-
발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다.
우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다.
에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다.
마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다.
연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay).
김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.03.22
조회수 7398
-
천조분의 일 안정성 가진 6G 테라헤르츠파 생성 기술 개발
차세대 6G 무선통신, 양자 분광 기술, 나아가 군용 레이더 기술을 실현하고, 6G 통신 기기 간 주파수 표준으로 이용될 수 있는 넓은 대역의 테라헤르츠파* 응용 기술이 개발되어 획기적인 성능 향상을 가져올 것으로 예상된다.
*테라헤르츠파(THz): 밀리미터파와 광파 사이(100기가헤르츠(GHz) ~ 3테라헤르츠(THz))에 해당하는 전자기파
우리 대학 기계공학과 김승우, 김영진 교수 공동연구팀이 차세대 6G 이동통신 대역으로 알려진 테라헤르츠 대역에서 세계 최고 수준의 안정도를 가지는 초안정 테라헤르츠파 생성 원천기술을 개발했다고 3일 밝혔다.
차세대 테라헤르츠파 기술을 선점/선도하기 위해서는, 핵심 테라헤르츠 소자들에 대한 개발, 평가 및 선점이 필수적이다. 하지만, 테라헤르츠 전송, 변조 및 검출 소자들에 대한 평가를 수행할 수 있는, 초안정 표준급 테라헤르츠 신호 생성에 어려움이 있어, 이러한 핵심 소자들에 대한 접근에 지금까지 제한이 존재해 왔다.
기존의 테라헤르츠파 생성 방식은 상대적으로 낮은 주파수 안정도를 가지는 마이크로파 원자시계에 기반한 것으로, 최근 개발된 광 시계와 비교하여서는 수천 배 이상 낮은 안정도를 보여 왔다.
이를 극복하기 위해, 연구팀에서는 천조분의 일(1/1,000,000,000,000,000)의 안정도를 가지는 매우 정밀한 광주파수 대역의 시간 표준을 안정화하는 펨토초 레이저 광빗*으로부터 두 개의 레이저를 추출/합성해 테라헤르츠파를 생성했다. 이 과정에서 연구팀은 다양한 잡음을 면밀히 분석하고, 광빗의 우수한 안정도를 유지하기 위해 잡음 보상/제어 기술을 개발했다. 이후, 광빗의 넓은 대역폭 특성을 활용하여 테라헤르츠파를 생성했으며, 전대역에서 시간 표준 수준의 안정도(천조분의 일)를 가지는 것을 실험적으로 검증했다. 이는 세계 최고 수준의 광 시계 안정도를 테라헤르츠 대역에서도 새로이 실현할 수 있음을 의미한다.
*펨토초 레이저 광 빗: 시간/주파수 표준으로 활용할 수 있는 광대역(수백만 개의 주파수의 중첩) 레이저, 빛의 스펙트럼이 머리빗과 닮았다 하여 붙여진 이름이다.
우리 대학 기계공학과 졸업생 신동철 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 2월 11일 게재됐다. (논문명: Photonic comb-rooted synthesis of ultra-stable terahertz frequencies)
이 기술은 광 시간 표준에 기반한 세계 최고 수준의 초안정 테라헤르츠파를 생성할 수 있어, 차세대 6G 통신 대역에서 초고속 통신을 실현하고, 6G 통신 기기 간 주파수 표준으로 이용될 수 있다. 또한, 생성한 테라헤르츠파는 밀리헤르츠(mHz) 수준의 정확도로 실시간 변조 가능하다는 것을 검증했다.
주저자인 신동철 박사는 "펨토초 레이저 광빗을 매개로 한 테라헤르츠 생성 기술 개발을 통해 세계 최고 수준의 광 시계 안정도를 테라헤르츠 영역으로 확장할 수 있음을 실험적으로 검증했다ˮ며 "차세대 6G 무선통신 대역에서 가장 우수한 안정도를 선점한 것에 의미가 있고 테라헤르츠 핵심 소자 평가 등에 응용돼 테라헤르츠 대역 표준 확립에 도움될 것이다ˮ라고 말했다.
한편 이번 연구는 한국연구재단의 과학기술분야 기초연구사업-개인연구사업- 리더연구(국가과학자)지원을 받아 수행됐다.
