-
백무현 교수, 전극만 이용해 분자의 반응성 자유자재 조절 성공
우리 대학 화학과 백무현 교수(기초과학연구원(IBS) 분자활성 촉매반응 부연구단장) 연구팀은 한상우 우리 대학 화학과 교수(나노텍토닉스 창의연구단장)팀과의 공동연구를 통해 전압을 가하는 것만으로 분자의 반응성을 조절할 수 있는 ‘만능 작용기’를 개발했다.
연구진은 분자의 전기적 성질을 결정하는 원자단인 작용기*를 전극이 대신할 수 있음을 증명하고, 전극을 활용해 다양한 화학반응을 제어하는데 성공했다. 여러 작용기의 역할을 대신할 수 있는 하나의 만능 작용기를 개발한 것이다.
* 유기화합물의 전기적 성질을 결정짓는 원자단. 에탄올(C2H5OH)의 하이드록시기(-OH), 아세톤(CH3-CO-CH3)의 카보닐기(-CO-) 등이 작용기에 해당한다.
과학기술정보통신부(장관 최기영)는 이번 성과가 10월 9일 03시(한국시간) 세계 최고 권위의 학술지 사이언스(Science, IF 41.845)에 게재되었다고 밝혔다.
작용기는 전자를 끌어당기거나/밀어내는 효과를 통해 분자의 전기적 특성을 조절한다. 전자밀도 분포를 조절하여 분자의 반응성을 결정하는 것으로, 이는 화학반응의 평형과 속도에 영향을 미친다.
1937년 미국의 화학자(루이스 하메트)가 작용기의 종류에 따른 분자의 전기적 성질 변화를 정량화한 공식을 만든 뒤, 80여 년 동안 화학반응을 이해하는데 이 공식이 활용되었다.
하지만 기존 밝혀진 작용기는 하나의 작용기가 정해진 특정 전기적 효과만을 줄 수 있어 분자의 전기적 성질을 세밀하게 조절하기 어려웠다. 또한, 복잡한 분자는 여러 단계를 거쳐 합성되는데, 각 반응마다 최적 효과를 줄 수 있는 작용기를 활용하는 것은 현실적으로 불가능했다.
연구진은 여러 종류의 작용기 대신, 하나의 작용기만으로 분자의 반응성을 자유자재로 조절할 수 있는 새로운 방법을 제시했다.
연구진이 제작한 작용기는 금 전극에 분자를 부착한 형태다. 전극에 전압을 가하면 분자 내 전자밀도 분포에 미세한 차이가 발생하고, 이로 인하여 분자의 전기적 성질에 변화가 생긴다.
전압을 바꿔가며 분자의 전기적 성질 변화를 관찰한 결과, 분자는 전극에 음(–) 전압이 걸렸을 때 전자가 풍부해지고, 양(+) 전압이 걸렸을 때 전자가 부족해지는 것을 확인했다.
이후 대표적인 유기화학 반응*에 적용해본 결과, 전극에 전압을 걸어주는 것만으로도 여러 작용기의 효과를 낼 수 있어 기존 작용기의 효과적인 대체재로 사용될 수 있음을 확인했다.
* 에스터 가수분해, 스즈키-미야우라 교차 짝지음, 아미드화 등
이번 연구는 80여 년간 널리 사용돼 온 전통적인 화학적 실험법을 대체할 수 있는 새로운 아이디어를 제시했다는 학술적 의미가 있다.
하나의 작용기는 하나의 전기적 효과만 줄 수 있다는 고정관념에서 벗어나, 이번 연구에서 제시한 만능 작용기는 화학반응이 진행되고 있는 도중에도 분자의 반응성을 바꿀 수 있다는 장점이 있다.
백무현 부연구단장은 “다양한 화학반응을 간단하게 조절할 수 있는 독창적인 아이디어를 제시한 것으로 학계의 다양한 후속연구를 견인할 수 있을 것”이라며 “산업 규모에서도 적용할 수 있는 ‘만능 작용기’ 개발을 위한 후속연구를 진행할 계획”이라고 말했다.
2020.10.12
조회수 25538
-
스스로 납작해지는 똑똑한 2차원 그래핀 섬유 개발
그래핀(Graphene)은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)이다. 이론적으로 강철보다 100배 강하고 열·전기 전도성이 뛰어나기 때문에 꿈의 신소재로 불린다. 최근에는 그래핀 마스크, 그래핀 운동화, 그래핀 골프공 등 다양한 응용제품들이 출시되고 있지만, 아직까지는 소량의 그래핀이 첨가된 것들이 대부분이다.
