-
반도체 활용 탄소나노튜브로 고정밀 가공 가능하다
탄소나노튜브*는 강철보다 강도가 높아 반도체, 센서, 화학, 군수산업 등 다양한 응용 분야에 활용된다. 하지만 실제 사용시 금속/세라믹 소재가 표면에 코팅되어야 한다. 한국 연구진이 탄소나노튜브의 표면을 균일하게 코팅할 수 있게 보조하는 나노전사인쇄 기반 패터닝 기술 개발에 성공했다.
*탄소나노튜브(carbon nanotube; CNT): 다이아몬드의 주성분인 탄소들이 6각형 고리 형태로 연결되어 지름 1나노미터(1m의 10억분의 일)의 긴 대롱 모양을 하고 있는 것
우리 대학 기계공학과 박인규 교수, 김산하 교수가 고려대(총장 김동원) 세종캠퍼스 안준성 교수, 한국기계연구원(원장 류석현) 정준호 박사와 공동연구를 통해 `탄소나노튜브의 원자 침투성(atomic permeability) 향상을 위한 고정밀 나노패터닝 기술'을 개발했다고 8일 밝혔다.
고성능 반도체, 센서, 에너지 소자를 구현하기 위해서는 수직 성장된 탄소나노튜브 표면에 기능성 물질을 코팅하는 것이 필수적이지만, 합성된 탄소나노튜브는 높은 응집률을 갖고 있어서 원자 침투성이 떨어지고 내부에 기능성 물질을 균일하게 코팅하는 것이 불가능하다.
이를 극복하기 위해 탄소나노튜브의 마이크로 패터닝 등 다양한 전략적 기술이 개발되고 있지만 균일한 코팅을 위한 높은 원자 침투성을 갖는 탄소나노튜브의 구현은 아직 미흡한 실정이다.
공동 연구팀은 정교하게 제작된 금속 또는 금속산화물 나노구조체를 전사할 수 있는 나노 임프린팅 공정을 접목한 공정을 개발했다. 그 결과, 다양한 형상의 나노 패턴을 따라 탄소나노튜브 성장을 구현해 원자 침투성의 개선을 통한 기능성 물질 코팅의 품질 향상을 이룩했다.
일례로, 원자층 증착법을 통한 세라믹 원자의 코팅을 수행한 나노 패턴된 탄소나노튜브는 기존 탄소나노튜브의 높은 응집률로 인한 세라믹 원자 증착 균일도 저하 한계를 개선해, 나노 패턴된 탄소나노튜브의 상단부에서 하단까지 나노 스케일로 균일한 세라믹 코팅 결과를 보였다.
이처럼 세라믹 코팅 품질의 개선은 탄소나노튜브의 기계적 복원 특성을 높일 수 있기에 반도체, 센서, 에너지 소자의 반복적 활용 및 산업적 적용을 위해 반드시 선결돼야 하는 작업이다.
또한, 전자빔 증착법과 같은 물리적 증착법 역시 나노 패턴으로 인한 원자 침투성의 증진으로 인해 패턴이 없는 탄소나노튜브가 상단에만 금속이 증착되는 것에 비해, 나노 패턴된 탄소나노튜브는 내부까지 금속이 증착되는 결과를 보였다. 이와 같은 금속 증착 품질의 개선은 가스 센서와 같은 활용을 위한 촉매 역할을 해 보다 민감하고 반응성이 우수한 센서 활용이 가능해진다.
KAIST 박인규 교수는 "개발된 수직 정렬 탄소나노튜브의 나노패턴화 공정은 탄소나노튜브 기능성 코팅 응용에 있어 본질적인 문제인 낮은 원자 침투성을 해결할 수 있을 것으로 기대되고, 추후 기계적 화학적 응용을 포함한 탄소나노튜브의 산업 전반적 활용으로 이어질 수 있을 것이다ˮ라며 "이는 나노 소재의 구조화 및 기능화와 같은 나노테크놀로지의 압도적 선도 국가가 되기 위한 발판이 될 것이다ˮ고 연구적 의의를 설명했다.
한국기계연구원 하지환 박사후연구원, KAIST 기계공학과 양인영 박사과정, 고려대 세종캠퍼스 안준성 교수가 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, Impact Factor 19, JCR 4.2%)' 지난 6월 온라인판에 출판됐으며, 학술지 전면 표지논문으로 선정됐다.
(논문명: Nanotransfer Printing for Synthesis of Vertically Aligned Carbon Nanotubes with Enhanced Atomic Penetration)
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부, 한국과학기술원의 재원으로 한국연구재단 중견연구자지원사업, 산업기술알키미스트프로젝트, 도약연구 프로젝트의 지원을 받아 수행됐다.