2023.03.03
조회수 5554
-
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다.
최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다.
바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates)
최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다.
CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다.
이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다.
제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ
이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 7975
-
새로운 세포핵 단백질의 이동 루트 발견
인간의 생명 정보를 담고 있는 DNA는 세포핵(nucleus) 내에 존재하며 이 정보는 전령 RNA(messenger RNA, mRNA)에 담겨 세포질로 이동 후 단백질 생성의 기초가 된다는 것이 소위 유전자 발현의 센트럴 도그마(central dogma of eukaryotic gene expression)다. 이 과정이 온전히 이루어지기 위해서는 유전자 발현의 최종 산물인 단백질 중 DNA 정보를 유지 및 활용하는 단백질들이 다시 세포핵으로 이동하여 작용하는 순환의 과정이 필요하다.
세포핵은 단백질의 투과가 불가능한 이중의 지질막(double-layered lipid membrane)으로 둘러싸인 구조이기 때문에 세포질에서 생성된 단백질이 핵으로 이동하기 위해서는 핵공(nuclear pore)라는 작은 구멍을 통과해야만 가능한 것으로 알려져 있다. 그리고, 핵공을 통해 세포핵으로 이동이 가능한 단백질들은 핵 이동 신호(nuclear localization signal, NLS)라는 부위를 포함하고 있는 것으로 잘 알려져 있다. 이 단백질 이동 신호 발견의 공로로 군터 블로벨 (Gunter Blobel)교수가 1999년에 노벨 생리의학상을 수상한 바도 있다.
다만, 세포핵은 특정한 크기로 유지가 되고 있기 때문에 세포질에서 생성된 단백질들이 지속적으로 핵으로 운송이 되기만 해서는 안 되고, 기능을 완수한 단백질들은 핵공을 통해 다시 세포질로 이동하거나 핵 내에서 분해되어 핵 내에 특정 농도 이상 단백질이 쌓이는 것을 방지해야 한다. 문제는 핵 이동 신호는 대부분 핵단백질들에 공통적으로 존재하지만 핵 탈출 신호(nuclear export signal)는 일부 핵단백질에만 존재하기 때문에 세포핵에서 세포질로 단백질 방출에 대해서는 명확한 설명이 어려운 상황이었다.
우리 대학 생명과학과 김진우 교수 연구실에서는 특정 DNA 정보를 인식해 유전자 발현을 유도 또는 억제하는 전사인자의 한 종류인 호메오단백질의 기능에 대한 연구를 수행하고 있다. 인간에 200여 종이나 있는 호메오단백질은 동물 배아의 특정한 부분에서만 집중적으로 작용하여 머리, 몸통, 팔, 다리 등 다양한 신체 기관과 조직들을 생성하는데 핵심적인 역할을 한다. 따라서 특정 호메오단백질이 정상적 기능을 하지 못하면 여러 신체 기관들이 정상적으로 만들어지지 못하는 심각한 발달 이상이 나타난다.
호메오단백질들은 세포핵 내에서 전형적 전사인자 기능을 하는 것 외에도 세포와 세포 사이를 이동하여 작용하는 세포 간 신호전달자의 기능도 있다는 것을 김진우 교수 연구실이 규명한 바 있다. 김 교수 연구팀은 호메오단백질들의 세포 외부로의 분비는 이들 단백질 생성되는 세포질이 아니라 기능을 수행하는 세포핵에서 시작된다는 점을 확인했다. 또, 이 과정은 핵공을 통한 세포핵-세포질 경로가 아니라 세포막 구조를 매개할 것이라는 간접 증거도 확인했다. 결국, OTX2라는 호메오단백질이 세포핵 내부에서 이중층 핵막 돌기(double-layered nuclear membrane bud)에 포집되는 모습을 전자현미경 분석을 통해 확인했다. 별첨한 모식도에서 설명되어 있듯이, OTX2가 핵막 돌기에 포집되는 과정은 여러 분자의 OTX2 단백질이 핵막 이중층의 내막에 있는 SUN1이라는 단백질에 직접 결합을 하는 것에서부터 시작이 되는데, SUN1은 핵막 외막의 SYNE2라는 단백질과 연결이 되어 있기 때문에 핵막의 변형이 이중층에 걸쳐 이루어지게 된다. 그 후 OTX2가 포집된 핵막 돌기의 내막을 TORSINA1(TOR1A)이라는 세포막 절단 단백질이 한번 자르고 DYNAMIN(DNM)이라는 또다른 세포막 절단 단백질이 외막을 잘라서 이중층의 세포 소낭(double-layered membrane vesicle)으로 만들어 세포질에 방출하는 새로운 방식의 핵단백질의 세포질 운송 방식을 증명하였다.
