-
칩 스케일 초 저잡음 펄스 신호 발생기술 개발
우리 대학 물리학과 이한석 교수와 기계공학과 김정원 교수 공동연구팀이 실리카 *마이크로공진기를 이용해 매우 낮은 잡음으로 펄스 신호를 주기적으로 발생할 수 있는 신기술을 개발했다고 17일 밝혔다.
☞ 마이크로공진기(microresonator): 특정 공진 주파수에서 공진을 일으킬 수 있도록 한 마이크로미터~밀리미터 크기의 소자이다. 굴절률 차이에 의한 내부전반사로 공진기 내부에서 광 파워가 공진 형태로 집약되는 특성을 보인다.
이 기술을 이용하면 3 밀리미터(mm) 지름의 칩으로부터 22 기가헤르츠(GHz)의 높은 *반복률과 2.6 펨토초(385조 분의 1초)의 매우 낮은 *펄스 간 시간 오차를 동시에 가지는 광 펄스열(optical pulse train)을 발생할 수 있다. 따라서 초고속 광대역 아날로그-디지털 변환기(analog-to-digital converter, ADC)의 샘플링 클럭이나 5G·6G 통신용 초 저잡음 마이크로파 신호원으로 활용이 기대된다.
☞ 반복률(repetation rate): 단위 시간(1초) 동안 지나가는 펄스의 수로 주기의 역수에 해당한다. 반복률이 22GHz일 경우, 펄스틑 1초 동안 220억 번 지나간다.
☞ 펄스 간 시간 오차(timing jitter): 펄스가 이상적인 주기로부터 얼마나 어긋나는지를 나타내는 값으로 펨토초 펄스 레이저의 중요한 특성 중 하나이며 일반적으로 레퍼런스 신호원과 비교하여 어긋나는 정도를 나타낸다.
펨토초(1펨토초는 1,000조분의 1초) 수준의 펄스 폭을 가지는 광 펄스를 생성하는 모드 잠금 레이저(mode-locked laser)는 광 주파수 빗 분광학(optical frequency comb spectroscopy, 2005년 노벨 물리학상)이나 펄스 확장 증폭 기술(chirped pulse amplification, 2018년 노벨 물리학상)과 같이 기초 과학 분야에서 매우 중요한 광원으로 활용되고 있다.
최근에는 펨토초 펄스를 레이저 장비가 아닌 칩-스케일의 마이크로공진기 소자에서 생성하는 마이크로콤(micro-comb) 기술이 활발하게 연구되고 있다. 특히 기존의 모드 잠금 레이저가 100메가헤르츠(MHz) 정도의 반복률을 가진 것에 반해 마이크로콤은 기존보다 100배 이상인 수십 기가헤르츠(GHz) 이상의 높은 반복률을 가지기 때문에 다양한 ICT 시스템의 개발 및 제작 등에 폭넓게 적용될 것으로 기대되고 있다.
마이크로콤은 이론적으로는 1펨토초 수준의 매우 낮은 시간 오차를 가질 수 있을 것으로 예측됐지만, 기존에는 측정의 한계 때문에 이러한 성능을 정확하게 규명할 수 없었고 잡음 성능을 최적화할 수도 없었다.
공동연구팀의 이번 연구는 이한석 교수팀이 보유한 1억 이상의 매우 높은 *Q 인자를 갖는 온칩 마이크로공진기 제작기술과 김정원 교수팀이 보유한 100아토초(100아토초는 1경분의 1초) 분해능의 펄스 간 타이밍 측정기술의 결합으로 가능했다.
☞ Q 인자(Quality factor): 진동자나 공진기(resonator)가 얼마나 오랫동안 에너지(여기서는 빛)를 담아둘 수 있는지를 나타내며, 중심주파수에 따른 공진기의 대역폭을 특성 짓는 값이다. 공진기는 높은 Q 인자 값을 가질수록 더 오래 진동할 수 있으며, 외부로부터 주입되는 에너지를 내부에 더욱 고밀도로 집중시킬 수 있다. 반도체 미세공정기술을 기반으로 칩 상에 제작된 마이크로공진기는 높은 Q 인자를 갖는다고 하더라도 대략 1000만 정도의 값을 갖는 것이 일반적이다.
공동연구팀은 기존 연구보다 100배 이상 정밀한 타이밍 측정기술을 이용해 펄스 간 시간 오차를 정확하게 측정할 수 있었고, 그 결과를 이용해 마이크로공진기의 최적 동작 조건을 찾아냄으로써 마이크로콤의 잡음 성능을 획기적으로 높일 수 있었다.
공동연구팀 관계자는 이 신기술을 활용할 경우 다양한 온-칩 광신호처리 시스템의 구현이 가능하다고 내다봤다. 그는 특히 아날로그-디지털 변환기의 경우 샘플링 클럭의 지터 성능에 의해 제한되고 있는데, 이번 연구의 타이밍 성능은 22 기가헤르츠(GHz)의 샘플링 속도에서 12비트의 유효 비트 수(effective number of bits, ENOB)를 달성할 수 있어 기존 장비의 성능을 뛰어넘을 것으로 예상했다.
