연구기간 : 5개월~6개월
나. 지원내역
* 단독 : 장학금 1,000천원+연구비 1,500천원 * 팀 : 1인당 장학금 800천원+연구비 2,000천원
○ 하이젠베르크
하이젠베르크는 1901년 독일에서 출생했다. 그의 아버지는 의학교수였고 그는 뮌헨대학에서 아놀드 좀머펠트(Arnold Sommerfeld) 밑에서 이론물리를 공부했고, 1923년에 박사학위를 받았다. 같은 해에 그는 괴팅겐대학에서 보른(Max Born)의 조수가 되었으며, 다음해에는 강사가 된다. 다음 3년간 코펜하겐에서 닐스 보어와 함께 일하고, 1927년부터 1941년 까지 라이프치히대학의 이론물리학 교수가 된다.거기서 볼프강 파울리 등과 연구하며 양자 전기 역학과 양자장 이론을 발전 시켰고, 핵 물리학과 고 에너지 물리학의 발전에 넓고도 깊은 영향을 미쳤다. 불확정성 원리로 유명한 하이젠베르크는 양자역학의 탄생에 기여한 공로로 1932년 노벨물리학상을 받았다.
<사진설명>
조상연 학생의 지도교수인 물리학과 박용근 교수
연구자 사진 : 왼쪽부터 김수민 학생, 김영찬 박사, 조상연 학생
Trends in Biotechnology 2012년 2월 호 논문표지
2012.02.01
조회수 25399
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 14972
-
가상 암세포 실험을 통한 암 전이 핵심회로 규명
- 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시 -
우리학교는 바이오 및 뇌 공학과 조광현교수 연구팀이 IT와 BT의 융합연구인 시스템생물학 연구에 기반을 둔 ‘가상 암세포’ 실험을 통해 암 전이를 유발하는 핵심 분자회로를 규명했다고 14일 밝혔다.
이번 연구를 통해 알킵(RKIP)이 매개가 되는 암 전이 조절과정과 핵심회로가 규명됐다. 이로써 향후 이를 표적으로 하는 항암제 개발 등 IT를 이용한 생명과학 응용연구의 중요한 발판을 마련하게 됐다.
특히, 융합연구를 통해 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시하게 됐다.
상피세포가 중간엽세포로 변화하는 과정은 종양세포의 전이단계에서 일어나는 매우 중요한 과정이다. 이 과정의 주요 특징 가운데 하나는 세포 간 결합을 조절하는 단백질인 이카드헤린(E-cadherin)의 양이 급격히 줄어드는 것이다.
이카드헤린의 발현량은 어크(ERK)와 윈트(Wnt)가 포함된 다양한 신호전달경로에 의해 조절되는 것으로 알려져 있다. 하지만, 이들 신호전달경로는 다중결합 피드백회로에 의해 서로 복잡하게 얽혀 있어 실험적인 방법으로는 이들의 동역학 특성과 숨겨진 조절 메커니즘을 분석하는 것이 매우 어려운 것으로 여겨져 왔다.
조광현 교수 연구팀은 이에 대한 수학모형을 개발하고 대규모 컴퓨터시뮬레이션 분석을 통해 이들 결합 피드백회로의 복잡한 상호작용으로 인해 일어날 수 있는 다양한 생명현상을 규명했다.
또한, 어크에 의한 알킵(RKIP) 인산화와 스네일(Snail)에 의한 알킵 전사억제 과정으로 구성된 결합 양성피드백 회로가 임계점 이상의 자극세기에서만 이카드헤린이 급격하게 발현되도록 조절함으로써 외부 노이즈에 강건한 스위칭 동작을 유발한다는 것을 규명했다.
아울러 알킵이 스네일과 슬러그(Slug)의 발현을 억제함으로써 이카드헤린의 발현이 증가되고, 이 때문에 전이과정이 억제될 수 있음을 보였다.
지금까지 전이를 일으키는 종양세포에서 알킵의 발현이 현저하게 감소되었다는 많은 임상적 보고가 있었지만, 그 근본적인 메커니즘은 알려져 있지 않았다.
한편, 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구사업과 기초연구실육성사업으로 수행됐으며, 연구결과는 순수 컴퓨터시뮬레이션 결과임에도 이례적으로 동물 또는 임상실험의 결과가 주로 게재되는 암 전문 학술지 ‘캔서 리서치(Cancer Research)’지 9월 1일자에 게재됐다.
<그림설명>암 전이과정을 조절하는 세포내 분자들 간의 다중결합 피드백 회로의 동역학 특성 및 조절메커니즘의 분석결과. 이 그림은 암 전이 조절회로에 대한 개념도와 시뮬레이션 분석에 사용된 방법 및 결과를 설명한 것이다.