우리 대학 신소재공학과 김상욱 교수 연구팀이 그래핀의 기존 응용범위와 한계를 뛰어넘는 새로운 형태의 그래핀 섬유를 개발하는데 성공했다고 13일 밝혔다. 김상욱 교수 연구팀이 개발한 이 기술은 연필심 등에 쓰이는 값싼 흑연으로부터 손쉬운 용액공정을 통해 얻을 수 있고 기존 탄소섬유보다 값이 싸며 유연성 등 차별화된 물성을 지니고 있어 경제성까지 갖췄다는 게 가장 큰 특징이다.
김상욱 연구팀의 이번 성과가 높게 평가받는 이유는 100% 그래핀으로 이뤄진 섬유가 만들어지는 과정에서 스스로 납작해져서 벨트와 같은 단면을 갖는 현상을 세계 최초로 발견했다는 점이다. 통상적으로 일반섬유는 그 단면이 원형으로 이루어져 있는 반면 원자단위의 평평한 2차원 소재인 그래핀으로 이루어진 섬유는 단면이 납작한 형태가 안정적인 구조라는 점을 김 교수 연구팀이 규명한 것이다.
연구팀이 개발한 납작한 벨트형 그래핀 섬유는 내부에 적층된 그래핀의 배열이 우수해 섬유의 기계적 강도와 전기전도성이 대폭 향상됐다. 연구팀은 원형 단면을 갖는 일반섬유와 대비해 각각 기계적 강도는 약 3.2배(320%), 전기전도성은 약 1.5배(152%) 향상된 결과를 얻었다. 또 납작한 면 방향으로 매우 쉽게 구부러지는 유연한 섬유를 만들 수 있어 플렉시블 소자(유연 소자)나 웨어러블 소자 등에 유용하게 쓰일 수 있다고 연구팀 관계자는 설명했다.
연구책임자인 김상욱 교수는 "그래핀과 같은 2차원 소재로 섬유를 만들면 납작한 벨트 형태가 이상적인 배열구조다ˮ라고 말하면서 "납작한 그래핀 섬유는 납작한 면 방향으로 유연한 성질을 가지고 있어 기존의 잘 부러지는 탄소섬유의 문제를 해결할 수 있고 최근의 이슈인 마스크의 필터 소재로도 유용하게 사용할 수 있다ˮ고 덧붙였다.
우리 대학 신소재공학과 정홍주 박사과정이 제1 저자로 참여한 이번 연구는 종합화학 분야 저명 국제학술지인 `ACS 센트럴 사이언스(ACS Central Science, IF: 12.685)' 6월 11일 字 온라인판에 게재됐다. (논문명: Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration) 또 연구성과의 중요성을 인정받아 7월 22일 字로 발간된 동 학술지 7월호 표지논문(Front cover)으로 선정되는 한편 에디터에 의해 하이라이트 됐다. (First Reaction: High-Performance Graphene Fibers Enabled by Hydration)
이번 연구는 한국연구재단 리더연구자지원사업인 창의연구지원사업(다차원 나노조립제어 창의연구단)과 나노·소재원천기술개발사업의 지원을 통해 수행됐다.
2020.08.13
조회수 28627
-
자연계 효소처럼 작동하는 신개념 산업용 촉매 개발
우리 대학 연구진이 생체 내 단백질 *촉매인 *효소를 모방해 공급자 또는 개발자가 원하는 화학반응만 선택적으로 유도하되 안정성도 갖춘 기존에 없는 새로운 개념의 산업용 촉매 개발에 성공했다.
☞ 촉매(catalyst): 자신은 변하지 않으면서 물질 간의 화학반응이 잘 일어나도록 돕는 물질. 표면에 흡착된 반응물을 생성물로 빠르게 전환해주는 역할을 한다.
☞ 효소(enzyme): 생체 내의 화학반응을 매개하는 단백질 촉매. 반응물을 전환할 수 있는 금속 촉매 활성점(active site)이 부드러운 유기 고분자인 단백질로 둘러싸인 형태를 지니고 있는데, 단백질의 구조에 따라 오직 원하는 반응물만이 활성점에 접근해 생성물로 전환될 수 있다.
생명화학공학과 최민기, 화학과 김형준 교수 공동연구팀은 실생활에 흔히 쓰이는 플라스틱, 비닐 등의 재료인 화학 원료를 만들 때, 자연계 효소와 동일한 원리로 반응물을 선택적으로 전환할 수 있는 고성능 산업용 촉매를 개발하는 데 성공했다.