이한석 교수는 "펄스 발생효율과 잡음 성능을 더욱 개선하기 위한 새로운 광소자 구성기법을 연구 중ˮ이라고 말했다. 아울러 김정원 교수도 "개발된 기술을 매우 낮은 위상잡음의 K-밴드 마이크로파 신호원과 초고속 아날로그-디지털 변환기용 샘플링 클럭으로 활용하는 후속연구를 진행 중ˮ이라고 밝혔다.
우리 대학 나노과학기술대학원 정동인 박사과정 학생과 기계공학과 권도현 박사과정 학생이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `옵티카(Optica)' 8월 28일 字에 게재됐다. (논문명: Ultralow jitter silica microcomb)
한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.09.17
조회수 26719
-
전자 신호의 오차를 1경분의 1초 수준으로 제어하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 초고속 펄스 레이저를 이용하여 전자 신호의 시간 오차를 1경분의 1초(100아토초=10-16초) 이하 수준까지 측정하고 제어하는 기술을 개발했다. 이 기술을 이용하면 매우 정밀한 시간 성능이 요구되는 차세대 데이터 변환기와 초고속 통신 및 집적회로의 성능을 획기적으로 높일 수 있을 것으로 기대된다.
현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 전자및정보공학과 정하연 교수팀과 공동연구로 수행된 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7월 22일자에 게재됐다. (논문명: Attosecond electronic timing with rising edges of photocurrent pulses)
초고속 펄스 레이저를 이용하면 기존의 기술들로 달성하기 어려웠던 시간 안정도를 얻을 수 있으며, 지난 십여년간 이러한 레이저로부터 하나의 마이크로파 주파수 성분을 걸러내어 낮은 위상잡음의 사인파 형태 전자 신호를 발생하는 연구가 세계적으로 활발하게 이루어졌다.
하지만 많은 디지털 및 정보통신 시스템들은 사인파가 아닌 펄스나 사각파 형태의 클럭 신호를 사용하는 경우가 많으며, 아직까지 초고속 레이저로부터 펄스 혹은 사각파 형태의 전자 클럭 신호를 생성하여 그 잡음 특성을 측정한 연구는 존재하지 않았다.
연구팀은 독자적으로 개발한 시간 오차 측정기술을 이용하여 초고속 레이저로부터 생성한 전류 펄스 신호의 시간 오차를 50아토초 분해능으로 측정할 수 있었다. 이를 통하여 전류 펄스의 상승에지(rising edge)에서의 시간 오차가 100아토초 수준으로 매우 작을 수 있음을 세계 최초로 규명했다.
연구팀은 또한 이러한 시간 오차가 광신호의 진폭 잡음이 시간 영역에서의 잡음으로 변환되는 과정에 의하여 제한된다는 것을 밝혔으며, 광신호의 진폭 잡음을 제어함으로써 전류펄스의 상승에지에서의 시간 오차를 64아토초 수준까지 제어할 수 있었다.
최근 전자 시스템과 데이터 속도가 급격하게 빨라짐에 따라 펄스나 사각파 형태의 전자 클럭 신호의 시간 오차를 줄이는 것이 매우 중요해지고 있으며, 고속 데이터 전송 및 데이터변환, 고속 칩간통신, 5G 통신 등에서는 이미 수십 펨토초(펨토초=10-15초, 1000조분이 1초) 수준의 시간 오차를 요구하고 있다. 이번 연구 결과는 초고속 레이저를 이용하면 이러한 최근의 요구보다도 훨씬 우수한 펨토초 이하의 100아토초(1경분의 1초) 수준까지도 전자 클럭 신호의 시간 오차를 제어할 수 있음을 의미한다. 따라서 이번 연구 결과를 이용하면 향후 초고속 레이저의 ICT 분야에서의 활용이 보다 본격화될 수 있을 것으로 기대된다.
김 교수는 “이미 이번 논문의 후속 결과로서 매우 작은 시간 오차를 가지는 광전류 펄스를 이용하여 전자칩에 클럭 신호를 주입하고 동작시키는 데에도 성공했다”고 밝히며, “초고속 레이저를 이용한 다양한 고성능 ICT 분야에서의 응용을 계속 연구할 계획”이라고 말했다.
이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.07.24
조회수 22258
-
임성갑 교수 연구팀, 초고굴절 투명 플라스틱 필름 개발에 성공
우리 대학 생명화학공학과 임성갑 교수 연구팀이 서울대 차국헌 교수(화학생물공학부) 및 경희대 임지우 교수(화학과) 연구팀과 공동 연구를 통해 단 한차례의 증착 반응을 이용해 1.9 이상의 고굴절률을 갖는 투명 플라스틱 필름을 제조하는 기술을 개발했다.
생명화학공학과 김도흥 박사와 장원태 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제적인 학술지 '사이언스 어드밴시스(Science Advances)'誌 7월 8일 자 온라인판에 게재됐다. (논문명: One-Step Vapor-Phase Synthesis of Transparent High-Refractive Index Sulfur-Containing Polymers
굴절률이란 진공상태에서의 빛의 속도와 어떤 물질에서의 빛의 속도의 비율로, 빛이 그 물질을 통과할 때 꺾이는 정도를 나타내는 척도다. 최근 모바일 기기 및 이미지 처리(imaging) 등에 사용되는 다양한 광학 부품의 소형화 추세와 함께 더욱 얇은 두께에서 많은 빛의 굴절을 유도하는 고굴절률 투명 소재의 수요가 급격히 늘어나고 있다.
