-
6개의 표적 물질을 동시에 검출할 수 있는 질병물질 검출 종이센서 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 가천대학교 바이오나노학과 김문일 교수팀, POSTECH 화학공학과의 한정우 교수팀과 함께 새로운 무기 소재(*나노자임, Nanozyme)를 합성하는 데 성공하였고, 이를 이용해 종이 기반 질병 물질 검출 센서에 도입, 6개의 표적 물질을 동시에 그리고 민감하게 검출 가능한 종이 센서를 개발했다고 7일 밝혔다.
☞나노자임(Nanozyme): 단백질로 이루어진 효소와 달리 무기물질로 합성된 효소 모방 물질을 말한다. 기존 효소의 단점으로 꼽히는 안정성, 생산성 그리고 가격적 측면에서 매우 뛰어나며, 기존의 효소가 사용되던 질병 진단 시스템에 그대로 활용될 수 있다.
공동연구팀은 기존의 과산화효소 모방 나노자임들과 달리 중성에서 활성을 지니며 큰 기공(구멍)을 가져 산화효소를 적재할 수 있는 코발트가 도핑된 메조 다공성 구조의 산화 세륨을 개발했고, 이를 이용해 질병 진단물질인 글루코오스, 아세틸콜린, 콜레스테롤을 비롯한 6개의 물질을 동시에 검출 가능한 종이 센서를 개발했다.
생명화학공학과 이준상 박사과정생이 가천대학교 바이오나노학과 푸엉 타이 응우옌(Phuong Thy Nguyen) 박사과정생, 포항공과대학교 화학공학과 조아라 박사과정생과 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2월 19권 2호에 출판됐다. (논문명 : Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers).
나노자임은 기존의 효소가 사용되던 다양한 질병의 검출에 사용될 수 있을 뿐만 아니라 효소가 사용되기 어려웠던 극한 환경 혹은 다양한 미세환경이 존재하는 체내에서도 그 역할을 수행할 수 있어 목적에 맞는 활성을 지니는 나노자임의 필요성이 더욱 강조되고 있다.
효소는 우리의 몸속의 다양한 화학 반응에 촉매로서 작용을 하고 있었지만, 최근에는 이러한 효소들을 정제해서 다양한 물질들을 검출 및 치료 등 다방면에서의 활용이 가능하다는 것이 보고돼왔다. 특히 과산화효소의 경우 과산화수소의 존재 하에서 투명한 발색 기질을 산화시켜 푸른색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있으며, 이를 이용해 산화 과정에서 과산화수소를 배출하는 아세틸콜린, 글루코오스를 포함한 다양한 물질들의 산화효소와 함께 사용되면 표적 물질을 시각적으로 검출할 수 있다.
하지만 아세틸콜린, 글루코오스 등을 산화시키는 대부분의 산화 효소는 중성에서 최적 활성을 가지는 것과 달리, 과산화효소 모방 나노자임은 산성에서만 활성을 지니기 때문에 중간에 수소 이온 농도 지수(pH)를 조절하는 버퍼 용액을 변경해야 하거나, 최적 활성이 아닌 지점에서 반응이 일어나 표적 물질의 미세한 검출을 하기 어렵고, 바이오 센서로서의 적용도 어렵다. 이 때문에 중성 상태에서도 과산화효소 활성을 모방하면서 표적 물질의 산화효소를 담을 수 있는 나노자임의 개발이 필수적이다.
공동연구팀은 문제 해결을 위해 밀도범함수이론(Density Functional Theory, DFT)을 도입해 기존에 과산화효소 활성이 있던 산화 세륨 위에 어떠한 원소를 도핑할 경우 중성에도 과산화효소 활성이 유지될지 스크리닝을 진행했고, 코발트 원소가 최적 물질임을 계산을 통해 예측했다.
연구팀은 중성에서의 활성을 유도할 코발트 원소를 도핑하면서 산화효소를 적재할 수 있게 17 나노미터(nm)의 큰 기공을 지니는 메조 다공성 구조의 산화세륨 합성에 성공했다. 메조 다공성 나노물질들이 2~3 나노미터(nm) 기공을 지니는 것과 달리, 연구팀은 열처리 과정에서의 변화를 통해 큰 기공을 지니도록 합성할 수 있었고, 이 기공에 산화효소들을 적재할 수 있다는 것을 확인했다. 또한, 합성된 나노자임은 중성(pH 6)에서 최적 활성을 지녀 pH의 변경 없이 산화효소와 연쇄 반응을 일으킬 수 있었다.