더 나아가 김 교수팀은 이렇게 만들어진 OTX2 포집 세포소낭의 외막은 세포의 물질 소각 공장이라고 할 수 있는 리소좀(lysosome) 막과 융합되어 리소좀 내부의 지질 분해효소와 단백질 분해효소가 남은 소낭의 내막과 OTX2 단백질을 순차적으로 분해하도록 하는 기존의 핵단백질 분해 과정과 완전히 다른 방식의 핵단백질 분해 루트를 증명했다. 이러한 일련의 세포핵 탈출 과정 중 일부에 문제가 생기면 핵 내부에 과도하게 쌓인 OTX2가 응집체를 만들어 해당 세포의 핵 내 기능에 문제를 일으키는 한편 주변 세포로 이동도 되지 않아 이를 필요로 하는 동물의 시각 기능 발달에 문제가 생기는 것을 증명했다.
이 연구를 통해 김 교수팀은 세포핵과 세포질 사이의 단백질 이동 과정이 기존 알려진 핵공을 통한 루트보다 훨씬 다양한 방식으로 이루어질 수 있음을 제시하였고, 이 논문에서 예시로 증명한 OTX2 이외에도 많은 핵단백질들이 핵막 소포를 통해 이동할 가능성이 있어 이에 대한 추가 연구를 진행할 예정이다. 특히 핵막 소포를 통한 핵단백질의 방출이 원활하지 않을 때 암이나 퇴행성질환 등이 유발될 수 있어서, 이와 관련된 질병 연구도 병행할 예정이다.
이번 연구는 국제학술지인 Nature Communcations(https://doi.org/10.1038/s41467-023-36697-5)에 2월 27일자로 발표됐다. KAIST 생명과학과 김진우 교수 연구팀 박준우 박사가 제1 저자로 연구를 주도하였고, 한국기초과학지원연구원 권희석 박사 연구팀과 가톨릭의과대학 김인범 교수 연구팀이 함께 참여했다. 본 연구는 과학기술정보통신부 중견연구자연구지원사업과 선도연구센터사업, 그리고 KAIST 국제공동연구지원사업의 지원을 받아 수행됐다.
2023.02.28
조회수 5699
-
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다.
전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0)
반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다.
윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다.
연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다.
연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다.
연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다.
해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다.
한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 5990
-
RNA 합성에서 ‘기다림의 미학’ 규명
DNA에서 RNA를 생성하는 과정을 마무리 짓는 전사종결인자가 단백질 로(이하 Rho)이다. 일반 단백질이 작용물질에 미리 붙어 있으면 반응이 빨리 된다는 통념과 다르게 RNA 중합효소에 붙어 기다리는 Rho는 중합효소가 오래 멈출수록 종결 효율이 높아진다는 유의미한 결과가 발표되었다. 이번 연구 결과를 통해 자연에서 기다림의 미학이 증명된 것이다.
우리 대학 생명과학과 강창원 명예교수(KAIST 줄기세포연구센터 고문)와 서울대학교 물리천문학부 홍성철 교수의 공동 연구팀이 우리 대학 화학과 강진영 교수, 우리 대학 생명과학과 서연수 교수 연구팀과 협업 연구를 통해 RNA 합성 종결인자의 동역학적 특성을 발견했으며 그런 특성이 유전자 발현 조절에 미치는 생물학적 기능을 규명했다고 27일 밝혔다.