고분자(플라스틱) 소재들은 특성이 우수하고, 다양한 형태로 쉽게 가공할 수 있다는 장점으로 인해 플라스틱 안경 렌즈 등과 같이 다양한 분야에 널리 활용되고 있다. 하지만 현재까지 개발된 고분자 소재 가운데 굴절률이 1.75를 넘는 재료는 극히 드물고, 비싼 원료와 복잡한 합성 과정이 필요하며, 무엇보다도 소재 관련 원천기술의 대부분은 일본이 보유하고 있다는 데 문제가 있다. 따라서 기존 재료와 비교할 때 가볍고 저렴하며 자유자재로 가공할 수 있는 광학 소자 부품 제작을 위해서는 고성능의 고굴절 고분자 재료 확보가 매우 중요하다.
공동 연구팀은 단 한 차례의 화학 반응만으로 1.9 이상의 굴절률을 가지면서도 투명도가 우수한 새로운 형태의 고분자 박막 제조 기술을 개발하는 데 성공했다. 공동 연구팀은 원소 상태의 황이 쉽게 승화한다는 점을 이용, 기화된 황을 다양한 물질과 중합하는 방법을 적용해 고굴절 고분자를 제조했다. 이 방법으로 지나치게 긴 황-황 사슬의 형성을 억제하는 한편 높은 황 함량에서도 우수한 열 안정성과 동시에 가시광선 전 영역에서 투명한 비결정성 고분자를 만드는 개가를 올렸다. 연구팀은 기상 반응의 특성 때문에, 실리콘 웨이퍼나 유리 기판뿐만 아니라, 미세 요철 구조가 있는 다양한 표면에도 표면 형상 그대로 고굴절 박막을 코팅할 수 있다는 점과 함께 1.9 이상의 굴절률을 갖는 고분자를 세계 최초로 구현하는 데 성공했다.
이 기술은 고 굴절 플라스틱 소재 원천기술의 국산화와 더불어, 디스플레이의 밝기 향상을 위한 표면 코팅 재료, 디지털카메라 센서용 마이크로 렌즈 어레이 등 얇은 두께와 높은 굴절률, 우수한 가공성 등이 요구되는 최신 IT 기기 분야에 널리 적용될 수 있을 것으로 기대가 크다.
이번 연구에 교신저자로 참여한 경희대학교 임지우 교수는 "기체 상태의 황을 고분자 제조에 이용한다는 발상의 전환이 초 고굴절, 고 투명성 고분자 박막 제조기술의 원천이 됐다ˮ면서 "향후 고굴절 소재뿐만 아니라 평면 렌즈, 메타 렌즈 등으로 대표되는 차세대 초경량 광학 소재를 구현하는데 핵심적인 역할을 할 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 과학기술정보통신부 글로벌프론티어사업(나노 기반 소프트 일렉트로닉스 연구단) 및 선도연구센터 지원사업(웨어러블 플랫폼 소재 기술센터), 그리고 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2020.07.14
조회수 24115
-
김용훈 교수 연구팀, 점점 작아지는 나노소자 더 똑똑하게 설계한다
우리 대학 연구진이 차세대 반도체 소자 설계의 기반이 되는 물리학 표준이론의 대안(alternative)을 제시했다.
전기및전자공학부 김용훈 교수 연구팀은 현대 양자수송 표준이론의 대안을 제시, 나노소자의 에너지 특성 까지 정확히 예측할 수 있는 이론을 확립하고 소프트웨어로 구현 했다고 14일 밝혔다.
일상적으로 쓰는 가전제품에서는 전자가 입자적 성격을 띠고 고전적으로 흐르지만, 최신 전자제품에 들어있는 첨단 나노소자에서는 전자가 양자적 특성을 띠고 전혀 다르게 움직인다.
원자나 분자 수준에서 단위정보를 처리하는 신개념 반도체 소자나 수소전지 같은 차세대 에너지 소자의 설계를 위해서는 이 같은 미시세계에서의 전자 및 스핀의 양자수송(quantum transport) 특성을 반영하여 소자의 동작을 미리 예측하는 과정이 필수적이다.
20세기 후반에 확립된 양자수송에 대한 표준이론은 나노소자를 채널영역과 그에 연결된 무한한 두 개의 전극으로 구성된 열린 양자계(open quantum system)로 기술한다.
이를 바탕으로 첨단 트랜지스터, 태양전지, LED 등 다양한 반도체 소자의 구동을 해석하려는 노력이 있지만, 이 방법으로는 전도성 이외 무한한 전극이 포함된 소자의 에너지를 기술할 수 없어 에너지 소자의 설계에 활용하기에는 한계가 있었다.
