-
물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다.
연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다.
이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다.
김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation)
현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다.
반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다.
이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다.
삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다.
코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다.
또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다.
강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
2022.03.31
조회수 10697
-
6개의 표적 물질을 동시에 검출할 수 있는 질병물질 검출 종이센서 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 가천대학교 바이오나노학과 김문일 교수팀, POSTECH 화학공학과의 한정우 교수팀과 함께 새로운 무기 소재(*나노자임, Nanozyme)를 합성하는 데 성공하였고, 이를 이용해 종이 기반 질병 물질 검출 센서에 도입, 6개의 표적 물질을 동시에 그리고 민감하게 검출 가능한 종이 센서를 개발했다고 7일 밝혔다.
☞나노자임(Nanozyme): 단백질로 이루어진 효소와 달리 무기물질로 합성된 효소 모방 물질을 말한다. 기존 효소의 단점으로 꼽히는 안정성, 생산성 그리고 가격적 측면에서 매우 뛰어나며, 기존의 효소가 사용되던 질병 진단 시스템에 그대로 활용될 수 있다.
공동연구팀은 기존의 과산화효소 모방 나노자임들과 달리 중성에서 활성을 지니며 큰 기공(구멍)을 가져 산화효소를 적재할 수 있는 코발트가 도핑된 메조 다공성 구조의 산화 세륨을 개발했고, 이를 이용해 질병 진단물질인 글루코오스, 아세틸콜린, 콜레스테롤을 비롯한 6개의 물질을 동시에 검출 가능한 종이 센서를 개발했다.
생명화학공학과 이준상 박사과정생이 가천대학교 바이오나노학과 푸엉 타이 응우옌(Phuong Thy Nguyen) 박사과정생, 포항공과대학교 화학공학과 조아라 박사과정생과 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2월 19권 2호에 출판됐다. (논문명 : Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers).
나노자임은 기존의 효소가 사용되던 다양한 질병의 검출에 사용될 수 있을 뿐만 아니라 효소가 사용되기 어려웠던 극한 환경 혹은 다양한 미세환경이 존재하는 체내에서도 그 역할을 수행할 수 있어 목적에 맞는 활성을 지니는 나노자임의 필요성이 더욱 강조되고 있다.
효소는 우리의 몸속의 다양한 화학 반응에 촉매로서 작용을 하고 있었지만, 최근에는 이러한 효소들을 정제해서 다양한 물질들을 검출 및 치료 등 다방면에서의 활용이 가능하다는 것이 보고돼왔다. 특히 과산화효소의 경우 과산화수소의 존재 하에서 투명한 발색 기질을 산화시켜 푸른색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있으며, 이를 이용해 산화 과정에서 과산화수소를 배출하는 아세틸콜린, 글루코오스를 포함한 다양한 물질들의 산화효소와 함께 사용되면 표적 물질을 시각적으로 검출할 수 있다.
하지만 아세틸콜린, 글루코오스 등을 산화시키는 대부분의 산화 효소는 중성에서 최적 활성을 가지는 것과 달리, 과산화효소 모방 나노자임은 산성에서만 활성을 지니기 때문에 중간에 수소 이온 농도 지수(pH)를 조절하는 버퍼 용액을 변경해야 하거나, 최적 활성이 아닌 지점에서 반응이 일어나 표적 물질의 미세한 검출을 하기 어렵고, 바이오 센서로서의 적용도 어렵다. 이 때문에 중성 상태에서도 과산화효소 활성을 모방하면서 표적 물질의 산화효소를 담을 수 있는 나노자임의 개발이 필수적이다.
공동연구팀은 문제 해결을 위해 밀도범함수이론(Density Functional Theory, DFT)을 도입해 기존에 과산화효소 활성이 있던 산화 세륨 위에 어떠한 원소를 도핑할 경우 중성에도 과산화효소 활성이 유지될지 스크리닝을 진행했고, 코발트 원소가 최적 물질임을 계산을 통해 예측했다.