공동 연구팀은 세균의 전사 종결에 단백질 Rho가 관여하는 분자기작에 관해 작년에 국제학술지 네이처 커뮤니케이션즈(Nature Communications)에 발표한 바에 따르면, Rho가 중합효소에 미리 결합해 RNA의 특수부위를 기다린 후 중합효소‧DNA‧RNA의 전사 복합체를 해체하는 방식과 Rho가 RNA에 먼저 결합해 중합효소를 쫓아간 후 복합체를 해체하는 방식, 쫓아간 후 RNA만 방출하고 중합효소가 DNA에 남는 방식 등 세 갈래로 나뉘어 진행된다. (아래 그림 참조)
그런데 흥미롭게도 세 갈래 진행하는 속도가 기존 통념과는 다른 새로운 사실을 발견했다. 기존에는 Rho가 RNA에 붙어 중합효소를 쫓아가서 끝내는 방식과 비교하면 Rho가 중합효소에 미리 붙어 기다렸다가 끝내는 방식이 쫓아가는 시간이 들지 않기 때문에 더 빠를 것으로 인식되어 왔다. 하지만 공동 연구팀의 연구 결과는 기다려서 끝내는 방식이 오히려 더 느렸다. 그런데 느린 기다림 방식은 중합효소의 멈춤 시간이 길수록 종결 효율이 높고 상황에 따라 달라질 수 있는 반면에 쫓아가는 빠른 방식은 종결 효율이 중합효소 멈춘 시간과 상관이 없으며 상황에 따라 변화의 여지도 없다는 사실을 새롭게 밝혔다.
RNA가 방출되는 전사 종결이 일어나려면 RNA의 연장 합성이 일단 멈춰야 한다. 종결이 더디게 일어나려면 멈춤이 오래 유지되어야 하므로 전사 멈춤 시간과 전사 종결 효율의 상관관계를 이번 공동 연구에서 분석했다. 연구 결과, 기다려서 전사의 세 갈래 끝내기 방식이 진행하는 속도가 제각각 다를 뿐 아니라 그 조절 양상도 다르다는 것을 처음으로 규명한 것이다.
생물물리학 분야 첨단 기술인 단일분자 실험을 수행한 서울대 물리천문학부 송은호 박사과정 대학원생이 제1 저자로 참여한 이번 논문(제목: Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination)은 저명 국제학술지 핵산연구(Nucleic Acids Research, 최근 영향지수 = 19.160)에 지난 2월 10일 자 게재됐다. KAIST 팔린다 무나싱하 박사, KAIST 황승하 박사과정 대학원생도 참여해 저자가 총 7명이다.
송은호 제1 저자는 "기존 통념과 상반된 결과를 처음 발견했을 때 당황스러웠지만 데이터를 꾸준히 쌓아가고 적절한 통계 모델을 통해서 그 결과를 검증해냈을 때 뿌듯했고, 또 이 발견의 생물학적 역할을 규명했을 때 더욱 기뻤다ˮ며 "항생제 개발 등에 중요한 단서를 줄 것이다ˮ라고 연구의 의의를 설명했다.
이번 공동 연구에는 단일분자 형광 기술을 구사하는 물리학자, 유전자 발현을 탐구하는 생명과학자, 중합체 구조를 분석하는 화학자가 두루 참여했다. 다양한 분야의 전공자가 꾸준히 협업하는 다학제 기초과학 연구의 우수 사례이며, 이번 연구는 한국연구재단 중견연구자지원사업, KAIST 고위험‧고성과 연구사업의 지원을 받았고, 논문게재비는 KAIST에서 지원했다.
2023.02.27
조회수 5516
-
획기적인 반도체 소자 설계를 위한 2차원 공진기 개발
빛을 이용한 광공진기가 현대 정보·통신 산업에 필수적인 것과 같이, 양자 정보를 처리하는 차세대 반도체 소자를 설계하는 데에 활용될 수 있는 2차원 전자를 가두는 공진기*를 세계 최초로 구현하여 화제다.
*공진기란 한정된 공간 안에 파동을 가두는 장치로서 빛이나 음파, 혹은 통신 기술에 쓰이는 전자기파와 같은 파동을 제어하는 분야에서 필수적으로 활용됨.