2024.11.08
조회수 4928
-
난치성 뇌종양 치료의 새로운 가능성 열다
면역항암제는 암세포를 제거하는 T세포의 항암 면역작용을 강화하는 가장 주목받는 항암치료 요법이다. 하지만 난치성 뇌종양인 교모세포종의 경우 면역관문억제제를 활용한 수차례 임상시험에서 그 효과를 확인할 수 없었다. 우리 연구진이 난치성 암종에서 T세포가 만성적 항원에 노출되어 기능이 상실되거나 약화된 원인을 분석하여 T세포 활성 제어 인자를 발굴하고 치료 효능 증진 원리를 규명했다.
우리 대학 생명과학과 이흥규 교수 연구팀이 한국화학연구원(원장 이영국) 감염병예방진단기술연구센터와 협력하여, 교모세포종 실험 쥐 모델에서 억제성 Fc 감마수용체(FcγRIIB)의 결손을 통한 면역관문억제제의 세포독성 T세포 불응성을 회복해, 항암 작용 증대를 유도함으로 생존율 개선 효능을 확인했다고 6일 밝혔다.
연구팀은 최근 세포독성 T세포에서 발견된 억제 수용체(FcγRIIB)가 종양 침윤 세포독성 T세포의 특성과 면역관문억제제(항 PD-1)의 치료 효능에 미치는 영향을 확인했다.
연구 결과, 억제 수용체(FcγRIIB)가 결손되었을때 종양항원 특이적 기억 T세포의 증가를 유도했다. 이 같은 T세포 아형은 탈진화를 억제하고 줄기세포 특성을 강화했고, 이를 통한 항 PD-1 치료의 회복된 T세포 항암 면역반응을 이끌었다. 또한, 연구팀은 항원 특이적 기억 T세포가 FcγRIIB 결손 시 상대적으로 높은 수의 증가와 함께 지속적인 종양 조직 내 T세포 침투를 이끈다는 결과를 확인했다.
해당 연구는 면역관문억제제에 불응성을 보이는 종양에 대한 새로운 치료 타깃을 제시했으며, 특히 교모세포종과 같은 항 PD-1 치료에 반응하지 않는 종양에 FcγRIIB 억제와 항 PD-1 치료를 병행함으로써 시너지 효과를 발휘할 수 있음을 증명했다.
연구팀은 이러한 FcγRIIB 억제를 통한 항암 면역작용 증진 전략이 면역관문억제제의 효능을 높이는 데 중요한 기여를 할 것으로 기대하고 있다.
생명과학과 이흥규 교수는 “면역관문 치료제를 이용한 뇌종양 치료 임상 실패를 극복할 가능성과 다른 난치성 종양으로의 범용적 적용 가능성을 제시한 결과로 추후 세포독성 T 세포의 종양 세포치료 활용과 접근 가능성도 확인한 결과”라고 소개했다.
우리 대학 구근본 박사(現, 한국화학연구원 감염병예방진단기술연구센터 선임연구원)가 제1 저자로 참여한 이번 연구는 암 면역치료 학회(Society for Immunotherapy of Cancer)에서 발간하는 종양면역 및 치료 분야 국제 학술지 `Journal for ImmunoTherapy of Cancer'에 10월 26일 온라인판에 게재됐다. (논문명: Inhibitory Fcγ receptor deletion enhances CD8 T cell stemness increasing anti-PD-1 therapy responsiveness against glioblastoma, http://dx.doi.org/10.1136/jitc-2024-009449)
한편 이번 연구는 한국연구재단 개인기초연구사업, 바이오의료기술개발사업 및 삼성미래육성재단의 지원을 받아 수행됐다.
2024.11.06
조회수 4522
-
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다.
우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다.
연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다.
또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다.
*다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임
기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다.
이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다.
특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다.
이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다.
또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다.
이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다.
전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting).
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 5437
-
인공지능으로 고성능 양자물성 계산시간 획기적 단축
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다.
우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다.
슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다.
*밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론
그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다.
*자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법
김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다.
연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다.
이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다.
이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다.
전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints)
한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
2024.10.30
조회수 4651
-
기존보다 340% 피부 탄력 향상 LED 마스크 개발
피부 노화는 많은 사람들의 관심사로 주름, 처짐, 탄력 저하 등의 문제를 해결하기 위하여 최근 웨어러블 LED 마스크가 주목받고 있다. 우리연구진이 기존 제품 대비 피부 탄력을 340% 향상시키는 LED 마스크 개발에 성공했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 3,770개의 마이크로 LED와 광확산층*을 활용하여 피부 노화를 억제할 수 있는 진피 자극 얼굴밀착형 면발광 마이크로 LED 마스크를 개발했다고 29일 밝혔다.