연구팀은 이 한계를 극복하고자 비평형 상태의 나노소자를 닫힌 양자계로 보고, 이 안에서의 양자수송 현상을 한 쪽 전극에서 다른 쪽 전극으로 전자가 광학여기(optical excitation) 되는 현상에 대응시키는 관점을 제안했다. 또한 이를 통해 소자의 에너지를 최소화하는 방식의 이론을 개발 하고 소프트웨어로 구현했다.
이 계산방식을 활용하면 소자의 전류-전압 특성 이외 에너지 특성까지 기술할 수 있어, 특히 배터리 같은 에너지 저장소자, 촉매나 연료전지 같은 에너지 변환소자 등 원자 수준 에너지 소자 설계의 중요한 실마리가 될 것으로 기대된다.
과학기술정보통신부와 한국연구재단이 추진하는 중견연구지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어 사업의 지원으로 수행된 이번 연구의 성과는 세계적인 학술지 어드밴스드 사이언스(Advanced Science)에 7월 1일 게재됐다.
2020.07.14
조회수 20524
-
"60년 만에 증명했다" 왼손 방향 스핀파 세계최초 보고
우리 대학 물리학과 김갑진 교수, 김세권 교수, 김창수 박사, 이수길 박사 연구팀이 우리 대학 신소재공학과 박병국 교수, 육종민 교수 연구팀 및 한국표준과학연구원(KRISS, 원장 박현민) 양자기술연구소 양자스핀팀과 함께 협업 연구하여 1960년대 이론으로만 소개됐던 왼손 방향으로 회전하는 스핀파를 세계최초로 증명했다. 이로써 스핀을 이용한 차세대 소자개발에 새로운 지평선이 열릴 것으로 전망된다.
공동연구팀은 전이금속 코발트(Co)와 희토류 가돌리늄(Gd)이 일정 비율로 혼합된 CoGd 준강자성체*에서 왼손 방향의 세차운동**을 하는 스핀파를 측정하고 이에 기반한 물리 현상들을 새롭게 밝혀냈다.
*준강자성체(ferrimagnet): 서로 다른 크기의 반평행한 자화들로 이루어진 자성체
**세차운동(precession): 회전하는 천체나 물체의 회전축 자체가 도는 형태의 운동이나 그 현상
스핀(spin)과 일렉트로닉스(electronics)의 합성어인 스핀트로닉스 기술은 전자의 전하와 스핀을 동시에 제어하는 기술로, 기존 전자소자의 기술적 한계를 극복할 수 있을 것으로 전망되고 있다.
스핀들의 집단적 움직임을 나타내는 스핀파의 경우, 작동 주파수가 매우 높은 영역에 분포하고 전력의 소비가 매우 적으므로 초고속 저전력 소자에 적용할 수 있다.
스핀트로닉스를 실현하려면 전자의 스핀 방향을 자유롭게 제어하여 정보를 저장할 수 있어야 한다. 그러나 스핀을 결정하는 물리적 원인과 제어 방법, 스핀의 회전 방향 분석 등 복합적이고 난도 높은 연구가 필요하다.
주변에서 흔히 볼 수 있는 자석을 잘게 쪼개면, 전자스핀 하나에 해당하는 작은 자석까지 나눌 수 있다. 이 작은 자석은 자기장이 주어지게 되면 오른손 방향으로 세차운동을 하는 성질을 갖는다.
그러나 반평행하게 정렬된 코발트와 가돌리늄의 단위 자화는 회전 관성이 더 큰 가돌리늄의 자화 때문에 전체적으로 왼손 방향으로 회전하는 성질을 가질 수 있다. 1960년대에 준강자성체의 세차운동에 대한 이론들이 발표되면서 왼손 방향 운동이 예측됐지만, 현재까지 미시적인 수준에서의 실험으로는 관찰되지 못했던 현상이다.
공동 연구팀은 빛과 스핀파 사이의 충돌을 이용하는 기법인 브릴루앙 광산란법(Brillouin light scattering)을 사용해 이론을 실험으로 증명했다. CoGd 준강자성체에 빛을 쪼아 스핀파와 충돌시킨 후, 되돌아온 빛을 분석해 스핀파가 가진 에너지와 운동량을 알아낸 것이다.
이번 연구에서는 수십 피코초(ps, 1000억분의 1초) 영역에서 왼손 방향 운동을 처음으로 관찰했으며, 준강자성체의 자화보상온도에서 스핀파 에너지가 0 근처로 수렴하고 자기장의 증가에 따라 각운동량 보상온도가 같이 증가하는 현상 등도 새롭게 밝혀냈다.
KRISS 황찬용 책임연구원은 “지금까지는 오른쪽으로 도는 자화를 기반으로만 이론이 제시되고 실험이 진행됐다”라며, “스핀파의 왼손 방향 운동을 최초로 규명함으로써 차세대 스핀트로닉스 소자개발에 새로운 지평선이 열릴 것으로 기대된다”라고 밝혔다. 또한 우리 대학 김세권 교수는 "준강자성체의 보상점에서 나타나는 새로운 물리현상을 세계 최초로 관측했다는 점에서 큰 의미를 가진다"고 평했으며, 김갑진 교수는 "이번 연구는 국내 연구진들이 공동연구를 통해 시너지를 일으켜 이룩한 성과로서 그 가치가 있다"고 밝혔다.