우리 대학 응집상 양자 결맞음 센터(센터장 물리학과 심흥선 교수)는 우리 대학 물리학과 최형순 교수, 부산대학교 정윤철 교수, 전북대학교 최형국 교수와 공동연구를 통해 2차원 전자의 파동성을 이용한 공진기를 개발하는데 성공했다고 13일 밝혔다.
빛은 파동이면서도 다양한 매질 내에서 장거리 이동이 가능하다. 따라서 빛은 마주보는 거울 사이에 가두어 두더라도 소실되지 않고 여러 차례 왕복이 가능하여 광공진기 개발에 용이하고 실제로 다양한 광학소자들이 이미 폭넓게 개발되어 활용되고 있다. 반면에 물질 내부의 전자는 매질 내에서 쉽게 산란되어 빛의 파동성을 유효하게 활용하는 기술이나 소자 개발이 쉽지 않다. 이런 한계를 극복하고 전자를 이용하여 광학 기술을 모사하는 것을 '전자광학'이라고 한다. 이번 연구는 전자가 단순히 파동성을 띈다는 사실을 확인한 것에 그치지 않고 광공진기의 2차원 전자광학적 소자에 대응되는 전자공진기를 실제로 구현했다는 점에서 의미가 크다.
지금까지 직진하는 1차원 전자를 가둬 공진기를 만든 사례는 있었지만, 2차원 평면상에서 반사나 회절, 간섭 등이 복합적으로 일어나는 전자를 가둬 공진기를 만든 처음 사례이다. 이번 연구를 통해 앞으로 더욱 다양한 형태로 전자를 제어할 수 있는 원천기술로도 활용될 수 있을 것으로 기대된다.
공동연구팀은 반도체 나노소자 공정을 통해 전자의 파동을 반사할 수 있는 곡면거울을 제작하고 광공진기의 구조를 2차원 전자에 적용하여 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다. 이를 위해 반도체를 극저온으로 냉각하면 반도체 내부의 전자가 수 미크론(백만분의 1미터) 정도 양자역학적 특성이 보존되는 2차원 전자 파동 형태로 존재할 수 있다. 이 반도체 위에 전극을 입히고 강한 음전압을 걸어주면 전극이 있는 영역으로는 전자가 진입하지 못하게 되므로 전자가 반사되는 거울 역할을 할 수 있다. 이 원리를 적용하여 두 개의 마주 보는 곡면거울로 이루어진 공진기 구조를 만들고 그 내부에 전자 파동을 주입하여 그 전도도를 측정함으로써 실제로 전자가 공명하는 특성이 관측하였다. 이를 통해 양자역학적 특성을 갖는 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다.
우리 대학 물리학과 박사과정 박동성학생과 부산대학교 박사과정 정환철학생이 공동 제1 저자로 참여한 이 연구 결과는 지난 1월 26일 네이처 자매지인 `네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. (논문명 : Observation of electronic modes in open cavity resonator)
최형순 교수는 “동 기술은 2차원 전자계의 전자광학 발전에 새로운 가능성을 제시하는 원천기술로써 향후 다양한 양자기술 분야에도 활용될 수 있을 것으로 기대된다”라고 설명했다.
이번 연구는 한국연구재단 선도연구센터(SRC)를 중심으로 이루어졌으며 그 외에도 한국연구재단의 다양한 연구 사업(양자컴퓨팅 개발사업, 기본연구, 중견연구 지원사업 등)의 지원이 있었다.
2023.02.13
조회수 6008
-
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다.
연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.
모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.
연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.
*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술
연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.
연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다.
물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.
바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다.
연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data)
한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 5512
-
획기적 암 치료제를 만들 단백질 코드 규명
우리 대학 의과학대학원 이지민 교수 연구팀이 유럽분자생물학연구소(EMBL) 미하일 사비스키(Mikhail Savitski) 교수, 서울대학교 백성희 교수와 공동 연구를 통해 질환의 억제와 촉진의 실마리가 되는 단백질 수명을 결정하는 단백질 *번역 후 조절(post-translational modification, 이하 PTM) 코드를 규명했다고 1일 밝혔다.