*광확산층: 광원이 방출하는 빛을 고르게 분산시켜 균일한 발광을 유도하는 층
기존 제품은 딱딱한 구조와 점발광 방식*으로 인해 피부에 밀착되지 않고 광손실이 발생하여, 치료용 빛이 진피까지 균일하게 전달되지 못하는 한계가 있다.
*점발광 방식: 점발광이란 점으로 보이는 발광의 형태을 일컫음
이 교수팀은 유연한 기판에 3차원 종이접기 구조를 적용해 얼굴의 굴곡과 돌출된 부위에 밀착할 수 있는 LED 마스크를 개발했다. 이를 통해 1.5mm 깊이의 진피까지 빛을 균일하게 전달할 수 있으며, 진피 내 미토콘드리아를 자극하고 콜라겐과 탄력 섬유의 합성을 촉진했다.
그 결과, 피부 탄력, 주름, 처짐, 모공 등 8가지의 모든 피부 노화 지표에서 탁월한 개선 효과를 확인했다. 특히 33명의 피시험자를 대상으로 한 대학병원 임상시험에서 기존 LED 마스크 대비 진피 층의 피부 탄력이 340% 향상되는 통계학적으로 유의미한 효과를 보였다.
이건재 교수는 "이번에 개발된 얼굴 밀착 면발광 마스크는 저온화상의 부작용 없이 얼굴 진피 전체에 미용 효과를 제공하여, 인류의 삶의 질을 향상시키는 홈케어 노화 치료를 가능하게 할 것”이라고 강조했다.
또한, "교원창업 기업 프로닉스를 통해 11월부터 제품을 본격적으로 판매할 예정이며, 현재 탈모 치료를 위한 면발광 마이크로 LED 제품의 임상 계획도 수립하고 있다.”라고 말했다.
신소재공학과 김민서 석·박사 통합과정, 안재훈 박사과정이 공동 제1저자로 참여한 이번 연구는 국제 학술지 어드밴스드 메터리얼즈(Advanced Materials)에 10월 22일 자로 출판됐다.
(논문명: Clinical Validation of Face-fit Surface-lighting Micro Light-emitting Diode Mask for Skin Anti-aging Treatment)
한편, 이번 연구는 글로벌 생체융합 인터페이싱 소재 센터(선도연구센터)의 지원을 받아 수행되었다.
2024.10.29
조회수 4551
-
화재 위험 차단한 자가발전형 수소 생산 시스템 개발
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다.
*공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임.
수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다.
아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도, 날씨 등에 영향을 받아 불규칙한 발전량에 따른 낮은 물 분해 효율을 보인다.
이를 극복하기 위해 물 분해를 통한 수소 생산에 충분한 전압(1.23V 이상)을 방출할 수 있는 공기전지가 동력원으로 주목받고 있지만, 충분한 용량 구현을 위해 귀금속 촉매를 사용해야 하고, 장시간 충·방전시 촉매 소재의 성능이 급격히 저하되는 한계가 있다.
이에 물 분해 반응(산소 발생, 수소 발생)에 효과적인 촉매와 반복적인 아연-공기전지 전극의 충·방전 반응(산소 환원, 산소 발생)에 안정적인 물질의 개발이 필수적이다.
이에 강 교수 연구팀은 산화 그래핀에 성장시킨 나노 사이즈의 금속-유기 골격체를 활용해 3가지 다른 촉매반응(산소 발생-수소 발생-산소 환원)에 모두 효과적인 비귀금속 촉매 소재(G-SHELL)의 합성법을 제시했다.
연구팀은 개발된 촉매 물질을 공기전지의 공기극 물질로 구성해 기존 배터리 대비 약 5배 높은 에너지밀도(797Wh/kg), 높은 출력 특성(275.8mW /cm²), 그리고 반복적인 충·방전 조건에서도 장시간 안정적인 구동이 가능함을 확인했다.
또한 수용성 전해질로 구동돼 화재의 위험으로부터 안전한 아연-공기전지는 차세대 에너지 저장 장치로서 수전해 시스템과 연동시켜 수소 생산을 위한 친환경적인 방법으로 적용할 수 있을 것으로 기대된다.
강 교수는 “낮은 온도, 간단한 방법으로 3가지 다른 전기화학 촉매반응에서 높은 활성도와 수명을 지닌 촉매 소재를 개발해 구현된 아연-공기전지 기반 자가발전형 수소 생산 시스템은 현재 그린 수소 생산의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다”고 밝혔다.
신소재공학과 김동원 박사과정과 김지훈 석사과정이 공동 제1 저자로 참여한 이번 연구 결과는 융복합 분야(MATERIALS SCIENCE, MULTIDISCIPLINARY)의 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 9월 17일 字 게재됐다.