국가과학기술연구회 창의형융합연구사업(CAP), 한국연구재단 미래반도체 사업, 미래소재 디스커버리 사업, KAIST 특이점(프렙) 연구의 지원을 받은 이번 연구결과는 물리학 분야의 세계적 학술지인 네이처 머티리얼즈(Nature Materials–IF: 38.887)에 6월 30일 온라인 게재됐다.
2020.06.30
조회수 19881
-
뼈의 단단함을 모사해 광학적 특성을 매우 증대시킨 신물질 개발
우리 연구진이 동물 뼈가 그의 구성성분인 단백질보다 수천 배 단단할 수 있는 생체역학적 원리를 모사해 광학적 비선형성이 기존 물질 대비 수천에서 수십억 배나 큰 신물질을 개발했다.
비선형성이란 입력값과 출력값이 비례관계에 있지 않은 성질인데 광학에서 큰 비선형성을 확보할 경우, 빛의 속도로 동작하는 인공 신경망이나 초고속 통신용 광 스위치 등의 광소자를 구현할 수 있다.
우리 대학 신소재공학과 신종화 교수 연구팀은 벽돌을 엇갈려 담을 쌓는 것과 같이 나노 금속판을 3차원 공간에서 엇갈리게 배열하면 물질의 광학적 비선형성이 매우 크게 증대될 수 있음을 확인했다. 신종화 교수 연구팀이 이번 연구를 통해 발견한 비선형성 증대원리는 광학뿐만 아니라 역학, 전자기학, 유체역학, 열역학 등 다양한 물리 분야에도 적용이 가능하다.
KAIST 신소재공학과 장태용 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `커뮤니케이션즈 피직스(Communications Physics)' 5월 8일 字 온라인판에 게재됐다. (논문명 : Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity).
영화 스타워즈의 광선 검처럼 잘 제어된 빛을 만드는 것이나 빛만으로 구동되는 광컴퓨터를 만드는 것은 비선형성을 이용할 때 가능한데, 아직 실현되지 않고 있는 이유는 강한 비선형성을 가진 소재가 없기 때문이다. 자연 물질의 작은 비선형성으로도 초고속 광소자, 3차원 광식각 공정, 초 고분해능 현미경 등의 기술들이 구현될 수 있지만, 이들은 크고 비싼 고출력 레이저를 사용하거나, 큰 장비 혹은 소자가 필요하다는 공통적인 한계를 지니고 있다.
이를 극복하기 위해 기존에는 미세한 인공 구조체를 설계해서 그 틈에 빛을 모으는 방법이 많이 시도돼왔다. 비선형성은 빛의 세기에 비례하기 때문에 이 같은 방법을 이용하면 같은 부피의 자연 물질 대비 작은 빛의 세기로 비슷한 수준의 비선형 효과를 얻을 수 있다. 그러나 최대로 얻을 수 있는 비선형 효과의 크기는 결국 달라지지 않기 때문에 응용하는데 한계가 있다.
신 교수 연구팀은 물질의 근본적인 전기적 특성인 유전분극(물체가 전기를 띠는 현상)을 매우 크게 조절하는 방법을 고안했다. 나노 금속판이 3차원에서 엇갈려 배열돼있으면 국소분극이 공간을 촘촘하게 채우면서, 마치 시냇물이 모여서 강이 되듯, 전체적으로 매우 큰 분극을 만들게 된다는 점에 착안했다. 빛의 세기가 아닌 분극의 크기를 조절해 큰 비선형성 및 비선형 효과를 얻는 방법은 이번 신 교수 연구팀이 이번 연구에서 처음 제시한 개념인데 비선형 광학이 60년 동안 달성하고자 했던 고효율의 작은 비선형 광소자 개발에 한 발 더 다가선 것으로 평가되고 있다.
연구팀은 이번에 고안한 메타물질(자연계에 존재하지 않는 특성을 구현하기 위해 매우 작은 크기로 만든 인공 원자의 주기적인 배열로 이루어진 물질)이 시간적으로 짧은 광신호에 대해서도 큰 비선형 효과를 얻을 수 있음을 통해 기존보다 효율적이면서도 더 빠른 광소자 구현이 가능함을 확인했다. 이 연구에서 활용된 소자는 비슷한 신호 시간을 가지는 기존 소자보다는 에너지 효율이 약 8배나 뛰어나고 비슷한 에너지 효율을 가지는 기존 소자보다도 신호 시간은 약 10배 정도 짧다. 즉, 신호의 시간과 소요되는 에너지의 곱으로 표현되는 성능 기준으로 보면, 이 소자는 현재까지 개발된 광소자 중 가장 우수한 성능을 보였다.
연구팀은 또 고안한 메타물질이 광학 이외의 물리 현상에도 적용될 수 있음을 입증했다. 연구팀은 단백질의 단단함 대비 뼈의 단단함을 설명하는 모델이 이번 연구에서 고안한 광학적 비선형성 증대원리와 수학적으로 매우 유사함을 증명했다. 따라서 유체역학에서의 물질전달률, 열역학에서의 열전도율 등의 증대에도 신 교수 연구팀의 연구방법이 적용될 수 있을 것으로 기대된다.