연구팀은 중성에서의 활성을 유도할 코발트 원소를 도핑하면서 산화효소를 적재할 수 있게 17 나노미터(nm)의 큰 기공을 지니는 메조 다공성 구조의 산화세륨 합성에 성공했다. 메조 다공성 나노물질들이 2~3 나노미터(nm) 기공을 지니는 것과 달리, 연구팀은 열처리 과정에서의 변화를 통해 큰 기공을 지니도록 합성할 수 있었고, 이 기공에 산화효소들을 적재할 수 있다는 것을 확인했다. 또한, 합성된 나노자임은 중성(pH 6)에서 최적 활성을 지녀 pH의 변경 없이 산화효소와 연쇄 반응을 일으킬 수 있었다.
연구팀은 개발한 나노자임에 중요한 질병 진단물질인 글루코오스, 아세틸콜린, 콜린, 갈락토오스, 콜레스테롤의 산화효소를 담아, 과산화수소를 포함한 6개 물질을 동시에 검출이 가능한 종이 센서를 개발했다. 이 종이 센서는 20분 만에 6개 물질을 빠르게 검출할 수 있으며, 기존 하나씩만을 검출할 수 있는 센서들의 검출한계보다 더 좋은 성능을 보였다. 또한 연구팀은 산화효소를 메조 다공성 산화세륨에 적재해 60℃의 고온에서도 안정적이고, 60일이 넘는 시간 동안 안정적으로 작동함을 확인했다.
이 교수는 "나노자임은 분야 자체가 시작된 지 오래되지 않았지만, 기존 효소를 대체해 쓰일 수 있다는 잠재성 때문에 폭발적으로 관심이 증가하고 있다ˮ라며 "앞으로 종이 센서 뿐만 아니라 각종 진단 및 암 치료에 나노자임을 도입해 진단 및 치료 분야에 큰 도약을 이뤄낼 가능성이 있다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2022.03.07
조회수 8955
-
물리학 난제였던 유전율 텐서 측정 구현
우리 대학 물리학과 박용근 교수 연구팀이 기존에는 이론조차 존재하지 않았던 물리학 난제 중 하나인 유전율 텐서의 3차원 단층 촬영 방법을 개발했다고 4일 밝혔다.
유전율 텐서는 빛과 물질의 상호작용을 근본적으로 기술하는, 물질의 광학적 이방성(異方性, 방향에 따라 달라 보이는 특성)을 정량적으로 표현할 수 있는 중요한 물리량이다. 유전율은 고등학교 물리학에서도 다루는 기본적인 개념이지만, 지금까지 3차원 유전율 텐서를 실험적으로 측정할 수 있는 방법이 존재하지 않았다. 병리학, 재료과학, 연성물질 과학, 또는 디스플레이 등 다양한 분야에서 갖는 중요성에도 불구하고, 직접적으로 측정할 방법이 없다는 한계가 있었다. 현재까지도 3차원 광학적 이방성은 2차원 편광현미경 측정 및 시뮬레이션을 통해 부정확하게 추정할 수밖에 없다.
3차원 유전율 텐서의 측정은 물리학, 광학 분야의 오래된 난제 중 하나였다. 1967년 광학적 이방성을 무시하고 유전율 텐서를 3차원 굴절률 수치로 단순화하여 측정하는 기술이 발명돼 지난 50여 년간 빠르게 성장하고 상용화까지 성공했지만, 여전히 3차원 유전율 텐서를 측정하는 방법은 개발되지 못했다.
여태껏 이 문제가 풀리지 못했던 까닭은, 3개의 고유치를 가지는 유전율 텐서를 측정하기에는 빛의 편광 방향 자유도가 2개로 제한되기 때문이다.
재료과학 분야 최고 권위지인 `네이처 머티리얼즈(Nature Materials, IF 43.84)'에 3일 발표된 이번 연구(논문명: Tomographic measurements of dielectric tensors at optical frequency)에서 연구팀은 이러한 한계를 극복하고 광학적 이방성 구조의 3차원 유전율 텐서 단층 촬영 이론을 개발해 구현하는 데 성공했다.