(논문명: Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.10.22
조회수 3877
-
극한의 환경에서도 적용가능 열전 소재 최초 개발
스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 열 에너지 성능을 유지할 수 있는 열전 소재가 한국 연구진에 의해 개발되었다. 기존 열전 소재 분야의 오랜 난제였던 열전 소재의 성능과 기계적 유연성 간의 딜레마를 획기적으로 해결하였고 상용화 가능성을 입증하기도 했다.
우리 대학 신소재공학과 정연식 교수와 기계공학과 박인규 교수 공동 연구팀이 국립한밭대학교 오민욱 교수, 한국기계연구원(원장 류석현) 정준호 박사 연구팀과 협업을 통해, 차세대 유연 전자소자를 위한 혁신적인 에너지 수확 솔루션인 ‘비스무트 텔루라이드(Bi2Te3) 열전 섬유’를 개발하는 데 성공했다고 21일 밝혔다.
열전 소재는 온도 차이가 있을 때 전압을 발생시켜 열에너지를 전기에너지로 변환하는 소재로, 현재 약 70%의 에너지가 폐열로 사라지는 상황에서 이러한 폐열을 회수해 재활용할 수 있는 지속가능한 에너지 물질로 주목받고 있다.
우리 주변의 열원은 인체, 차량 배기구, 냉각 핀 등 대부분 곡면 형태를 띠고 있다. 세라믹 재료 기반의 무기 열전 소재는 높은 열전 성능을 자랑하지만 깨지기 쉬워 곡선형 제작이 어렵다는 단점이 있다. 반면, 기존 고분자 바인더를 사용한 유연 열전 소재는 다양한 형상의 표면에 적용할 수 있지만 고분자의 낮은 전기전도성과 높은 열 저항으로 인해 성능이 제한적이었다.
기존 유연 열전 소재는 유연성 확보를 위해 고분자 첨가제가 들어가지만, 이는 소자 성능에 심각한 제약을 가져오는 문제가 있었다. 연구팀이 개발한 무기 열전 소재는 첨가제 대신 나노 리본을 꼬아 실 형태의 순도 100% 열전 소재를 제작하는 방식으로 이러한 한계를 극복했다.
무기 나노 리본의 유연성에서 아이디어를 착안한 연구팀은 나노몰드 기반 전자빔 증착 기술을 사용해 나노 리본을 연속적으로 증착한 후 이를 실 형태로 꼬아 비스무트 텔루라이드(Bi2Te3) 무기 열전 섬유를 제작했다.
이 무기 열전 섬유는 기존 열전 소재보다 높은 굽힘 강도를 지니며 1,000회 이상의 반복적인 구부림과 인장 테스트에도 전기적 특성 변화가 거의 나타나지 않았다. 연구팀이 만든 열전소자는 온도차를 이용해 전기를 생산하는 소자로 섬유형 열전소자로 옷을 만들면 체온으로부터 전기가 만들어져서 다른 전자제품을 가동시킬 수도 있다.
실제로 구명조끼나 의류에 열전 섬유를 내장해 에너지를 수집하는 시연을 통해 상용화 가능성을 입증했다. 또한 산업 현장에서는 파이프 내부의 뜨거운 유체와 외부의 차가운 공기 사이의 온도 차를 이용해 폐열을 재활용하는 고효율 에너지 수확 시스템을 구축할 가능성도 열었다.
정연식 교수는 "이번 연구에서 개발된 무기 유연 열전 소재는 스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 성능을 유지할 수 있어 향후 추가 연구를 통해 상용화될 가능성이 크다”고 말했다. 또한 박인규 교수는 “이 기술은 차세대 에너지 수확 기술의 핵심이 될 것이며, 산업 현장의 폐열 활용부터 개인용 웨어러블 자가발전 기기까지 다양한 분야에서 중요한 역할을 할 것으로 기대된다.”고 강조했다.
우리 대학 신소재공학과 장한휘 박사과정 학생과 고려대학교 세종캠퍼스 안준성 교수, 한국원자력연구원 정용록 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지‘어드밴스드 머티리얼즈 (Advanced Materials)’9월 17일 字 온라인판에 게재되었으며, 연구의 우수성을 인정받아 후면표지(Back cover)논문으로 선정되었다. (논문명: Flexible All-Inorganic Thermoelectric Yarns)
한편 이번 연구는 과학기술정보통신부의 지원을 받아 한국연구재단 중견연구자지원사업, 미래소재디스커버리사업, 글로벌 생체융합 인터페이싱 소재 센터, 산업통상자원부와 한국산업기술평가원(KEIT)의 지원 아래 수행됐다.
2024.10.21
조회수 4336
-
소량의 전류로 전기차 배터리 정밀 진단 가능하다
전기차 배터리를 효율적으로 관리하고 안전하게 사용하기 위해서는 정확한 배터리 상태 진단이 필수적이다. 우리 연구진이 소량의 전류만을 사용해 높은 정밀도로 배터리의 상태를 진단하고 모니터링할 수 있는 기술을 개발하여 배터리의 장기적 안정성과 효율성을 극대화할 것으로 기대된다.