연구팀은 개발한 나노자임에 중요한 질병 진단물질인 글루코오스, 아세틸콜린, 콜린, 갈락토오스, 콜레스테롤의 산화효소를 담아, 과산화수소를 포함한 6개 물질을 동시에 검출이 가능한 종이 센서를 개발했다. 이 종이 센서는 20분 만에 6개 물질을 빠르게 검출할 수 있으며, 기존 하나씩만을 검출할 수 있는 센서들의 검출한계보다 더 좋은 성능을 보였다. 또한 연구팀은 산화효소를 메조 다공성 산화세륨에 적재해 60℃의 고온에서도 안정적이고, 60일이 넘는 시간 동안 안정적으로 작동함을 확인했다.
이 교수는 "나노자임은 분야 자체가 시작된 지 오래되지 않았지만, 기존 효소를 대체해 쓰일 수 있다는 잠재성 때문에 폭발적으로 관심이 증가하고 있다ˮ라며 "앞으로 종이 센서 뿐만 아니라 각종 진단 및 암 치료에 나노자임을 도입해 진단 및 치료 분야에 큰 도약을 이뤄낼 가능성이 있다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2022.03.07
조회수 8919
-
디스플레이용 퀀텀닷 패턴 형태에 상관없이 커피링을 완벽 제어하는 기술 개발
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다.
기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519)
최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다.
커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D)
커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다.
연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다.
김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
2022.03.02
조회수 8241
-
인간의 촉각 뉴런을 모방한 뉴로모픽 모듈 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다.
우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification for a Neuromorphic Tactile System).
인공지능을 이용한 촉각 인식 시스템은 센서 어레이에서 수신된 신호를 인공 신경망을 이용해 높은 정확도로 물체, 패턴, 또는 질감을 인식할 수 있어, 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템의 대부분은 폰 노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 높은 전력을 소모할 수밖에 없어 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다.
한편, 생물학적 촉각 인식 시스템은, 스파이크 형태로 감각 정보를 전달함으로써 낮은 전력 소비만으로 물체, 패턴, 또는 질감을 판별할 수 있다. 따라서 저전력 촉각 인식 시스템을 구축하기 위해, 생물학적 촉각 인식 시스템을 모방한 뉴로모픽 촉각 인식 시스템이 주목을 받고 있다. 뉴로모픽 촉각 인식 시스템을 구현하기 위해서는 인간의 촉각 뉴런처럼 외부 압력 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 압력 센서는 이러한 기능을 수행할 수 없다.
연구팀은 마찰대전 발전기(triboelectric nanogenrator, TENG)와 바이리스터(biristor) 소자를 이용해, 압력을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 모듈을 개발했다. 제작된 뉴로모픽 모듈은 마찰대전을 이용하기 때문에, 자가 발전이 가능하고 3 킬로파스칼(kPa) 수준의 낮은 압력을 감지할 수 있다. 이는 손가락으로 사물을 만질 때, 피부가 느끼는 압력 정도의 크기다. 연구팀은 제작된 뉴로모픽 모듈을 바탕으로 저전력 호흡 모니터링 시스템을 구축했다. 호흡 모니터링 센서가 코 주위에 설치되면 들숨 및 날숨을 감지하고 복부 주변에 설치되면 복식호흡을 별도로 감지할 수 있다. 따라서 수면 중 무호흡이 일어날 경우, 이를 감지해 경보를 보냄으로써 심각한 상황으로의 진행을 미연에 방지할 수 있다.
연구를 주도한 한준규 박사과정은 "이번에 개발한 뉴로모픽 센서 모듈은 센서 구동에 필요한 에너지를 스스로 생산하는 반영구적 자가 발전형으로 사물인터넷(IoT) 분야, 로봇, 보철, 인공촉수, 의료기기 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업, BK21 사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.02.25
조회수 10420
-
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다.
리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다.
하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다.
이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다.
그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다.
강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다.
공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다.
대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다.
우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries).
강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다.
한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 9269
-
낙엽을 활용한 친환경 마이크로 슈퍼커패시터 개발
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다.
웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다.
산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로 풍부하고, 생분해성이며 재생 가능한 매력적인 친환경 재료다. 그러나 이를 효과적으로 활용하지 못하고 방치하면 화재 위험, 식수원 오염 등 산림 재해가 발생할 수 있다.