기존의 고정관념에서 벗어나, 빛의 방향을 살짝 틀어주어 중첩된 정보를 활용하면, 편광 방향 자유도를 3개로 늘려서 유전율 텐서의 3개 고유치를 모두 구할 수 있다는 점에 착안한 것이 연구진의 핵심 아이디어다. 이렇게 3개의 편광 자유도를 제어하는 것과 동시에, 병원에서 사용하는 엑스레이, 컴퓨터단층(CT) 촬영처럼, 여러 각도에서 광학적 이방성 구조를 홀로그래피 현미경을 개발하여 촬영함으로써 3차원 유전율 텐서를 직접적으로 측정했다.
연구팀은 개발된 방법을 이용해 뒤틀린 네마틱 (twisted nematic) 액정과 같은 잘 알려진 3차원 광학적 이방체의 3차원 유전율 텐서를 성공적으로 측정함으로써 기술의 구현을 입증했다. 더 나아가 열적 비평형 상태로 성장-소멸-융합하는 액정 동역학, 반복되는 위상학적 특이점 구조의 액정 네트워크 등 기존의 방법들로 추정하기 어려웠던 3차원 유전율 텐서를 실험적으로 최초 측정하는 성과를 거뒀다.
제1 저자인 물리학과 신승우 박사는 "지금까지 직접 볼 수 없던 유전율 텐서를 실제로 측정할 수 있는 방법론을 처음으로 개발한 것이 큰 의미ˮ라며 "액정, 카이랄 물질, 암조직과 같은 병리 조직 내부의 콜라겐 파이버 등과 같은 광학적 방향성을 보이는 다양한 물질들의 3차원 구조를 정량적이고 비침습적으로 직접 관측할 수 있기에 여러 분야에 범용적, 필수적으로 사용할 수 있는 도구로 기대한다ˮ라고 말했다.
이번 연구는 박용근 교수 연구팀의 기술 개발 이외에도 다학제적 접근을 통해 결실을 볼 수 있었다. UNIST 물리학과 정준우 교수, 우리 대학 생명화학공학과 김신현 교수, 우리 대학 화학과 윤동기 교수 연구팀들이 오랜 기간 발전시켜온 액정 구조체 제작 기술 덕분에, 다양한 액정 구조체를 통해 기술의 실험적 검증을 효과적으로 진행할 수 있었다.
한편 이번 연구는 과학기술정보통신부의 정보통신기획평가원, 한국연구재단 창의연구사업 및 G-CORE 사업의 지원을 받아 수행됐다.
2022.03.04
조회수 8846
-
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다.
리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다.
하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다.
이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다.
그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다.
강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다.
공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다.
대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다.
우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries).
강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다.
한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 9320
-
낙엽을 활용한 친환경 마이크로 슈퍼커패시터 개발
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다.
웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다.
산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로 풍부하고, 생분해성이며 재생 가능한 매력적인 친환경 재료다. 그러나 이를 효과적으로 활용하지 못하고 방치하면 화재 위험, 식수원 오염 등 산림 재해가 발생할 수 있다.
연구팀은 두 가지 문제점을 동시에 해결할 방법으로 친환경의 생분해성 바이오매스인 낙엽 위에 추가 재료 없이 펨토초 레이저 펄스를 조사해, 대기 중에서 특별한 처리 없이 단일 단계로 높은 전기 전도성을 지닌 미세 전극인 3D 다공성 그래핀을 생성하는 기술을 개발했다. 또한 이를 활용해 유연한 마이크로 슈퍼커패시터를 제작하는 방안을 제시했다. 연구팀은 해당 연구를 통해 낙엽으로부터 쉽고 저렴하며 빠르게 다공성 그래핀-무기결정 하이브리드 전극을 제작할 수 있음을 보였으며, 제작된 그래핀 마이크로 슈퍼커패시터를 LED 발광을 위한 전원 공급 및 온, 습도계 타이머/카운터 기능의 전자시계 전원 공급을 테스트함으로써 성능을 검증했다. 이는 저가의 녹색 그래핀 기반 유연한 전자 제품의 대량 생산을 위한 길을 열 수 있음을 의미한다. (그림1)
연구 논문의 교신저자인 우리 대학 김영진 교수는 개발된 차세대 에너지 저장 소자에 대해 "현재 감당이 어려운 산림 바이오매스인 낙엽을 차세대 에너지 저장 소자로 재사용함으로써, 폐자원의 재사용 및 에너지 선순환 시스템 확립을 가능하게 한다ˮ라고 했다. 또한 공동 교신저자인 에너지연 윤하나 박사는 "이번 기술은 친환경 산업의 기술 혁신 및 고부가가치 신재생에너지 및 이차전지 사업으로써의 신시장 창출뿐 아니라 국가의 사회적, 경제적 비용을 크게 감소시킬 수 있을 것이며, 더 나아가 웨어러블 전자 제품 및 스마트 홈이나 사물 인터넷에도 적용될 것으로 기대된다ˮ라고 말했다.