우리 대학 전기및전자공학부 권경하 교수와 이상국 교수 연구팀이 전기차 대용량 배터리의 안정성과 성능 향상에 활용할 수 있는 전기화학 임피던스 분광법(이하 EIS) 기술을 개발했다고 17일 밝혔다.
EIS 기술은 배터리의 임피던스* 크기와 변화를 측정해 배터리 효율과 손실을 평가할 수 있는 강력한 도구로, 배터리의 충전 상태(state-of-charge; SOC) 및 건강 상태(state-of-health; SOH)를 평가하는 중요한 도구로 여겨진다. 또한 배터리의 열적 특성과 화학적/물리적 변화, 수명 예측, 고장의 원인을 식별하는 데 활용 가능하다.
* 배터리 임피던스: 배터리 내부에서 전류 흐름에 저항하는 요소로, 이를 통해 배터리 의 성능과 상태를 평가할 수 있는 지표
그러나 기존 EIS 장비는 비용 및 복잡성이 높아 설치, 운영 및 유지 보수가 쉽지 않다. 또한, 감도 및 정밀도 제약으로 수 암페어(A)의 전류 교란을 배터리에 인가하는 과정에서 배터리에 큰 전기적 스트레스가 가해지기 때문에 배터리의 고장이나 화재 위험을 증가시킬 수 있어 활용이 어려웠다.
이에 연구팀은 고용량 전기차 배터리의 상태 진단 및 건강 모니터링을 위한 소전류 EIS 시스템을 개발하고 입증했다. 이 EIS 시스템은 낮은 (10mA) 전류 교란으로, 배터리의 임피던스를 정밀하게 측정할 수 있으며 측정 시 발생하는 열적 영향 및 안전 문제를 최소화한다.
추가로 부피가 크고 비용이 많이 드는 구성요소를 최소화해 차량 내 탑재가 용이한 설계다. 해당 시스템은 전기차 배터리의 여러 운영 조건(다양한 온도 및 배터리 잔존용량을 나타내는 SOC 레벨에서 배터리의 전기화학적 특성을 효과적으로 파악할 수 있음이 입증됐다.
권경하 교수(교신저자)는 "이 시스템은 전기차용 배터리 관리 시스템 (BMS)에 쉽게 통합 가능하며, 기존의 고전류 EIS 방식 대비 비용과 복잡성을 현저히 낮추면서도 높은 측정 정밀도를 입증했다ˮ면서 "전기차 뿐만 아니라 에너지저장시스템(ESS)의 배터리 진단 및 성능 향상에도 기여할 수 있을 것ˮ이라고 말했다.
이번 연구 결과는 국제 저명 학술지 `IEEE Transactions on Industrial Electronics (동 분야 상위 2%; IF 7.5)'에 지난 9월 5일 발표됐다.
(논문명 : Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, 링크: https://ieeexplore.ieee.org/document/10666864)
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 산업통상자원부 한국산업기술기획평가원의 차세대지능형반도체기술개발사업 및 정보통신기획평가원의 인공지능반도체대학원사업의 지원을 받아 수행됐다.
2024.10.17
조회수 5370
-
전염병 확산 예측하는 더 정확한 수학 공식 나왔다
인류와 전염병의 전쟁에서 수학은 최적의 방어막 구축을 위한 과학적 근거를 제시해왔다. 우리 대학 김재경 교수 연구팀은 국가수리과학연구소 최선화 선임연구원, 고려대 최보승 교수, 경북대 이효정 교수팀과 공동으로 정확도를 획기적으로 높인 전염병 확산 예측 모델을 새롭게 제시했다.
미지의 바이러스가 나타나면 과학자들은 구조와 실체를 파악하고, 제약사는 바이러스에 대항할 백신과 치료제를 개발한다. 바이러스를 제압할 무기를 만드는 동안, 방역은 국민을 보호하고 피해를 최소화하는 방어막 역할을 한다. 피해를 정확하게 예측하고, 의료진을 배치하고, 병상을 확보하는 등 대책 수립에 수학이 쓰인다.
코로나19 팬데믹은 수리 모델 기반 전염병 확산 모델의 중요성을 재조명하게 해준 사례다. 이를 통해 추정한 감염재생산지수(R값), 잠복기, 감염기 등 변수들은 질병의 확산 양상을 이해하고, 방역 정책을 설계하는 데 중요한 요소로 작용했다.
그러나 기존 모델에는 한계가 있었다. 기존 대부분 모델은 감염자와 접촉한 시점에 상관없이 모든 접촉자가 동일 확률로 감염력이 발현된다고 가정한다. 미래 상태가 현재 상태에 의해서만 결정되고, 과거의 영향을 받지 않는다는 마르코프(Markovian) 시스템에 기반하여 미래를 추정해왔다.