연구팀은 두 가지 문제점을 동시에 해결할 방법으로 친환경의 생분해성 바이오매스인 낙엽 위에 추가 재료 없이 펨토초 레이저 펄스를 조사해, 대기 중에서 특별한 처리 없이 단일 단계로 높은 전기 전도성을 지닌 미세 전극인 3D 다공성 그래핀을 생성하는 기술을 개발했다. 또한 이를 활용해 유연한 마이크로 슈퍼커패시터를 제작하는 방안을 제시했다. 연구팀은 해당 연구를 통해 낙엽으로부터 쉽고 저렴하며 빠르게 다공성 그래핀-무기결정 하이브리드 전극을 제작할 수 있음을 보였으며, 제작된 그래핀 마이크로 슈퍼커패시터를 LED 발광을 위한 전원 공급 및 온, 습도계 타이머/카운터 기능의 전자시계 전원 공급을 테스트함으로써 성능을 검증했다. 이는 저가의 녹색 그래핀 기반 유연한 전자 제품의 대량 생산을 위한 길을 열 수 있음을 의미한다. (그림1)
연구 논문의 교신저자인 우리 대학 김영진 교수는 개발된 차세대 에너지 저장 소자에 대해 "현재 감당이 어려운 산림 바이오매스인 낙엽을 차세대 에너지 저장 소자로 재사용함으로써, 폐자원의 재사용 및 에너지 선순환 시스템 확립을 가능하게 한다ˮ라고 했다. 또한 공동 교신저자인 에너지연 윤하나 박사는 "이번 기술은 친환경 산업의 기술 혁신 및 고부가가치 신재생에너지 및 이차전지 사업으로써의 신시장 창출뿐 아니라 국가의 사회적, 경제적 비용을 크게 감소시킬 수 있을 것이며, 더 나아가 웨어러블 전자 제품 및 스마트 홈이나 사물 인터넷에도 적용될 것으로 기대된다ˮ라고 말했다.
이번 연구는 한국농림축산식품부의 기획평가원 지원사업과 산림청의 산림과학기술 연구개발사업 및 한국에너지기술연구원 주요사업의 지원을 받아 수행됐다.
기계공학과 레딘츤손 박사 후 연구원과 에너지연 이영아 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 및 융합연구분야의 세계적인 학술지인 `어드밴스드 펑셔널 머티리얼즈'(Advanced Functional Materials)에 작년 12월 5일 온라인 공개됐다. (논문명 : Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses)
2022.01.13
조회수 10331
-
3차원 표정인식용 인공지능 라이트필드 카메라 개발
우리 대학 바이오및뇌공학과 정기훈, 이도헌 교수 공동연구팀이 근적외선 기반 라이트필드 카메라와 인공지능기술을 융합하여 얼굴의 감정표현을 구분하는 기술을 개발했다고 7일 밝혔다.
라이트필드 카메라는 일반적인 카메라와 다르게 미세렌즈 배열(Microlens arrays)을 이미지센서 앞에 삽입해 손에 들 수 있을 정도로 작은 크기이지만 한 번의 촬영으로 빛의 공간 및 방향 정보를 획득한다. 이를 통해 다시점 영상, 디지털 재초점, 3차원 영상 획득 등 다양한 영상 재구성이 가능하고 많은 활용 가능성으로 주목받고 있는 촬영 기술이다.
그러나 기존의 라이트필드 카메라는 실내조명에 의한 그림자와 미세렌즈 사이의 광학 크로스토크(Optical crosstalk)에 의해 이미지의 대비도 및 3차원 재구성의 정확도가 낮아지는 한계점이 있다.
연구팀은 라이트필드 카메라에 근적외선 영역의 수직 공진형 표면 발광 레이저(VCSEL) 광원과 근적외선 대역필터를 적용해 기존 라이트필드 카메라가 갖는 조명 환경에 따라 3차원 재구성의 정확도가 낮아지는 문제를 해결했다. 이를 통해 얼굴 정면 기준 0도, 30도, 60도 각도의 외부 조명에 대해, 근적외선 대역필터를 사용한 경우 최대 54%까지 영상 재구성 오류를 줄일 수 있었다. 또한, 가시광선 및 근적외선 영역을 흡수하는 광 흡수층을 미세렌즈 사이에 제작하면서 광학 크로스토크를 최소화해 원시 영상의 대비도를 기존 대비 약 2.1배 정도로 획기적으로 향상하는 데 성공했다.