* 번역 후 조절(PTM): DNA가 mRNA가는 전사 과정을 거쳐 최종 단백질로 번역까지 일어난 이후에 추가적으로 생기는 현상으로, 단백질의 구조나 효능에 영향을 미치는 것으로 주로 알려져 있음
연구팀은 기존에 단백질의 운명 조절과 연관이 없을 것으로 생각됐던 PTM 신호를 `PTM-활성화(PTM-activated) 데그론'과 `PTM-불활성화(PTM-inactivated) 데그론'으로 구분해 단백질 수명 조절과의 관련성을 규명했다.
*PTM 활성화 데그론과 PTM 볼활성화 데그론: PTM에 의해 데그론이 활성화 되는 것은 단백질의 번역후 변화가 단백질의 분해를 촉진했다는 것을 의미하며, 반대로 불활성화 데그론은 번역 후 조절 신호가 단백질의 분해를 억제하여 단백질의 축적이 일어났음을 의미
여기서 데그론 코드란 단백질 수준을 조절 가능한 아미노산 서열의 조합 개념으로 질병의 진행이나 억제의 스위치 역할을 하는 단백질의 수명 조절 코드를 말한다.
연구팀은 이를 규명한 결과 기존 치료제가 접근할 수 없는 `기존에 약으로 만들지 못했던(Undruggable)' 신규 타깃의 정확도 높은 치료법 개발의 가능성을 열었다.
또한 연구팀은 신규 PTM 관련 코드를 다각화함으로 인해 단백질 분해 및 생성의 근본 원인을 알 수 없었던 기존의 신호 전달 체계에 PTM을 유도하거나 제거하는 효소의 역할을 재조명했다. 이번 연구를 통해 질병 관련 단백질 수명 변화 기원을 PTM 코드로 디지털화해서 미리 규명을 함으로써 그동안 단백질 수준을 마지막 단계에서 조절하는 *유비퀴틴 신호에만 집중했던 부분을 변경하도록 제안했다.
* 유비퀴틴: 단백질이 분해되기 전에 먼저 일어나는 대표적인 화학적 변화로 알려져 있으며 없어져야 할 단백질에 붙는 표지자로 널리 알려져 있음
우리 대학 의과학대학원 이지민 교수가 제1 저자로 초청돼 기고한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications, IF 17.69)' 에 지난 1월 13일 字 출판됐다. (논문명 : Control of protein stability by post-translational modifications).
이지민 교수는 "새롭게 제시한 PTM-활성화 또는 PTM-불활성화 데그론 코드의 규격화는 기존 약에 반응하지 않거나 저항성이 생기는 단백질 수준을 조절 가능한 다양한 질병 (대표적으로 암이나 퇴행성 뇌질환)의 진단 및 의약품 개발로 발전시킬 수 있을 것으로 기대된다ˮ 고 밝혔다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 리더연구사업,유럽분자생물학연구소 및 과학기술정보통신부 의사과학자양성사업의 지원을 받아 수행됐다.
2023.02.01
조회수 5542
-
3D 프린팅 기반의 뇌 이식용 뉴럴 프로브 공정 기술 개발
우리 대학 전기 및 전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis) 연구팀과의 공동 연구를 통해 3D 프린팅 기반의 광유전학 뉴럴 프로브 공정 기술을 개발했다고 밝혔다.
광유전학은 빛을 사용해 목표로 하는 특정 신경세포를 선택적으로 정교하게 조절할 수 있는 기술로서 뇌 연구 및 뇌질환 치료분야에서 많은 각광을 받고 있다.
뇌에 광유전학을 적용하기 위해서는 빛을 목표 신경회로에 정확히 전달할 수 있는 장치가 요구된다. 따라서 서로 다른 광유전학 기반 뇌 연구 실험을 진행할 때마다 실험 대상 동물과 목표 신경회로의 위치에 최적화된 디자인을 갖는 뇌 이식용 뉴럴 프로브가 필요하다.
반도체 공정 기반의 광전자 뉴럴 프로브는 실험 목적에 맞게 길이와 형태를 설정하여 제작할 수 있어 광유전학 연구에서 널리 사용되고 있다. 하지만 반도체 공정은 많은 기반 시설과 전문성이 요구되어 신경과학자가 직접 접근하기 힘들다. 또한 공정에 많은 시간과 비용이 필요하여 새로운 디자인의 프로브를 빠르고 저렴하게 개발하기 어렵다.