A. 암 전이과정을 조절하는 세포내 주요 신호전달 네트워크의 예시.
B. 전자공학적 논리회로 분석기법을 이용해 암전이 조절회로를 정량적으로 모사하고 핵심 메커니즘을 분석하는 과정.C. 대규모 컴퓨터시뮬레이션 분석을 통해 알킵에 의해 매개되는 결합양성 피드백 회로가 노이즈가 주어지더라도 강건하게 이카드헤린의 스위칭 동작을 유발함을 보이는 예시.
<용어설명>
◯중간엽세포: 발생단계의 중배엽에서 기원된 결합조직세포로서 여러 다른 결합조직세포로 분화할 수 있는 능력이 있는 세포.
◯EMT: 상피세포가 중간엽세포로 변화하는 과정(Epithelial Mesenchymal Transition).
◯어크(ERK): 세포의 유사분열 신호를 전달하는 단백질의 한 종류.
◯윈트(Wnt): 세포의 유사분열 신호를 전달하는 단백질의 한 종류. 특히 배아의 발생단계에서 중요한 역할을 함.
◯이카드헤린(E-cadherin): 세포 접합에 중요한 역할을 하는 단백질의 한 종류.
◯알킵(RKIP): 유사분열 신호를 조절하는 단백질의 한 종류. 특히, 암의 전이과정에서 중요한 역할을 하는 것으로 알려져 있음.
◯스네일(Snail): 이카드헤린의 발현을 억제함으로써 암 전이 과정을 촉진시키는 역할을 하는 단백질.
◯분자회로: 세포내 유전자, 단백질 등의 분자간 상호작용을 나타낸 회로
◯상피세포: 동물의 몸 표면이나 내장기관의 내부 표면을 덮고 있는 세포
◯전이단계: 암이 다른 부위로 퍼지는 단계
◯다중결합 피드백회로: 피드백회로가 2개 이상 중첩된 구조
2010.09.14
조회수 17591
-
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 -
- 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 -
우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다.
이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다.
개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다.
현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다.
이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다.
플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다.
플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다.
지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다.
또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다.
식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다.
라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다.
그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다.
한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다.
<용어설명>
○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다.
○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다.
○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다.
○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 18752
-
김상욱 교수, 저비용 대면적 나노패턴기술 개발
- ACS Nano誌 온라인판 19일자에 게재 -
나노기술의 오랜 난제가 KAIST와 삼성전자 LCD사업부에 의해 풀렸다.
우리학교 신소재공학과 김상욱 교수팀과 삼성전자 LCD사업부(사장 장원기)가 산학공동연구를 통해 분자자기조립현상(Molecular Self-assembly)과 디스플레이용 광리소그래피(Optical Lithography) 공정을 융합해 나노기술의 오랜 난제로 여겨지던 ‘저비용 대면적 나노패턴기술’ 개발에 성공했다.
최근 나노기술 분야에서는 서로 다른 종류의 고분자를 화학적으로 결합시킨 블록공중합체가 새로운 나노패턴소재로 각광받고 있다.
분자조립 과정을 통해 스스로 형성하는 초미세 나노구조를 블록공중합체에 이용하게 되면 최신 반도체공정으로도 만들기 힘든 수~수십 나노미터 크기의 미세한 점이나 선 등을 쉽고 값싸게 제조할 수 있다.
그러나 자연적으로 형성되는 블록공중합체 나노패턴은 그 배열이 불규칙하고 결함이 많아 상용화를 위한 기술적인 걸림돌로 지적되어 왔다.
블록공중합체 나노패턴을 반도체나 디스플레이에 이용하기 위해서는 임의의 대면적에서 블록공중합체 나노패턴을 원하는 형태로 잘 정렬시킬 수 있는 기술이 필수적이다.
그러나 현재까지 개발된 기술들은 방사광가속기와 같은 매우 값비싼 장비가 필요하고 임의의 넓은 면적에 적용할 수 없다는 근본적인 한계를 가지고 있었다.[그림.1] 자연적으로 형성된 무질서한 배열의 블록공중합체 나노패턴 (왼쪽)과 대면적 나노패턴공정으로 결함 없이 잘 배열된 블록공중합체 나노패턴 (오른쪽)
김 교수팀은 이번에 개발된 융합 기술을 통해 저비용 패턴공정인 디스플레이용 광리소그라피로 대면적에서 마이크로미터(1㎛=100만분의 1m) 크기의 패턴을 만든 후, 분자조립현상을 이용해 수십 나노미터(1㎚=10억분의 1m) 크기의 패턴으로 밀도를 백 배이상 증폭시킴으로써 대면적에서 잘 정렬된 나노패턴을 형성시키는데 성공했다.