이번 연구는 한국농림축산식품부의 기획평가원 지원사업과 산림청의 산림과학기술 연구개발사업 및 한국에너지기술연구원 주요사업의 지원을 받아 수행됐다.
기계공학과 레딘츤손 박사 후 연구원과 에너지연 이영아 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 및 융합연구분야의 세계적인 학술지인 `어드밴스드 펑셔널 머티리얼즈'(Advanced Functional Materials)에 작년 12월 5일 온라인 공개됐다. (논문명 : Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses)
2022.01.13
조회수 10377
-
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다.
※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체
스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다.
지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다.
물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다.
과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다.
최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다.
이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다.
이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 7441
-
전해액 첨가제로 리튬금속전지 수명 높인다
우리 대학 생명화학공학과 최남순 교수 연구팀이 리튬금속전지의 장수명화를 가능하게 하는 전해액 첨가제 기술을 개발했다고 16일 밝혔다. 개발된 첨가제 조합 기술은 리튬금속 음극 표면에 바람직한 이중층 고체전해질 계면 박막을 형성해 리튬 덴드라이트 형성을 억제하고 리튬이온을 균일하게 전달해 리튬금속전지의 수명과 고속 충‧방전 특성을 대폭 향상시켰다.
오래 달리는 전기차를 실현하기 위해서는 전지의 핵심 성능인 에너지밀도를 높여야 한다. 리튬금속전지는 리튬이온전지의 흑연보다 10배 이상 높은 용량을 발현하는 리튬금속 음극을 채용하고 있어 전지의 고에너지 밀도화를 달성할 수 있다.
그러나 높은 환원력을 가지는 리튬금속 음극과 전해액의 반응을 제대로 제어하지 못하면 리튬금속전지의 장수명을 달성하기 어렵다. 리튬금속 표면에 고체전해질 계면막을 형성시키는 것에만 집중해 한계점을 보이는 기존 연구들과는 달리 연구팀은 고체전해질 계면막을 계층화하고 형성된 이중층 계면막의 담당 기능을 구체화할 수 있는 환원반응성과 흡착력이 다른 2종 이온성 첨가제를 도입해 리튬금속 전지 수명을 획기적으로 끌어올리는데 성공했다. 또한, 니켈리치 양극 표면을 보호하는 얇은 계면막을 형성하여 양극의 구조적 안정성도 확보할 수 있었다.
최남순 교수 연구팀은 리튬금속 음극이 가지는 불안정성을 해결하기 위해 전자 받음 능력과 흡착 경향성에 따른 이온성 첨가제의 순차적인 환원 분해에 의해 이중층 고체전해질 계면막이 형성되도록 설계했으며 리튬금속 음극에 근접한 계면막은 리튬 전착-탈리반응에 따른 스트레스를 견딜 수 있는 기계적 강도를 가지는 리튬플루오라이드(LiF) 성분의 물질을 가지도록 했다.