이를 통해 기존 라이트필드 카메라의 한계를 극복하고 3차원 표정 영상 재구성에 최적화된 근적외선 기반 라이트필드 카메라(NIR-LFC, NIR-based light-field camera) 개발에 성공했다. 연구팀은 개발한 카메라를 통해 피험자의 다양한 감정표정을 가진 얼굴의 3차원 재구성 이미지를 조명 환경과 관계없이 고품질로 획득할 수 있었다.
획득한 3차원 얼굴 이미지로부터 기계 학습을 통해 성공적으로 표정을 구분할 수 있었고, 분류 결과의 정확도는 평균 85% 정도로 2차원 이미지를 이용했을 때보다 통계적으로 유의미하게 높은 정확도를 보였다. 이뿐만 아니라, 연구팀은 표정에 따른 얼굴의 3차원 거리 정보의 상호의존성을 계산한 결과를 통해, 라이트필드 카메라가 인간이나 기계가 표정을 판독할 때 어떤 정보를 활용하는지에 대한 단서를 제공할 수 있음을 확인했다.
정기훈 교수는 "연구팀이 개발한 초소형 라이트필드 카메라는 정량적으로 인간의 표정과 감정을 분석하기 위한 새로운 플랫폼으로 활용될 수 있을 것으로 기대된다ˮ며 "모바일 헬스케어, 현장 진단, 사회 인지, 인간-기계 상호작용 등의 분야에서 활용될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 바이오및뇌공학과 배상인 박사과정 졸업생이 주도한 이번 연구 결과는 국제저명학술지 `어드밴스드 인텔리전트 시스템즈(Advanced Intelligent Systems)'에 2021년 12월 16일 온라인 게재됐다. (논문명: Machine-Learned Light-Field Camera that Reads Facial Expression from High-Contrast and Illumination Invariant 3D Facial Images).
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 지원을 받아 수행됐다.
2022.01.07
조회수 8196
-
거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발
우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다.
이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth)
자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심 역할을 한다. 이러한 단백질 중에는 단량체가 큰 구조체 형태로 조립됐을 때만 정상적 기능을 수행하거나, 어떤 경우에는 조립된 경우가 단량체와 완전히 다른 특성을 나타내며, 심지어는 심각한 질병을 유발하는 경우도 많다.
예를 들어 바이러스의 껍질인 켑시드는 단백질 단량체가 조립(assembly)된 것이고, 치매는 아밀로이드 펩타이드나 타우(tau) 단백질이 파이브릴(fibril) 형태로 조립되면서 발생한다. 따라서, 거대(초분자) 단백질 구조체들의 조립 기작 이해는 단백질의 기능과 질병의 원인 규명 및 치료제 개발에 중요하다. 또한, 단백질 구조체는 뛰어난 생체 적합도 때문에 생명공학 및 의학 분야에서도 응용 가능성이 크다.
현재 많은 연구 그룹에서 자연계에 존재하는 단백질 구조체들의 조립 과정을 모방해 새로운 기능의 단백질 구조체 개발에 많은 연구를 진행하고 있다. 그러나 단백질의 구조적 다양성, 상이한 특성 및 큰 분자량 때문에 원하는 구조체를 자유자재로 조립하는 것은 아직도 어려운 과제로 남아 있다.
김학성 교수 연구팀은 두 종류의 빌딩(building) 블록 단백질을 코어(core) 단백질에 순차적으로 교대로 결합시킴으로써 간편하게 3차원 구조의 대칭형 거대 단백질 구조체를 조립하는 방법을 개발했다(그림 1). 즉, 서로 특이적으로 반응하는 두 쌍의 단백질과 리건드(P1/L1 과 P2/L2)를 이용해 코어(core) 단백질에 두 종류의 빌딩(building) 블록을 순차적, 반복적으로 결합함으로써 크기와 작용 기작 수를 조절하면서 메가 달톤 (Mega Dalton) 크기를 갖는 단백질 구조체를 쉽게 조립하였다.
개발된 구조체는 다양한 분야에 응용 가능하며 하나의 예로서, 이번 연구에서는 단백질 구조체에 박테리아 독소를 결합해 암세포 내로 고효율로 전달할 수 있었고, 결과적으로 암세포를 효과적으로 사멸했다(그림 2). 구조체 단백질의 특징인 다가 효과(avidity effect)로 인해 암 표적에 대한 결합력이 약 1,000배 이상 증가돼 암세포 사멸 효과가 획기적으로 증대됐고 이러한 특성은 백신 개발 및 질병 진단에도 응용될 수 있다.