신종화 교수는 "올해는 지난 1960년 레이저가 발명된 지 60년이 되는 해로, 레이저의 발명이 `센 빛'을 최초로 만든 것이라면 이번 연구성과는 `센 물질', 즉 광대역에서 매우 큰 유전분극 증대율을 보이는 물질을 최초로 발견하고 증명한 연구라는 점에서 의미가 크다ˮ며 "기계학습을 위한 초고속 인공 신경망 등 다양한 광 응용 소자의 구현을 위해 후속 연구를 진행 하고 있다ˮ고 말했다.
한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2020.06.09
조회수 14901
-
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다.
우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다.
전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces)
해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다.
최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다.
에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다.
연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다.
광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다.
전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 18692
-
초안정 광대역 광주파수 안정화 기술 개발
기계공학과 김정원 교수 연구팀이 광섬유 광학 기술을 이용한 고성능 주파수 안정화 기술을 개발했다.
이 기술을 이용하면 150테라헤르츠(THz)의 넓은 대역폭에 걸쳐 일정한 간격으로 분포한 60만 개 이상의 광주파수 모드들의 선폭을 동시에 1헤르츠(Hz) 수준으로 낮출 수 있다. 이를 통해 원자시계나 주파수 분광학에 활용할 수 있고, 광주파수를 기반으로 한 양자 센서의 성능도 크게 높일 수 있을 것으로 기대된다.
권도현 박사과정이 1 저자로 참여하고 한국표준과학연구원 시간표준센터와 공동연구로 수행된 이번 연구는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’ 3월 27일 자에 게재됐다. (논문명: Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform)
레이저의 선폭과 광주파수의 안정도는 시간/주파수 표준, 양자광학, 분광학 등 기초과학 분야뿐 아니라 거리 측정, 형상 이미징 및 분산형 센서 등 다양한 공학 응용에서의 측정 분해능을 결정한다.
특히 작년 5월 기본단위의 재정의를 통해 7개의 국제 단위계(SI) 중 6개(시간, 길이, 질량, 전류, 온도 및 광도)가 주파수를 기반으로 정의되기 때문에 광주파수의 안정도를 확보하는 것은 초정밀 측정 및 센서 분야에서 매우 중요한 이슈이다.
기존에는 다수의 광주파수를 안정화하기 위해 Q인자가 높은 초안정 공진기에 연속파 레이저를 주파수 잠금한 후 이를 다시 펄스 레이저에 주파수 잠금하는 방식을 사용했다. 하지만 이 방식은 장치의 크기가 클 뿐 아니라 주변 환경에 매우 민감한 수억 원 이상의 고가 장치이기 때문에 소수의 표준 연구소에서만 활용됐다.
연구팀은 부품의 신뢰성과 가격 경쟁력이 확보된 광통신용 광섬유 광학 기술을 이용한 광주파수 안정화 기술을 개발했다. 그 결과 A4 용지 절반보다 작은 면적의 소형 장치를 이용해 펄스 레이저에서 발생하는 60만 개 이상의 광주파수 모드들의 선폭을 1Hz 수준으로 낮출 수 있었다. 또한, 각각의 주파수 모드에서 1천조 분의 1(10-15) 수준의 주파수 안정도를 확보했다.
연구팀의 기술은 다양하게 활용 가능해, 특히 최근 대기 중 유해물질 모니터링 등의 분야에서 활용되고 있는 듀얼콤 분광학을 위한 고성능 광원으로 활용할 수 있다.
연구팀은 하나의 광섬유 링크에 두 펄스 레이저를 동시에 안정화하는 방식을 통해 150THz의 넓은 주파수 대역에 걸쳐 1Hz 수준의 선폭으로 흡수 스펙트럼을 측정할 수 있는 고분해능 듀얼콤 분광학 광원을 선보였다.
불변하는 원자의 특성을 이용해 고정확도 측정이 가능한 양자 센서의 경우도 광주파수 분광학 기반이기 때문에, 광주파수의 선폭과 안정도가 측정의 정확도와 신뢰도에 매우 중요하다.
김 교수는 “이번 연구 결과를 활용하면 소형, 경량, 저가의 장치로 1천조분의 1 수준의 광주파수 안정화가 가능해 다양한 양자 센서를 센서 네트워크 형태로 확장하는 데 기여할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.04.09
조회수 16410
-
광 투과 방식의 웨어러블 유연 인장 센서 개발
기계공학과 박인규 교수 연구팀이 신체 동작 및 자세 모니터링에 활용이 가능한 탄소 나노튜브–탄성 중합체 복합소재 광 투과 방식의 웨어러블 유연 인장 센서를 개발했다.
이번 기술을 통해 인체의 다양한 관절 굽힘 동작, 자세, 맥박 및 표정 등 다양한 생체 동작을 연속적으로 측정해, 운동 시 관절부 움직임 자세 교정 및 맥박 측정을 통한 헬스케어 모니터링 시스템 등에 활용할 수 있을 것으로 기대된다.