연구팀은 뉴럴 프로브 공정에 3D 프린팅을 도입하여 이러한 문제를 극복했다. 개발된 공정은 단순하고 소요 시간이 짧으며, 비싼 반도체 공정 장비와 재료가 전혀 사용되지 않아 개당 약 1000원의 가격으로 생산이 가능하다 (참고: 상용 실리콘 프로브: 약 50000원 이상). 본 공정기술을 이용하면 3D 구조 설계 소프트웨어를 활용하여 누구나 손쉽게 뉴럴 프로브의 디자인을 수정하고 제작할 수 있어 다양한 동물의 목표 뇌신경회로에 최적화된 디바이스를 빠르게 구현할 수 있다.
3D 프린팅으로 제작된 프로브는 소형 무선 통신 모듈과 결합하여 무선 광유전학을 구현할 수 있도록 개발되었다. 무선 통신 모듈을 제어하는 스마트폰 앱도 개발하여 사용자의 편의성을 도모하였다.
연구팀은 본 기술이 신경과학 커뮤니티에서 누구나 활용할 수 있도록 개발 프로토콜을 제시했다. 프로토콜에는 광유전학 뉴럴 프로브와 무선 통신 모듈의 제작 과정뿐만 아니라 스마트폰 앱 사용법과 프로브 이식 수술 방법이 포함되어 있다. 3D 프린팅 기반의 본 제작기술은 광유전학 프로브 제작의 접근성, 용이성 및 활용성을 크게 높일 수 있어 다양한 뇌과학 및 신경과학 연구에 크게 기여할 수 있을 것으로 기대된다.
전기및전자공학부 이주현 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 프로토콜스 (Nature Protocols)' 1월 字 표지 논문으로 게재됐다. (논문명 : Customizable, wireless and implantable neural probe design and fabrication via 3D printing).
이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단의 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원 및 뇌&행동 연구재단의 지원을 받아 수행됐다.
2023.01.18
조회수 5720
-
인간 근육보다 17배 강한 헤라클래스 인공 근육 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다.
동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다.
최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다.
김교수 연구팀이 개발한 신소재는 온도변화에 따라 동물 근육과 같이 크게 수축을 일으키는 액정물질에 고품질의 그래핀을 적용함으로써 레이저를 이용한 원격제어가 가능하며 인간 근육의 작업 수행능력(17배)과 출력밀도(6배)를 크게 능가하는 운동능력을 구현했다. 연구팀은 실제로 인공 근육을 이용해 1 킬로그램(kg) 짜리 아령을 들어올리는 데 성공하기도 했으며, 이를 이용한 인공 자벌레는 살아있는 자벌레보다 3배나 빠른 속도로 움직이는 기록을 달성하기도 했다.
연구를 주도한 신소재 분야 석학인 KAIST 김상욱 교수는 "최근 세계적으로 활발히 개발되고 있는 인공 근육들은 비록 한두 가지 물성이 매우 뛰어난 경우는 있으나 실용적인 인공 근육으로 작동하는 데 필요한 다양한 물성들을 골고루 갖춘 경우는 없었다ˮ며 "이번 연구를 시발점으로 실용성 있는 인공 근육 소재가 로봇 산업 및 다양한 웨어러블 장치에 활용할 수 있으며 4차 산업 혁명에 따른 비대면 과학기술에서도 크게 이바지할 수 있을 것이다ˮ라고 말했다.
신소재공학과 김인호 박사가 제1 저자로 참여한 이번 연구는 이러한 성과를 인정받아 저명한 영국의 과학 학술지 네이처 나노테크놀로지(Nature Nanotechnology)에 지난 10월 27일자로 출간됐었으며, 해당 학술지의 표지 논문으로 선정됐다. 또한 관련 기술에 대한 특허를 국내외에 출원하여 KAIST 교원창업 기업인 ㈜소재창조를 통해 상용화를 진행할 계획이다.
신소재공학과 강지형 교수, 기계공학과 유승화 교수, 부산대학교 고분자공학과 안석균 교수가 공동 연구로 참여한 이번 연구는 한국연구재단의 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 기초연구 사업의 지원을 받아 수행됐다.