제1 저자인 배진호 박사는 "이번 연구에서 개발된 거대(초분자) 단백질 구조체 조립 기술은 향후, 약물 전달, 백신 개발, 질병 진단 및 바이오센서 등을 포함한 광범위한 분야에서 새로운 플랫폼 기술로 활용될 수 있을 것ˮ이라고 말했다.
이번 연구는 한국 연구 재단의 중견 연구과제 (NRF-2021R1A2C201421811) 지원을 받아 수행됐다.
2021.11.19
조회수 7587
-
생체 내 조직의 온도·압력 실시간 측정 가능한 센서 집적 고주파 소작 바늘 개발
우리 대학 기계공학과 박인규 교수 연구팀이 삼성서울병원 임효근 박사 연구팀, ㈜알에프메디컬 이진우 박사 연구팀과 공동 연구를 통해 암 소작 시술 시 실시간으로 고주파 소작 중인 조직의 온도와 압력의 측정이 가능한 소작용 바늘을 개발했고, 이 기술의 유효성을 전임상/임상 실험을 통해 검증했다고 2일 밝혔다.
고주파 소작술(Radiofrequency ablation, 이하 RFA) 은 암 조직에 도체 바늘을 삽입한 뒤 전기 소작을 통해 암 조직을 고온 가열해 제거하는 최소침습적 방법으로 시술 과정이 편리하고 효과적일 뿐만 아니라 환자에게도 부담이 적어 암 치료 시술에 널리 사용되고 있다. 하지만 소작 중 발생하는 열에 의해 체액이 기화되며 내부의 압력을 증가시키는데, 이는 스팀 팝(steam pop)이라는 소작 중 소규모 폭발 현상으로 연결된다. 이러한 폭발 현상은 환자에게 악영향을 끼칠 수 있을 뿐만 아니라, 만약 암조직의 소작이 완전히 이루어지지 않은 상황에서 발생하면 암의 전이까지 유발될 가능성이 있어 매우 위험하다.
박인규 교수 연구팀은 이러한 문제의 해결을 위해, RFA용 바늘에 집적 가능한 얇은 필름 형태의 생체적합성 온도/압력 센서를 개발해 소작 부위의 조건을 실시간으로 모니터링할 수 있는 RFA용 센서 집적 바늘(sRFA-needle)을 구현했다. 전임상/임상 실험을 통해 신뢰성있게 스팀 팝을 감지할 수 있으며, 조직 내부의 온도, 압력, 그리고 전기전도성의 변화를 동시에 측정함으로써 스팀 팝이 어떠한 식으로 이뤄지는지에 대한 실마리를 제공하는 기술을 세계 최초로 개발했다.
이번 연구에 사용된 압력 센서는 피라미드 형태로 초미세 3차원 형태화된 전도성 나노 복합재 필름과의 기판 전극 사이의 접촉 저항 변화로 압력을 측정하며, 연구진은 온도에 따른 금속 저항 변화를 통해 온도를 측정했다. 또한 개발된 센서가 체내 고주파 소작술 중 발생 가능한 고온/고압 조건에 높은 신뢰성을 가짐을 검증했다. (그림 1)
제작된 집적 바늘의 전임상/임상 실험 수행 전에 시뮬레이션을 통해 소작 과정이 모사됐는데, 그 결과 RFA용 바늘의 전도성 영역의 양 끝단에서 가장 활발하게 소작이 일어남이 확인됐으며, 이를 통해 스팀 팝은 소작이 진행되는 앞부분과 뒷부분의 각 소작 영역이 합쳐지며 급격한 소작 영역의 팽창에서 나타나는 결과임을 유추할 수 있었다. 이에 더해, 연구팀은 기존에 고주파 소작술에서 사용되던 임피던스 측정만으로는 모니터링할 수 없던 스팀 팝을 온도/압력 측정을 통해 감지할 수 있음을 확인했으며, 세부적인 스팀 팝 메커니즘이 시뮬레이션과 비슷하게 구현됨을 센서를 통한 소작 환경 모니터링을 통해 확인했다. 그리고 이를 통해 고주파 소작술의 안정성 및 수술 유효성 증진에 기여할 수 있는 가능성을 보였다. (그림 2) 또한, 실제 암 환자들의 고주파 소작술 모니터링에 임상 적용돼 의학적으로 유용성을 입증했으며 (그림 3), 의료기기 인증을 획득하고, ㈜알에프메디컬을 통해 상용화에 성공했다.