바깥쪽 계면막은 전해액으로부터 리튬이온이 균일하게 공급되도록 하는 이온 수송 능력이 우수한 리튬나이트라이드(Li3N) 물질이 포함되도록 했다. 이러한 리튬금속 음극 표면 고체전해질 계면막의 계층적 구조화 기술은 리튬-합금기반 음극재, 리튬저장 구조체 및 무음극 기술 등과도 접목이 가능해 기업에서 요구하는 수준의 리튬금속전지를 실현하는 전해액 핵심 소재 기술이 될 것으로 기대된다. 특히, 이차전지 시장 판도를 바꿔 놓을 게임 체인저(game changer)가 될 것으로 기대하고 있는 무음극 이차전지 기술의 경우 충전 시 리튬금속이 음극 기재에 생성되므로 리튬금속을 안정화시키는 전해액 첨가제 기술은 무음극 이차전지의 성능을 더욱 끌어올리는 데 기여할 것이다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "리튬디플루오로 옥살레이트 포스페이트(LiDFBP)와 리튬나이트레이트(LiNO3)를 불소 도너와 질소 도너형 첨가제로 도입해 리튬금속 음극의 가역성과 형상 균일화가 가능했으며 이러한 이중층 계면막은 양극과의 크로스 토크(cross-talk)을 최소화해 4V 이상의 고전압에서 전해액이 분해되지 않도록 했다ˮ며 "기존에 보고된 리튬금속 전지용 전해액 조성 기술의 한계를 뛰어넘는 고전압·장수명 리튬금속 전지용 전해액 소재를 개발하게 됐다ˮ 라고 말했다.
개발된 리튬금속 음극 보호용 이중층 계면막 기술은 리튬금속 음극과 니켈 리치 양극으로 구성된 전지의 600회 충·방전 후에도 초기 용량의 80.9%를 발현했으며 99.94%의 매우 높은 쿨롱효율을 보였다.
최남순 교수는 “개발된 고체전해질 이중층 계면막 기술은 기존에 보고되던 고체전해질 계면막과는 달리 계층적 구조화를 통해 고강도 막과 고이온 전달성 막을 리튬금속 음극 표면에 형성하는 새로운 시도”라며 “이러한 기술은 리튬금속 전지의 최대 과제인 리튬금속 음극과 전해액의 불안정한 계면을 제어하는 첨가제 개발에 새로운 방향을 제시했다”라고 연구의 의미를 강조했다.
이번 연구에서 우리 대학 최남순 교수와 김세훈, 이민영(現 SK Innovation 연구원), 이정아 연구원은 구조화된 고체전해질 계면막을 형성하는 전해액 첨가제 기술을 개발하고 이중층 계면막의 구조를 분석해냈다. UNIST 곽상규 교수와 박성오 박사, 임마누엘 크리스탄토(Imanuel Kristanto) 연구원, 이태경 박사(現 한국에너지기술연구원 연구원), 황대연 박사(現 현대자동차 연구원)는 계산화학을 통해 음극 및 양극의 고체전해질 계면막의 구조화 기술에 대한 메커니즘을 규명했으며 UNIST 이현욱 교수와 김주영, 위태웅 연구원은 전해액 첨가제가 수지상 리튬 형성을 억제함을 시각적으로 보였다.
한편 이번 연구는 저명한 국제 학술지 `에너지 스토리지 머터리얼즈 (Energy Storage Materials)'에 10월 25일 字로 온라인 공개됐다(논문명 : Stable electrode-electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries).
이번 연구 수행은 과학기술정보통신부의 기후변화대응기술개발사업, 산업통상자원부의 차세대 이차전지용 극박 음극전극 개발 사업, 현대자동차의 지원으로 이뤄졌다.
2021.11.16
조회수 10736
-
위치 영상화가 가능한 약물 전달체 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 중앙대 화학과 박태정 교수, 가천대 바이오나노학과 김문일 교수와의 공동 연구를 통해 중금속 흡착 단백질을 이용한 금속 나노입자 고효율 생합성 기술을 개발하고, 이를 이용해 위치 영상화가 가능한 약물 전달체를 개발했다고 7일 밝혔다.