[그림.2] 대면적에서 마이크로 크기의 패턴이 수십나노미터 크기의 패턴으로 패턴의 밀도를 증폭시키는 과정(위쪽)과 이를 통해 대면적에서 형성된 20 나노미터 선폭의 초미세 분자조립 나노구조(아래쪽)
이는 기존 나노패턴기술에 비해 더 단순하고 공정비용이 저렴하며, 넓은 면적에서 연속 공정이 가능해 차세대 반도체나 디스플레이 분야에 폭넓게 이용될 수 있을 것으로 기대된다.
연구책임자인 김상욱 교수는 “이번 연구결과는 분자조립 나노패턴기술을 저비용, 대면적화 함으로써 실제 나노소자공정에 이용할 수 있는 가능성을 크게 높였다는데 의미가 있다”고 말했다.
이 연구는 김 교수의 지도하에 정성준 박사가 주도적으로 진행했으며 현재 정 박사는 KAIST에서 박사과정을 마친 후, U.C. Berkely에서 박사후연구원(Post doc)으로 근무하고 있다.
한편, 이번 연구결과는 KAIST 김상욱 교수팀과 삼성전자 LCD사업부의 3년간에 걸친 공동연구의 결실로서 그간 선행연구결과들이 Nano Letters, Advanced Materials, Advanced Functional Materials지 등 저명 학술지에 발표된 바 있으며, 최종적으로 개발된 ‘저비용, 대면적 나노패턴기술’은 최근 나노기술분야의 세계적인 학술지인 ‘ACS Nano誌’ 8월 19일자 온라인 판에 소개됐다.
2010.08.23
조회수 24492
-
고성능 전자소자 소재 "절반-금속" 나노선 개발
-교과부 21세기 프론티어사업단 김봉수교수팀, 나노신소재 합성성공-
한 물질이 금속과 비금속의 특성을 나타내 기존 반도체 소자의 성능을 획기적으로 개선시킬 수 있는 "절반-금속 (half-metallic) 강자성 규화금속 나노선"이 개발됐다.
우리학교 화학과 김봉수 교수팀이 절반-금속성을 갖는 규화철 나노선을 최초로 합성함으로써 통하여 ‘차세대 스핀전자공학’에 필수적인 스핀 주입(spin injection) 물질을 개발했다.
스핀주입이란 외부의 전기장이나 자기장에 의해 물질 내 전자의 자기적 특성(스핀)을 조절하는 것인데, 이번에 개발된 규화철 나노선은 한 방향 스핀을 갖는 전자들에게는 전도성 금속으로 작용하고 그 반대방향 스핀을 갖는 전자에게는 절연체로 작용하여 한 가지 스핀방향만을 가지는 전류를 만들어 낼 수 있다.
이런 기능은 정보신호로 변환이 가능하기 때문에 이 나노선으로 고성능, 고집적, 저전력 특성을 가지는 전자소자를 만들면 현재 실리콘 반도체의 한계를 극복할 수 있다.
김 교수팀은 기존에 개발한 규화철(FeSi) 나노선에 산소기체를 도입한 간단한 열확산 법을 이용하여 매우 높은 큐리 온도 (Tc=840 K)에서도 강자성을 유지하고 높은 스핀편극도를 가지는 절반-금속 강자성 규화철(Fe3Si) 나노선으로 완벽하게 변환하였으며, 같은 방법으로 규화코발트(Co2Si) 나노선을 변환시켜 최초로 단결정 코발트(Co) 나노선을 합성하는 등 소재의 조성을 조절하는 합성법의 일반화에도 성공하였다.
김 교수팀이 개발한 강자성 규화철(Fe3Si) 나노선은 나노 소자 제작을 위한 빌딩 블록(building blocks)에 활용될 수 있어, 효율적이고 소형화된 초고성능 자기 메모리 및 거대 자기저항(GMR) 센서의 개발이 가능해졌다. 이에 따라 양자 메모리 처리와 고주파 전자통신 소자 등 다양한 나노 소자 개발에 기술적 전기(轉機)가 마련됐다.
한편, 이번 연구결과는 8월초 나노기술(NT) 분야의 가장 권위있는 학술지인 "나노 레터 (Nano Letters)"지 온라인판에 게재되었고, 현재 국내 특허 출원 중이다.
2010.08.19
조회수 16616