이번 연구를 주도한 우리 대학 박인규 교수는 "암, 하지정맥류 등의 질병에 최소침습적 치료 방법으로 널리 사용되고 있는 고주파 소작술에서 조직 내의 온도, 압력을 측정할 수 있는 기술이 세계 최초로 개발됐으며, 이를 통해 고주파 소작술의 안정성과 정확성을 획기적으로 향상할 수 있는 계기가 될 것으로 기대한다ˮ고 밝혔다.
이번 연구는 공동 제1 저자 KAIST 기계공학과 박재호 박사, KAIST 기계공학과 정용록 박사과정 학생 및 삼성서울병원 차동익 교수 주도하에 진행됐으며, 삼성서울병원 임효근 교수와 KAIST 기계공학과 박인규 교수가 교신저자로 참여했다. 또한 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 선도연구센터 지원사업(ERC, 초정밀 광기계기술 연구센터)의 지원을 받아 수행됐다.
이번 연구 결과는 재료과학 및 융합연구 분야 최상위 학술지 중 하나인 `어드밴스드 사이언스(Advanced Science, 2020 impact factor 16.806)' 誌 2021년 8월 6일자 온라인 판에 게재됐고, 연구의 우수성을 인정받아 표지논문(frontispiece) 으로 선정됐다.
2021.09.02
조회수 9441
-
에너지 비용 낮춘 상온 액상 분리막 개발
우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다.
액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다.
연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다.
생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며, 연구의 파급력을 인정받아 뒷표지 논문으로 선정됐다. (논문명 : Shape-Selective Ultramicroporous Carbon Membranes for Sub-0.1nm Organic Liquid Separation)
연구팀이 이번에 개발한 유기용매 정삼투법은 정밀하게 디자인된 기공 크기 및 구조를 갖는 탄소 분리막을 이용한다. 이는 외부 동력원 없이 자연스러운 농도 기울기 및 화학적 포텐셜을 기반으로 크기 및 모양 차이에 따라 탄화수소 화학종들의 분리가 진행되는 에너지 효율적 기법으로, 기존의 증류법보다 약 10배 정도 낮은 에너지 소모량을 요구한다. 이와 같은 유기용매 정삼투법은 분리막 재료의 기공 크기 디자인에 따라 석유화학, 정유, 제약 및 반도체 공정 등 다양한 분야에 활용 가능하기 때문에 산업 전반의 에너지 효율성을 극대화하며 동시에 탄소 배출량을 줄일 수 있는 획기적인 기술이다.
특히 연구팀은 상온에서 서로 다른 크기와 모양을 갖는 헥산 이성질체의 혼합물들을 모양 차이에 따라 손쉽게 분리할 수 있음을 증명했다. 탄소 분리막은 0.7 나노미터(nm) 이하의 단단한 슬릿 형태(slit-like structure)를 갖는 초미세 기공을 가지며, 이처럼 작은 나노 공간에서 분자들의 확산을 조절하여 크기 차이가 0.1 나노미터(nm) 이하인 분자들까지 정밀하게 걸러낼 수 있다.
특히, 이번 연구에 이용된 탄소 분리막은 속이 비어있는 실과 같은 기다란 형태(할로우 파이버, Hollow Fiber)를 가지고 있어, 이의 산업적 적용성과 파급 효과는 상당할 것으로 기대된다. 할로우 파이버 분리막은 적은 비용으로 대량생산이 매우 쉬우며, 기존의 평면적인 분리막 대비 수십 배 높은 표면적을 가지고 있어 차세대 분리막 형태로 주목받는 소재다.
연구팀은 그동안 불가능했던 분리막을 이용한 0.1 나노미터(nm) 이하 크기의 액체 분자들의 크기 및 모양에 따른 분리에 성공해 저에너지, 저탄소 분리 공정의 새로운 막을 열게 됐다. 수많은 소재의 원재료가 되는 탄화수소 분자들을 적은 비용 및 저탄소 배출공정으로 분리 정제할 수 있는 새로운 방식은 화학산업의 초미의 관심사다.
고동연 교수는 "우리나라는 원유를 수입하고, 이를 분리 및 정제해 다양한 고부가가치 제품을 창출하는데 여러 집약된 기술에 의존하고 있어 이에 대한 파격적 비용 절감은 석유화학 산업계의 글로벌 경쟁력 강화와 직결된다ˮ며, "특히 용매 사용량이 많은 제약 분야 및 반도체 화학 공정에도 널리 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다.