하지만 실제 환경에서는 현재뿐 아니라 과거 상태도 미래에 영향을 준다(비마르코프(non-Markovian) 시스템). 감염자와 접촉 이후 잠복기를 거쳐 감염되기 때문에, 접촉 시점이 오래된 사람일수록 감염력이 발현될 확률이 높다.
최보승 교수는 “현재와 과거를 모두 고려해야 하는 비마르코프 시스템은 수학적 추정과 모델링이 복잡하고, 계산이 어려워서 기존 전염병 확산 모델은 마르코프 시스템을 가정하고 추정을 진행해왔다”며 “즉, 실제 감염병 확산 양상을 정확하게 반영하지는 못했다”고 설명했다.
공동 연구팀은 현재와 과거를 모두 고려하는 새로운 감염병 확산 모델을 개발했다. 미래의 변화를 현재의 상태만으로 설명하는 상미분방정식 대신, 미래의 변화를 현재와 과거의 상태를 모두 이용하여 설명하는 지연미분방정식을 도입해 기존 모델의 한계를 극복했다.
연구진은 2020년 1월 20일부터 11월 25일까지 서울의 누적 코로나19 확진자 정보를 활용해 새로 제시한 모델의 정확도를 평가했다. 초기 바이러스의 전파로 확진자가 급증했던 시기(2020.1.20.~3.3)의 감염재생산지수를 기존 모델은 4.9, 새 모델은 2.7로 추정했다. 확진자 전염 경로를 추적해 얻은 실제 값은 2.7이었다. 즉, 기존 모델이 감염재생산지수를 2배 가까이 과대 추정하는 상황이 생길 수 있고, 이에 따라 코로나19 감염력을 과대 예측할 수 있다는 것을 보여준다.
최선화 선임연구원은 “과대 예측 문제를 해결하기 위해 기존 모델은 감염기(감염자가 다른 사람에게 전염을 일으킬 수 있는 기간) 등 추가 역학 정보를 사용해 값을 보정해 사용해왔다”며 “새로운 모델은 추가 역학 정보 없이도 감염재생산지수를 정확히 추정할 수 있다는 장점이 있다”고 설명했다.
연구를 이끈 김재경 교수는 “우리 연구진은 새로운 모델을 바탕으로 ‘IONISE(Inference Of Non-markovIan SEir model)’라는 프로그램을 개발하여, 분야 연구자들이 활용할 수 있도록 무료로 공개했다”며 “향후 공중보건 전문가들이 전염병 확산 양상을 보다 깊이 이해하고, 효과적인 방역 전략을 수립하도록 도울 것으로 기대한다”고 말했다.
연구 결과는 10월 9일 국제학술지 ‘네이처 커뮤니케이션스(Nature Communications, IF 14.7)’에 실렸다.
※ 논문명: Overcoming Bias in Estimating Epidemiological Parameters with Realistic History-Dependent Disease Spread Dynamics(제1저자: 홍혁표, 엄은진)
2024.10.17
조회수 10539
-
코로나19 재난지원금은 지역경제를 활성화시켰는가?
코로나19 팬데믹으로 어려움을 겪고 있던 지역 소상공인들을 지원하기 위해 시행된 재난지원금이 실제로 지역 경제에 긍정적인 영향을 미쳤는지 우리 연구진이 분석했다. 분석 결과, 소상공인 매출 증가는 지역 내 소비 확산으로 이어져 지역 상권에도 긍정적인 영향을 주었음을 밝혀냈다.
우리 대학 기술경영학부의 김지희 교수팀이 코로나19 재난지원금이 소상공인 매출에 미친 영향을 실증적으로 분석했다고 16일 밝혔다.
연구진은 경기도와 인천이 서로 다른 정책을 추진했다는 점에 착안하여 연구를 진행했다. 경기도는 코로나19 초기인 2020년 4월부터 모든 주민에게 재난지원금을 지급했고, 해당 금액은 오직 지역 소상공인 가게에서만 사용할 수 있도록 제한됐다. 반면, 인천은 같은 시기에 재난지원금을 지급하지 않았다.
연구 결과, 인천과 비교하여 경기도에서는 소상공인 매출이 재난지원금 지급 후 첫 5주 동안 약 4.5% 증가했으며, 소상공인 총매출 증가분은 재난지원금으로 지급된 예산의 1.09배에 달했다고 밝혔다.
구체적으로 연구진은 경기도와 인천이라는 두 지역의 소상공인 매출 데이터*를 활용해, 재난지원금이 지급된 경기 지역에서 소상공인 매출 증대 효과가 어떻게 나타났는지 파악했다.