우리 대학 생명화학공학과 졸업생 김문일 박사(現 가천대 교수), 중앙대 박찬영 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 어플라이드 머터리얼즈 앤 인터페이시스(Applied Materials and Interfaces)’ 2021년도 13호 표지 논문으로 선정됐다. (논문명: In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system)
현재 금속 나노입자의 합성에 주로 사용되고 있는 물리화학적 방법은 독성이 있는 환원제, 계면활성제 및 유기 용매의 이용이 필요해 약물전달체 등 생체 내에 사용하기 어려운 단점을 가지고 있다. 이를 극복하기 위해 환원력이 우수한 단백질을 미생물 내에 과발현해 금속 나노입자를 생합성하는 기술이 개발됐으나, 이 방법은 미생물이 받아들일 수 있는 금속 전구체의 종류 및 농도가 제한된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해, 대장균에 중금속 흡착 단백질을 발현하는 플라스미드를 형질 전환해 단백질을 과발현한 후 이를 알지네이트 젤에 포집해 그 활성을 안정화하는 기술을 개발했다. 중금속 흡착 단백질을 포집한 알지네이트 젤은 다양한 종류의 금속 이온을 30분 이내로 빠르게 고농도로 흡착 및 환원시켜 금, 은, 자성 및 양자점 나노입자 등 다양한 종류의 금속 나노입자를 알지네이트 젤 내부에 고농도로 생합성하는 데 효과적으로 활용됐다.
특히, 연구팀은 항암제 등 약물과 중금속 흡착 단백질을 알지네이트 젤에 동시에 포집한 후 높은 형광을 나타내는 양자점 나노입자를 젤 내부에 합성함으로써 형광을 통해 위치의 추적 및 영상화가 가능하고 약물의 서방형 방출이 가능한 다기능 약물 전달체를 개발하는 데 성공했다.
☞ 서방형(sustained release): 약물 등이 장시간에 걸쳐 서서히 방출되는 형태
연구팀은 항암제와 녹색 형광을 보이는 카드뮴 셀레나이드 (CdSe) 및 파란색 형광을 보이는 유로피움 셀레나이드 (EuSe)로 이루어진 양자점을 동시에 포집한 약물 전달체를 마우스에 경구로 주입한 후, 이 약물 전달체의 위치를 생체 내에서 추적 및 영상화할 수 있음을 확인했다.
박현규 교수는 “이번 연구에서 개발된 중금속 흡착 단백질을 포집한 알지네이트 젤은 독성 물질 없이, 고속·고농도로 다양한 금속 나노입자를 생합성할 수 있고 동시에 약물의 서방형 방출이 가능하기 때문에, 향후 위치 추적이 가능한 약물 전달체 등에 응용될 수 있다”고 이번 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 지원을 받아 중견연구자지원사업의 일환으로 수행됐다.
2021.09.07
조회수 12688
-
다공성 유기 골격구조체를 이용한 하이브리드 전지 개발
우리 대학 화학과 변혜령, 김우연 교수 공동연구팀이 유기 분자로 이루어진 다공성 골격구조체를 이용해 높은 사이클 성능을 가지는 리튬-유기 하이브리드 전지를 개발했다고 20일 밝혔다.
변 교수 연구팀은 두 개의 질소 원소가 이중 결합을 가지는 아조(azo, N=N) 그룹을 레독스(산화․환원) 코어로 가지면서 벤조싸이아졸 링커로 분자들을 엮어 거대한 다공성 구조체를 설계했다. 이러한 거대 유기체 전극은 현재 무기 산화물 기반의 전극을 대체해 유연하고 가벼운 전지의 개발에 활용될 것으로 전망된다.
우리 대학 화학과 비크람 싱아(Vikram Singh) 박사와 김재욱 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 5월 11권 17호에 지난 6일 字 출판됐다. (논문명 : Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries)
이번 연구는 유기 분자들을 디자인해 거대 골격체로 만들 때 조절되는 분자 간의 상호작용 및 전자구조를 이용해 화학적 안정성, 불용성, 그리고 전기/이온 전도성을 향상할 수 있음을 증명했다. 그리고 6분에 한 번씩 충전․방전하는 빠른 속도에서도 약 1,000 사이클 이상 구동이 가능한 유기계 전극을 개발할 수 있었다.