한편, 이번 연구는 한국연구재단 우수신진연구사업의 지원을 받아 수행됐다.
2021.08.13
조회수 10878
-
미생물 이용한 천연 무지개 색소 생산기술 최초 개발
우리 대학 생명화학공학과 양동수 박사와 박선영 박사를 포함한 이상엽 특훈교수 연구팀이 `일곱 빛깔의 천연 무지개 색소를 생산하는 미생물 균주 개발'에 성공했다고 8일 밝혔다.
이번 연구결과는 국제 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 5월 25일 字 온라인 출판됐으며, 표지논문으로 선정됐다.
※ 논문명 : Production of rainbow colorants by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 공동 제1저자), 박선영(한국과학기술원, 공동 제1저자, 현 큐티스바이오), 포함 총 3명
우리 생활에서 널리 활용되고 있는 각종 색소는 식품과 같이 직접 섭취되거나 화장품과 같이 피부에서 흡수되기 때문에 건강과 밀접한 관계를 갖는다. 하지만 색소 중 대부분은 석유 화합물로부터 생산되는 합성 색소이며, 색소의 사용이 실생활에 널리 활용되는 만큼 건강에 악영향을 미칠 수 있다. 그뿐만 아니라 합성 색소를 이용해 각종 옷감을 염색하면서 발생하는 폐수가 전체 산업용 폐수의 17~20%를 차지한다는 보고가 있을 정도로, 합성 색소는 수질오염에도 지대한 영향을 미치고 있다.
이러한 건강 문제 및 환경 오염 문제를 해결하기 위해 미생물을 이용해 천연색소를 생산해야 한다는 필요성이 제기됐으나, 값비싼 생산 공정 및 낮은 수율로 인해 산업화가 실현되기 어려운 상황이었다. 또한, 현재까지 빨강, 주황, 노랑, 파랑, 보라 등의 천연색소는 낮은 효율로 생산된 바 있으나, 초록 및 남색 천연색소 생산은 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 농촌진흥청이 지원하는 농업미생물사업단 (단장 장판식)의 ‘카로티노이드 생산 미생물 세포공장 개발’ 과제(과제책임자 국립농업과학원 김수진 박사)의 지원을 받아 효율적인 빨강, 주황, 노랑 3색의 카로테노이드 생산과 이를 확장한 7가지 무지개색을 모두 생산할 수 있는 기술 개발에 성공했다.
다양한 특성의 천연색소 중 연구팀은 지용성 식품과 의류 염색 등에 활용되는 소수성 천연색소에 주목했다. 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 카로티노이드 계열 색소인 ▲아스타잔틴(빨강), ▲베타-카로틴(주황), ▲제아잔틴(노랑)과 비올라세인 유도체 계열 색소인 ▲프로비올라세인(초록), ▲프로디옥시비올라세인(파랑), ▲비올라세인(남색), ▲디옥시비올라세인(보라)을 생산하는 대장균들을 개발하였다. 이로써 연구팀은 포도당이나 글리세롤을 먹이로 개발한 대장균을 배양함으로서 일곱 빛깔의 천연 무지개 색소를 모두 생산할 수 있게 됐다.
미생물에서 소수성 색소가 생산되면 이는 세포 밖으로 배출되지 않고 세포 내부에 축적된다. 색소가 축적될 수 있는 세포의 수용력에는 한계가 있으므로, 그동안 소수성 색소를 특정량 이상으로 생산할 수 없었다. 이에 연구팀은 세포의 모양을 변화시키거나 세포 내 소낭을 형성해 미생물 내부의 소수성 천연색소 축적량을 증가시키고자 했다. 또한, 색소 생산량을 더욱 증가시키기 위해 연구팀은 세포 외 소낭을 형성해 미생물 밖으로 소수성 천연색소를 분비해 무지개 색소를 고효율로 생산하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당 또는 산업공정의 부산물로 생산되는 값싼 바이오매스인 글리세롤을 단일 탄소원으로 사용해 일곱 빛깔의 천연 무지개 색소를 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구에 참여한 양동수 박사는 “석유 화합물 기반의 합성 색소를 대체할 수 있는 일곱 빛깔의 천연 무지개 색소를 세계 최초로 생산했으며, 이번 연구는 특히 색소를 비롯한 천연물을 고효율로 생산할 수 있는 범용 대사공학적 전략을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 색소뿐만 아니라 의약품, 영양보조제 등의 다양한 친환경 물질을 고효율로 생산할 수 있을 것”이라고 밝혔다.