*매출 데이터: 한국신용데이터(Korea Credit Data)의 2020년 시군구별 주간 소상공인 매출 정보를 기반으로 하며, 이는 경기와 인천 지역의 40,000여 소상공인 업장에서 발생한 거래 데이터를 포함해, 지역별 경제 회복의 차이를 구체적으로 파악하는 데 기여함
분석 결과, 재난지원금 지급 이후 첫 5주 동안 경기도 내 소상공인 매출은 인천 대비 4.5% 증가했고, 이후 재난지원금 소비 기한이 다가오면서 그 영향은 서서히 감소하는 추세를 보였다. 이는 재난지원금이 소비자들에게 단기적인 소비 촉진 효과를 일으켰지만, 그 효과가 지속되지는 않았음을 의미한다.
하지만 재난지원금 사용 종료 시점에서 경기도 소상공인 매출의 총 증가분은 재난지원금으로 지급된 예산보다 9% 많은 것으로 나타나, 해당 재난지원금 정책이 지역 경제 활성화에 효과적으로 기여한 것으로 평가할 수 있다.
또한 이러한 재난지원금의 경기 활성화 효과는 경기도 내에서 지역별 소득 수준이나 구매력의 차이와는 관계없이 동일하게 나타났다.
김지희 교수는 “코로나19 재난지원금을 시민들에게 현금으로 지급한 미국, 싱가포르 등과 달리 우리나라는 소상공인 업장에서만 재난지원금을 사용하게 함으로써, 가계와 지역경제를 살리는 두 가지 목적을 한 번에 달성할 수 있었다”며, “이번 연구는 정책 설계에 있어 지역 경제 활성화를 위한 맞춤형 재정정책의 중요성을 강조하며, 재난 상황에서 소상공인과 지역 경제를 지원하기 위한 최적의 정책 방안을 도출하는 데 기여할 수 있다”고 말했다.
이번 연구는 경영대학 기술경영학부 이수상 박사가 제 1저자로 참여하였고, 저널 `경제 분석과 정책(Economic Analysis and Policy)'에 8월 24일자 온라인으로 게재되었다.
(논문명: Can stimulus checks to households save the local economy? The impact of South Korea`s COVID-19 stimulus on small business sales, 경기 부양을 위한 가계지원금이 지역 경제를 살릴 수 있을까? 한국의 코로나19 재난지원금이 소상공인 매출에 미친 영향)
논문링크: https://www.sciencedirect.com/science/article/pii/S0313592624002091
2024.10.16
조회수 5335
-
빛의 방향에 따라 두 얼굴 야누스같은 메타표면 개발
메타표면 기술은 기존 기술에 비해 얇고 가벼우며, 나노미터 크기의 인공 구조물을 통해 빛을 정밀하게 제어할 수 있는 광학기술이다. 우리 연구진이 기존 메타표면 기술의 한계를 극복하고 빛의 비대칭 전송을 완벽하게 제어할 수 있는 야누스 메타표면 설계에 성공했다. 이 기술을 응용하여 특정 조건에서만 정보가 해독되어 보안성을 획기적으로 강화하는 방안도 제시했다.
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 비대칭 전송을 완벽하게 제어할 수 있는‘야누스 메타표면(Janus Metasurface)’을 개발했다고 15일 밝혔다.
방향에 따라 달리 반응하는 비대칭 성질은 과학과 공학의 다양한 분야에서 중요한 역할을 한다. 연구팀이 개발한 ‘야누스 메타표면'은 양방향에서 서로 다른 기능을 수행할 수 있는 광학 시스템을 구현한다.
마치 로마 신화의 두 얼굴을 가진 야누스처럼, 이 메타표면은 빛이 입사되는 방향에 따라 투과광이 전혀 다른 광학적 반응을 보이며, 하나의 장치로 두 개의 독립적인 광학 시스템(예: 한쪽 방향에서는 확대 렌즈, 다른 방향에서는 편광 카메라로 작동하는 하나의 메타표면)을 운영하는 것과 같은 효과를 발휘한다. 즉, 이 기술을 이용하면 빛의 방향에 따라 서로 다른 두 개의 광학계(e.g. 렌즈와 홀로그램)를 운영하는 효과를 얻을 수 있다.
이는 기존 메타표면 기술에서 해결되지 못한 난제였다. 기존 메타표면 기술은 빛의 세 가지 특성인 세기, 위상, 편광을 입사 방향에 따라 선택적으로 조절하는 데 한계가 있었다.
연구팀은 수학적, 물리적 원리를 바탕으로 이러한 문제를 해결할 방법을 제시했고, 특히 양방향에서 서로 다른 벡터 홀로그램을 실험적으로 구현하는 데 성공했다. 이를 통해 완전한 비대칭 투과 광 제어 기술을 선보였다.