유기 골격구조는 유기 단분자들의 공유 결합을 통해 2차원 필름을 형성하고 이들이 파이-파이 결합으로 3차원으로 성장할 수 있는 다공성 결정체다. 골격구조의 디자인은 분자 간의 상호작용 및 안정성을 극대화하고 수 나노미터 크기의 기공 채널을 규칙적으로 형성해 이온들의 이동을 원활하게 할 수 있어 유망한 유기 전극체로 디자인할 수 있다.
리튬-이온 전지의 전극으로 활용할 유기 골격구조체는 리튬 이온과 전기화학 반응을 할 수 있는 레독스 코어와 다공성 골격체를 형성하는 링커로 구성되어 있다. 공동연구팀은 레독스 코어로 낮은 전위에서 *2개의 전자전달(2e-)이 가능한 아조(azo)그룹을 사용했다.
(※ 기존의 리튬-이온 전지는 일반적으로 전자전달 수가 1보다 작다. 요즘 개발되는 차세대 전지의 경우 에너지 밀도를 높이기 위해 다중 전자전달이 가능한 물질을 찾고 있으며, 아조 그룹이 그중 하나다. R-N=N-R + 2e- + 2Li+ R-LiN-NLi-R, 형식전위: 1.65 V vs. Li/Li+, 여기서 R은 분자 링커)
벤조싸이아졸 링커를 포함하는 유기 골격구조는 다른 물질과는 달리 2전자 전달이 동시에 빠르게 발생해 우수한 충․방전 율속 특성 및 긴 사이클 성능이 평가됐다. 이는 벤조싸이아졸이 가지는 비 편재화 전자의 결합구조가 유기 전극의 안정성을 높이기 때문이다. 연구팀은 실시간 라만 분광 관찰을 통해 전극에서 아조 그룹의 가역적인 전기화학 반응을 직접적으로 증명할 수 있었다.
이와 함께 공동연구팀은 밀도범 함수 계산을 통해 두 개의 리튬(Li) 이온이 아조 그룹과 빠르게 회합(association)함을 증명했다. 아울러 벤조싸이아졸 기반의 아조 유기 골격구조체가 가지는 약 3나노미터(nm) 이하의 다공성 채널로 리튬(Li)이온이 골격체 내부까지 쉽게 통과할 수 있어 이온 전도성 또한 확보함을 실험적으로 규명했다.
공동연구를 주도한 변혜령 교수는 "아조 화합물 기반의 유기 골격구조체는 리튬-하이브리드 전지의 높은 율속 특성 및 긴 사이클 성능을 증명해, 향후 유기 기반 가볍고 휘어지는 전극의 실용화 가능성을 제시한다ˮ며 "개발한 벤조싸이아졸 기반의 유기 골격체 구조의 디자인은 향후 다양한 유기 전극 개발 시 유연한 디자인을 제공할 수 있을 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 삼성전자 미래기술육성센터와 한국연구재단, KISTI 국가슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2021.05.20
조회수 41908
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48579
-
고체 전해질 내부 나노 단위 영상화 성공
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다.
그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다.
전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다.
홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다.
이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다.
홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다.
우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte)
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2021.04.13
조회수 60943
-
물에서 작동하는 급속충전 가능한 전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물에서 작동하는 우수한 성능의 급속충전이 가능한 하이브리드 전지를 개발했다고 25일 밝혔다.
연구팀은 현재 전극 물질로 가장 많이 사용되고 있는 금속 산화물보다 전도성이 좋은 *다가의 금속 황화물을 양쪽의 전극 물질로 활용했다. 그리고 표면적이 높은 메조 다공성의 전극 구조를 기반으로 높은 에너지 밀도와 고출력을 갖는 하이브리드 수계 이온 에너지 저장 소재를 구현했다.