구지민 박사과정이 1 저자로 참여한 이번 연구는 나노기술 분야 국제 학술지 ‘ACS Applied Materials & Interfaces’ 3월 4일 자 표지 논문에 게재됐다. (논문명: Wearable Strain Sensor Using Light Transmittance Change of Carbon Nanotube Embedded Elastomer with Microcrack)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되면서 인체에 적용하는 센서로서의 유연 소재를 기반으로 다양한 전기저항식, 정전용량 방식의 플랫폼을 이용한 인장 센서가 많이 개발되고 있다.
그러나 기존의 전기저항식 센서는 장시간 반복 신호 안정성, 선형성에 한계를 보이며, 정전용량식 센서의 경우 외부 전기장의 영향에 취약하고 센서 민감도가 낮다. 이러한 점을 보완하기 위해 광학 방식의 유연 인장 센서가 개발됐으나 여전히 민감도가 낮다는 한계점이 있다.
문제 해결을 위해 연구팀은 탄소 나노튜브가 함침된 탄성중합체의 인장에 따른 광 투과도 변화 현상을 활용해 수 퍼센트에서 400%에 달하는 넓은 범위의 인장률을 안정적으로 측정할 수 있는 유연 인장 센서를 개발했다.
연구팀이 개발한 센서는 외부 인장에 따라 탄성중합체에 함침된 탄소 나노튜브 필름에 틈이 형성돼 광 투과도를 크게 변화시켜 기존의 광학 방식 인장 센서에 비해 10배 이상의 높은 감도를 가진다. 또한, 1만 3천 회 이상의 인장 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 기기로 활용할 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 손가락 굽힘 동작을 측정해 이를 로봇 조종에 활용했으며, 3축 센서로 패키징 해 인체 자세 모니터링에 활용했다. 또한, 경동맥 근처의 맥박 모니터링과 발음할 때의 입 주변 근육 움직임 등 미세한 동작도 관찰하는 데 성공했다.
박인규 교수는 “이번 연구에서는 기존의 전기저항식, 정전용량식 및 광학 방식의 유연 인장률 센서가 갖는 한계점을 극복할 수 있는 새로운 플랫폼을 개발했다”라며 “헬스케어, 엔터테인먼트, 로보틱스 등 다양한 분야에 널리 활용할 수 있는 우수한 성능의 웨어러블 센서를 실현했다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업(초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
2020.04.02
조회수 18205
-
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다.
이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites)
기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다.
하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다.
연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다.
연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다.
신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 17138
-
원자 틈 이용해 이산화탄소의 연료 변환 성공
신소재공학과 강정구 교수 연구팀이 성균관대, UNIST, 부산대, 미국 버클리대학, 칼텍과의 공동 연구를 통해 구리 입자 내 원자의 틈을 제어하는 기술을 적용해 온실가스인 이산화탄소를 에틸렌 등의 고부가 연료로 변환할 수 있는 전기화학촉매 소재기술을 개발했다.
이는 이산화탄소로부터 에틸렌 생성비율을 최고 80%까지 높이는 기술로, 연구팀은 기존 나노입자기반 촉매의 한계를 뛰어넘기 위해 원자수준의 촉매제어 기술을 도입했다. 이번 연구결과는 기존 촉매소재 설계에서 제시되지 않은 ‘원자 틈’을 처음으로 촉매설계의 주요인자로 적용해 산업적 가치가 높은 에틸렌의 생산성을 획기적으로 높였다. 동시에 천연가스에서 손쉽게 얻을 수 있는 메탄의 생성을 실험적으로 완전히 억제했으며, 양자역학 계산 기술을 이용해 원자 틈의 촉매반응 활성 원리를 이론적으로 규명했다.
이번 연구 결과는 에너지 분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)’ 3월 10일자에 표지논문으로 게재 됐다. (논문명: Atomic-Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide)
전기화학적 촉매반응을 활용한 이산화탄소 변환 기술은 지구 온난화를 일으키는 이산화탄소를 저감하는 대표 기술 중의 하나로, 효율적인 이산화탄소 전환 촉매기술의 개발을 통해 대기 중의 이산화탄소 농도를 줄이면서 산업에 유용한 연료나 화합물을 생산하는 기술이다. 이산화탄소 전환을 위해 다양한 전이금속 기반의 전기화학 촉매가 개발되고 있으나, 에틸렌과 같은 탄화수소 계열의 연료를 생산할 수 있는 원소는 구리가 유일하다.
하지만 일반적으로 구리 촉매는 반응 속도 및 생성물의 선택성이 높지 않아 이산화탄소 저감의 실효성과 생성물의 경제성이 떨어졌다. 이를 해결하기 위해 구리촉매의 특성을 개선하려는 연구가 세계적으로 활발히 진행되고 있다.
연구팀은 산화된 구리의 환원반응을 전기화학적으로 미세하게 제어해 구리 결정면 사이에 1나노미터 미만의 좁은 틈을 생성했다. 이 원자 틈에서 이산화탄소 환원반응 중간생성물의 촉매표면 흡착에너지를 최적화해 촉매반응의 활성을 극대화했다. 동시에 탄소-탄소 결합을 유도해 에틸렌과 같은 고부가 화합물이 효율적으로 생산되는 것을 규명했다. 연구에서 제안한 신규 활성인자인 원자 틈 원리는 다양한 전기화학 촉매 연구 분야로 확장할 수 있다는 의의를 갖는다.