연구팀은 또한 이번 메타표면 기술을 기반으로 새로운 광학 암호화 기술을 개발했다. 야누스 메타표면을 통해 입사 방향과 편광 상태에 따라 서로 다른 이미지를 생성하는 벡터 홀로그램을 구현해, 특정 조건에서만 정보가 해독되는 보안성을 획기적으로 강화한 광학 암호화 시스템을 선보였다.
이 기술은 차세대 보안 솔루션으로서, 양자 통신, 보안 데이터 전송 등 다양한 분야에서 활용될 것으로 기대된다.
특히, 메타표면의 초박형 구조는 기존 광학 소자의 부피와 무게를 획기적으로 줄일 수 있어, 차세대 디바이스의 소형화 및 경량화에 크게 기여할 것으로 보인다.
신소재공학과 신종화 교수는 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 비대칭 투과 제어가 가능하게 됐고, 이를 바탕으로 다양한 응용 광학 소자의 개발 가능성이 열렸다”며, "메타표면 기술의 잠재력을 최대한 활용해 기존 한계를 뛰어넘는 고도화된 광학 암호화 외에도 증강현실(AR), 홀로그램 디스플레이, 그리고 자율주행 차의 LiDAR(라이다) 시스템 등 다양한 분야에 응용되도록 광학 소자들을 지속적으로 개발할 계획”이라고 말했다.
신소재공학과 김현희 박사과정생과 정준교 박사가 공동 제 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’에 온라인 공개되었으며 10월 31일 자로 발행될 예정이다. (논문명: Bidirectional Vectorial Holography Using Bi-Layer Metasurfaces and Its Application to Optical Encryption)
한편 이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.15
조회수 4328
-
홀로토모그래피로 오가노이드 실시간 관찰 성공
인체 장기의 구조와 기능을 모사한 3차원 미니 장기인 오가노이드는 다양한 질병 연구와 신약 개발에 필수적인 역할을 하고 있다. 한국 연구진이 기존 이미징 기술의 한계를 극복하고 살아있는 오가노이드를 고해상도로 실시간 동적 변화를 관찰하는 데 성공했다.
우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영) 유전체 교정 연구단(단장 구본경) 연구팀과 ㈜토모큐브의 협력으로, 홀로토모그래피 (holotomography) 기술을 활용해 살아있는 소장 오가노이드를 실시간으로 고해상도로 관찰할 수 있는 이미징 기술을 개발했다고 14일 밝혔다.
기존의 이미징 기법들은 살아있는 오가노이드를 장기간 고해상도로 관찰하는 데 한계가 있었고, 형광 염색 등의 추가적인 처리가 필요한 경우가 많았다.
연구팀은 이러한 문제를 해결하기 위해 형광 등 염색 없이도 고해상도의 이미지를 제공하고, 세포 손상 없이 오랜 시간 동안 실시간으로 동적 변화를 관찰할 수 있는 홀로토모그래피 기술을 도입했다.
연구진은 실험용 쥐(마우스) 소장 오가노이드를 이용해 이 기술을 검증했으며, 그 결과 홀로토모그래피를 통해 오가노이드 내부의 다양한 세포 구조를 세밀하게 관찰할 수 있었고, 오가노이드의 성장 과정과 세포 분열, 세포 사멸 등의 동적 변화를 실시간으로 포착할 수 있었다.
또한, 약물 처리에 따른 오가노이드의 반응을 정밀하게 분석해 세포 생존 여부를 확인할 수 있었다.
연구진은 이번 연구를 통해 오가노이드 연구의 새로운 지평을 열었으며, 이를 통해 신약 개발, 맞춤형 치료, 재생 의학 등 다양한 분야에서 오가노이드의 활용을 극대화할 수 있을 것이라고 기대하고 있다.
향후 연구는 오가노이드의 생체 내 환경을 더 정확히 재현하고, 더욱 정교한 3차원 이미징을 통해 세포 수준에서의 다양한 생명현상을 이해하는 데 큰 기여를 할 것으로 전망된다.
논문의 제1 저자인 이만재 박사(KAIST 의과학대학원 졸, 現 충남대병원)는 “이번 연구는 기존의 한계를 뛰어넘는 새로운 이미징 기술로, 향후 오가노이드를 활용한 질병 모델링, 환자 맞춤형 치료 및 신약 개발 연구에 크게 기여할 것”이라고 밝혔다.
이번 연구 결과는 2024년 10월 1일 국제 학술지 ‘Experimental & Molecular Medicine’에 온라인 게재됐으며, 해당 기술은 다양한 생명과학 분야에서의 적용 가능성을 인정받고 있다.
(논문명: Long-term three-dimensional high-resolution imaging of live unlabeled small intestinal organoids via low-coherence holotomography)
본 연구는 한국연구재단 리더연구사업, KAIST 연구소 및 기초과학연구원의 지원을 받아 수행됐다.
2024.10.14
조회수 3945