2022.12.05
조회수 9438
-
고성능 스트레처블 고분자 반도체를 위한 신개념 계면공학법 개발
우리 대학 신소재공학과 강지형 교수, 미국 버클리 대학교 문재완 박사와 미국 스탠퍼드 대학교 제난 바오(Zhenan Bao) 교수 공동연구팀이 고분자 반도체와 회로기판의 경계면을 개선하는 새로운 계면 개질법을 개발하고, 이를 이용해 고성능 스트레처블(늘어나고 유연한) 고분자 반도체를 구현했다고 24일 밝혔다.
고분자 반도체는 기존의 실리콘 기반의 반도체와는 다르게 탄소를 기반으로 구성돼 있으며, 상대적으로 낮은 가격과 대면적 공정이 가능하다는 장점으로 인해 추후 유연 소자, 태양전지, OLED 등의 산업에 응용될 수 있는 차세대 반도체 재료다.
하지만 전기적 성능이 좋은 고분자 반도체는 작은 응력에도 쉽게 깨지는 문제점이 있었다. 일반적으로 고분자 반도체는 결정구조를 많이 가질수록 전기적 성능이 좋아지지만, 이러한 결정구조는 고분자 반도체가 응력에 취약해지게 만들기 때문이다.
이러한 문제점을 해결하기 위해, 기존에는 분자구조의 변화, 첨가제 등을 이용해 고분자 반도체 자체의 기계적 물성을 변화시키는 데 주로 초점을 맞춰왔다.
그러나 기존의 방법들은 기계적 물성이 향상되는 대신 전기적 성질이 악화되고, 각각의 고분자 반도체에 맞는 분자구조를 찾는데 많은 시간이 소요돼 고성능 스트레처블 고분자 반도체 구현에 적합하지 않았다.
우리 대학 강지형 교수와 스탠퍼드 대학교 제난 바오 교수 공동연구팀은 이번 연구에서 고분자 자체의 성질을 변화시키는 것이 아닌 기판과 고분자 반도체 사이의 계면을 개질하는 새로운 방법을 제시했다. 이러한 계면 공학법을 통해 고분자 반도체는 전기적 성질을 잃지 않으면서 기계적 물성이 크게 개선됐다.
공동연구팀은 이번 연구에서 응력에 의해 고분자 반도체가 손상을 받는 것은 고분자 박막과 기판 사이 계면에서의 박리 현상과 그로 인한 응력의 편재화(localization)에 의해 상당 부분 기인함을 발견했다.
공동연구팀은 이러한 문제점을 극복하기 위해 고분자 반도체 박막과 기판 사이의 계면에 새로운 고분자 층을 도입했다. 이 고분자 층은 반도체 박막과 기판 모두와 강하게 결합해 두 층의 박리현상과 응력의 편재화를 효과적으로 막아줬으며, 동역학적 결합(dynamic bond)을 할 수 있는 구조를 가져 추가적인 응력 분산 효과를 보였다.
이러한 계면 개질이 이뤄진 고성능 고분자 반도체는 최대 110%의 변형률까지 눈에 띄는 균열이 발견되지 않았으며, 이는 기존의 같은 반도체가 30% 변형률에서 상당한 균열을 보인 것에 비하면 획기적인 발전이다. 또한 이러한 접근법은 특정 고분자 반도체에 국한되지 않고, 다양한 고분자 반도체, 고분자 전도체, 금속 전도체에 모두 적용 가능하다는 장점이 있다.
신소재공학과 강지형 교수와 스탠퍼드 대학교 문재완 박사가 공동 제1 저자로 참여한 이번 연구 결과는 나노 재료 분야 저명 국제 학술지 `네이처 나노테크놀로지 (Nature Nanotechnology)' 11월 10일 字 온라인판에 게재됐다. (논문명 : Tough interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors).
강지형 교수는 "이번 연구는 스트레처블 고분자 반도체 구현을 위한 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 계면 공학법은 급속도로 성장하고 있는 유연소자 시장에 게임 체인저가 될 것으로 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 우수신진연구사업, 나노소재기술개발사업 미래기술연구실, 삼성종기원 과제의 지원을 받아 수행됐다.
2022.11.25
조회수 6205