강정구 교수는 “구리 기반 촉매소재에 간단한 공정 처리기술을 도입해 온실가스인 이산화탄소를 전환함으로써 고부가 화합물인 에틸렌을 효율적으로 생산하는 소재기술이다”라며, “기후변화 및 온실가스 문제 대응을 위한 핵심 대안기술이 될 수 있을 것으로 전망한다”라고 말했다.
이번 연구는 강정구 교수, 성균관대학교 정형모 교수, UNIST 권영국 교수, 부산대 김광호 교수, 그리고 미국 버클리, 칼텍 연구팀과 공동연구를 통해서 이뤄졌으며, 과학기술정보통신부의 글로벌프론티어사업, 신진연구자지원사업 및 차세대탄소자원화사업단의 지원을 받아 수행됐다.
2020.03.16
조회수 18168
-
빛으로 RNA 이동과 단백질 합성 조절한다
빛으로 세포 내 특정 RNA 이동과 단백질 합성을 조절할 수 있는 기술이 개발됐다. 생명과학과 허원도 교수 연구팀이 빛을 이용해 유전정보를 전달하는 전령RNA와 단백질을 생성하는 리보솜의 결합을 제어해 단백질 합성을 조절하는데 성공했다.
이번 연구성과는 네이처 셀 바이올로지(Nature Cell Biology, IF 17.728)에 2월 18일 오전 1시(한국시간)자 온라인 판에 실렸으며, Nature Reviews Genetics에 하이라이트 논문으로 소개됐다.
DNA의 유전정보는 RNA를 거쳐 단백질로 전달된다. 이때 중간에서 유전정보를 전달하는 RNA를 ‘전령RNA’라고 한다. 단백질 생성공장인 리보솜이 전령RNA의 유전정보를 읽어 단백질을 합성한다. 단백질 합성에 있어 전령RNA는 DNA 유전정보의 중간 전달자, 리보솜은 생성공장, 단백질은 완성품인 셈이다.
이전에는 화학물질을 처리해 전령RNA를 조절하는 방법으로 모든 전령RNA를 한꺼번에 조절하기 때문에 특정 종류의 전령RNA만을 세밀하게 조절하기 어려웠다. 이번 연구에서는 살아있는 세포에 청색광을 비춰줌으로써 세포 내 특정 전령RNA 이동 및 단백질 합성을 시공간 특이적으로 조절하는 mRNA-LARIAT 광유전학 기술을 개발했다.
연구팀은 이전 연구로 개발한 라리아트 올가미(LARIAT, Light-Activated Reversible Inhibition by Assembled Trap) 기술과 RNA 이미징 기술을 융합해 mRNA-LARIAT 기술을 개발했다. mRNA-LARIAT 광유전학 기술을 이용하면 빛의 유무에 따라 라리아트 올가미에 전령RNA를 가두거나 분리하고, 이를 실시간으로 관찰하는 것이 가능하다.
연구팀은 헬라 세포에 청색광을 비춰주면 라리아트 올가미에 전령RNA가 가둬지면서 리보솜과 격리되고 단백질 합성이 감소함을 관찰했다. 이어 청색광을 차단하면 라리아트 올가미로부터 전령RNA가 빠져나오면서 리보솜과 단백질 합성을 다시 시작함을 확인했다. 이는 mRNA-LARIAT 광유전학 기술로 빛의 유무에 따라 매우 빠르고 가역적으로 단백질 합성을 조절할 수 있음을 의미한다.
대부분 단백질은 전령RNA와 리보솜에 의해 합성된 후, 각 단백질이 작용하는 위치로 이동한다. 하지만 전령RNA가 라리아트 올가미에 가둬지면 전령RNA가 향후 단백질이 작용하는 위치까지 이동이 멈추고 단백질 합성이 차단된다. 전령RNA는 단백질보다 비교적 작은 분자로, 세포 내 이동이 더 효율적이고 빠르다. 이처럼 mRNA-LARIAT 광유전학 기술로 전령RNA 이동 및 단백질 합성을 빛으로 조절하면 살아있는 세포에서의 RNA의 위치 및 합성되는 신생 단백질의 기능을 효율적으로 연구할 수 있게 되었다.
연구팀은 베타액틴(β-actin) 단백질 합성에 관여하는 전령RNA에 mRNA-LARIAT 기술을 적용했다. 베타액틴 단백질 합성에 관여하는 전령RNA에 청색광을 비추니 세포 골격 구성 및 이동 기능이 제대로 이뤄지지 않음을 관찰했다. 또한 베타액틴 단백질 합성 효율이 최대 90%까지 감소됨을 확인했다.
허원도 교수는 “mRNA-LARIAT 광유전학 기술을 활용하면 암세포, 신경세포 등 다양한 세포 내 전령RNA 이동 및 단백질 합성을 빛으로 조절할 수 있다”라며 “앞으로 암세포 전이, 신경질환 등 전령 RNA 관련 질병 연구에 응용 가능할 것이다”라고 말했다.
2020.02.21
조회수 17373