2021.06.08
조회수 70123
-
다공성 유기 골격구조체를 이용한 하이브리드 전지 개발
우리 대학 화학과 변혜령, 김우연 교수 공동연구팀이 유기 분자로 이루어진 다공성 골격구조체를 이용해 높은 사이클 성능을 가지는 리튬-유기 하이브리드 전지를 개발했다고 20일 밝혔다.
변 교수 연구팀은 두 개의 질소 원소가 이중 결합을 가지는 아조(azo, N=N) 그룹을 레독스(산화․환원) 코어로 가지면서 벤조싸이아졸 링커로 분자들을 엮어 거대한 다공성 구조체를 설계했다. 이러한 거대 유기체 전극은 현재 무기 산화물 기반의 전극을 대체해 유연하고 가벼운 전지의 개발에 활용될 것으로 전망된다.
우리 대학 화학과 비크람 싱아(Vikram Singh) 박사와 김재욱 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 5월 11권 17호에 지난 6일 字 출판됐다. (논문명 : Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries)
이번 연구는 유기 분자들을 디자인해 거대 골격체로 만들 때 조절되는 분자 간의 상호작용 및 전자구조를 이용해 화학적 안정성, 불용성, 그리고 전기/이온 전도성을 향상할 수 있음을 증명했다. 그리고 6분에 한 번씩 충전․방전하는 빠른 속도에서도 약 1,000 사이클 이상 구동이 가능한 유기계 전극을 개발할 수 있었다.
유기 골격구조는 유기 단분자들의 공유 결합을 통해 2차원 필름을 형성하고 이들이 파이-파이 결합으로 3차원으로 성장할 수 있는 다공성 결정체다. 골격구조의 디자인은 분자 간의 상호작용 및 안정성을 극대화하고 수 나노미터 크기의 기공 채널을 규칙적으로 형성해 이온들의 이동을 원활하게 할 수 있어 유망한 유기 전극체로 디자인할 수 있다.
리튬-이온 전지의 전극으로 활용할 유기 골격구조체는 리튬 이온과 전기화학 반응을 할 수 있는 레독스 코어와 다공성 골격체를 형성하는 링커로 구성되어 있다. 공동연구팀은 레독스 코어로 낮은 전위에서 *2개의 전자전달(2e-)이 가능한 아조(azo)그룹을 사용했다.
(※ 기존의 리튬-이온 전지는 일반적으로 전자전달 수가 1보다 작다. 요즘 개발되는 차세대 전지의 경우 에너지 밀도를 높이기 위해 다중 전자전달이 가능한 물질을 찾고 있으며, 아조 그룹이 그중 하나다. R-N=N-R + 2e- + 2Li+ R-LiN-NLi-R, 형식전위: 1.65 V vs. Li/Li+, 여기서 R은 분자 링커)
벤조싸이아졸 링커를 포함하는 유기 골격구조는 다른 물질과는 달리 2전자 전달이 동시에 빠르게 발생해 우수한 충․방전 율속 특성 및 긴 사이클 성능이 평가됐다. 이는 벤조싸이아졸이 가지는 비 편재화 전자의 결합구조가 유기 전극의 안정성을 높이기 때문이다. 연구팀은 실시간 라만 분광 관찰을 통해 전극에서 아조 그룹의 가역적인 전기화학 반응을 직접적으로 증명할 수 있었다.
이와 함께 공동연구팀은 밀도범 함수 계산을 통해 두 개의 리튬(Li) 이온이 아조 그룹과 빠르게 회합(association)함을 증명했다. 아울러 벤조싸이아졸 기반의 아조 유기 골격구조체가 가지는 약 3나노미터(nm) 이하의 다공성 채널로 리튬(Li)이온이 골격체 내부까지 쉽게 통과할 수 있어 이온 전도성 또한 확보함을 실험적으로 규명했다.
공동연구를 주도한 변혜령 교수는 "아조 화합물 기반의 유기 골격구조체는 리튬-하이브리드 전지의 높은 율속 특성 및 긴 사이클 성능을 증명해, 향후 유기 기반 가볍고 휘어지는 전극의 실용화 가능성을 제시한다ˮ며 "개발한 벤조싸이아졸 기반의 유기 골격체 구조의 디자인은 향후 다양한 유기 전극 개발 시 유연한 디자인을 제공할 수 있을 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 삼성전자 미래기술육성센터와 한국연구재단, KISTI 국가슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2021.05.20
조회수 41871
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48544