☞*전자를 잃고 (+)전기를 띄고 있는 상태를 말한다. 예를 들어 2+ 는 2가 이온으로 전자를 2개, 3+ 는 3가 이온으로 전자를 3개 잃어버린 상태다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리 및 다른 수계 배터리보다 안전성 및 경제성 등에서 우수성을 가져 급속충전이 필요한 휴대용 전자기기 및 안전이 중요시되는 상황에서 배터리 사용 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials, IF 25.245)' 2월 9일 字에 게재됐다. (논문명: Mesoporous thorn-covered core-shell cathode and 3D reduced graphene oxide aerogel composite anode with conductive multivalence metal sulfides for high-performance aqueous hybrid capacitors)
현재 리튬 이온 배터리는 대표적인 에너지 저장 시스템으로 에너지 밀도가 높다는 장점이 있다. 그러나 배터리 발화와 전해액 누출 같은 안정성 문제 및 리튬 광물의 높은 가격, 이온의 느린 삽입/탈리과정에 의한 낮은 출력 특성과 짧은 수명 등의 문제가 있어 많은 개선이 필요하다.
반면 물에서 작동하는 금속 산화물 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 전해질 이온이 전극 물질의 표면에서만 반응해 빠른 충전-방전이 가능하다는 장점이 있다. 따라서 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 기존의 전기 전도성이 낮은 금속 산화물은 충전/방전 속도 면에서 성능이 떨어졌고 질량 당 표면적이 낮아 많은 양의 이온이 반응하지 못하면서 고용량을 구현하기에 어려움이 있었다.
이에 강정구 교수 연구팀은 전도성이 금속 산화물보다 100배 정도 높은 다가의 금속 황화물을 수계 에너지 저장 시스템의 각각 양극과 음극의 전극 물질로 활용해 고용량과 고출력의 성능을 달성했다. 양극 물질로 쓰인 니켈 코발트 황화물과 음극 물질로 쓰인 철 황화물은 모두 두 개의 산화수 상태로 존재해 작동 전압 범위 내에서 더 풍부한 레독스 반응을 일으켜 고용량을 달성할 수 있는 물질로 알려져 있다.
양극 물질은 표면이 가시로 둘러싸인 메조 다공성 코어-쉘 구조로 표면이 30nm(나노미터) 크기의 니켈 코발트 황화물 나노입자들로 이루어져 있어서 표면적이 높고 이온 확산 통로가 풍부하게 존재해 수계 이온 기반 에너지 저장 시스템에서 고용량과 고출력의 에너지 저장성능을 달성했다.
또한 음극 물질은 환원된 산화 그래핀이 쌓이지 않고 무질서하게 엉킨 3D 환원된 산화 그래핀 에어로젤 구조를 뼈대로 삼고 30nm(나노미터) 크기의다가의 철 황화물 나노입자들이 무수히 올려져 있는 구조로서 역시 풍부한 나노입자에 의해 활성 표면적이 높고 3D 그래핀 구조가 가지고 있는 이온 확산 통로 덕분에 높은 출력의 에너지 저장이 가능하다.
이러한 풍부한 메조 다공성의 이온 확산 통로가 있는 구조는 전해질 이온이 빠른 속도로 전극 깊숙이 빠른 침투가 가능해 고출력의 충전-방전 속도를 나타낼 수 있어 고출력 에너지 요구에 응할 수 있다. 또한 모든 활성물질이 나노입자로 이루어져서 기존의 표면적이 낮은 금속 산화물 전극의 낮은 용량의 문제를 해결했다.
이 수계 하이브리드 저장 소자는 기존의 수계 배터리에 비해 같은 수준의 저장용량을 유지하면서 100배 이상의 높은 에너지 저장용량을 보이며 기존의 리튬이온 배터리보다 높은 빠른 출력 밀도를 보인다. 또한 고용량으로 수십 초 내 급속충전이 가능해 안전성이 요구되는 여러 에너지 저장 시스템에 활용 가능할 것으로 기대된다.
강 교수는 "친환경적인 이 기술은 물에서 작동해 전해액 누출 및 화재의 위험성이 없어 안전성이 뛰어나고 리튬을 이용하지 않아 저비용으로 제작할 수 있고 활용성이 뛰어나다ˮ라고 소개하면서 "표면에서의 빠른 화학반응을 이용한 고 표면적의 전극 물질을 이용해 기존보다 높은 전력 밀도와 에너지 밀도를 갖는 시스템 구현이 가능하므로 수계 에너지 저장 장치의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단과 수소에너지 혁신기술사업의 지원을 받아 수행됐다.
2021.02.25
조회수 92882