한정된 자원을 효율적으로 이용하기 위해서는 다양한 화학반응 경로 중 목표하는 반응물을 원하는 생성물로 선택적으로 전환해줄 수 있는 촉매를 디자인하는 것이 매우 중요하다. 지구상에 존재하는 촉매 중 가장 효율이 좋은 촉매는 자연계 및 우리 몸 등에 존재하는 '효소'다.
이와 달리 석유화학 산업에서 이용되는 촉매들은 알루미나·실리카·제올라이트와 같이 딱딱한 무기물 표면 위에 금속을 퍼뜨려 노출한 구조로 구성돼 있다. 이런 형태의 촉매에서는 금속 표면에 모든 반응물이 흡착되기 쉬워 특정 반응물만을 선택적으로 생성물로 전환하기에는 한계가 있다. 그 럼에도 불구하고 대부분 산업용 촉매 설계에서 무기 소재를 사용하는 이유는 이들이 열화학적 안정성이 뛰어나 다양한 반응 조건에서도 촉매가 안정적으로 작용하기 때문이다.
최민기·김형준 교수 공동연구팀은 이번 연구를 통해 단백질과 같이 부드럽고 유동성이 있으면서도 매우 높은 열화학적 안정성을 지닌 `폴리페닐렌설파이드(polyphenylene sulfide, PPS)'라는 엔지니어링 플라스틱 물질을 이용해서 고분자 막이 금속촉매 활성점을 감싼 형태의 신개념 촉매를 세계 최초로 개발했다. PPS는 내열성과 내화학성이 매우 뛰어나 자동차나 항공우주 산업 등에서 많이 사용되는 상용 고분자다.
연구팀은 이 새로운 촉매를 이용해 석유화학의 에틸렌 생산 공정 중 매우 중요한 아세틸렌 수소화 반응에 적용하는 데 성공했다. 우리나라 석유화학 산업의 원료는 90% 이상이 *나프타인데, 나프타분해시설(Naphtha Cracking Center, NCC)에서 이를 분해해 에틸렌 및 기타 기초유분들을 생산하고 있다. 특히 에틸렌은 주변에 흔한 플라스틱, 비닐, 접착제, 페인트까지 일상에서 사용하는 다양한 제품을 만드는데 이용하는 기본 핵심 화학 원료다.
☞ 나프타(naphtha): 원유를 증류할 때, 35~220℃의 끓는점 범위에서 유출되는 탄화수소의 혼합체이다. 중질 가솔린이라고도 부른다.
나프타를 분해할 때 생산되는 에틸렌에는 미량의 아세틸렌이 불순물로 함께 포함돼 있다. 아세틸렌은 추후 에틸렌을 이용해 화학제품을 만드는 데 매우 치명적이므로 미량의 아세틸렌을 수소화 반응으로 제거해 주는 공정을 반드시 거쳐야 한다. 그런데 이 공정은 99% 이상 에틸렌은 건들지 않으면서도, 1% 미만의 아세틸렌만 선택적으로 전환해야 하는 난제가 존재해왔다.
공동연구팀은 새로 개발한 촉매를 이 공정에 적용한 결과 1% 미만의 아세틸렌은 금속 입자를 둘러싸고 있는 고분자막을 투과해 쉽게 전환되는 대신 99% 이상의 에틸렌은 고분자막에 가로막혀 촉매 반응이 진행되지 않아서 기존 팔라듐(Pd) 촉매와 비교할 때 선택도는 2 배 이상, 안정성은 10배 이상 증진된 놀라운 결과를 얻었다.
우리 대학 생명화학공학과 이송현, 화학과 신승재 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스(Science Advances)' 7월 8일 字 온라인판에 게재됐다(논문명: Dynamic Metal-Polymer Interaction for the Design of Chemoselective and Long-Lived Hydrogenation Catalysts).
최민기 교수는 "자연계의 효소를 모방해 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 갖는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념"이라면서 "향후 높은 선택도가 있어야 하는 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것"이라고 전망했다.
이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원으로 이뤄졌다.
2020.07.31
조회수 37674
-
1mm 크기 예쁜꼬마선충에서 노화 늦추는 단백질 찾았다
우리 대학 연구진이 '예쁜꼬마선충'(C. elegans)에서 수명 연장을 돕는 단백질을 찾아냈다.
우리 대학 생명과학과 이승재 교수와 포항공대 김경태 교수 연구팀이 예쁜꼬마선충에서 세포 내 에너지 조절 센서인 'AMPK'를 활성화해 노화를 지연시키는 단백질 'VRK-1'을 발견했다.
예쁜꼬마선충은 몸길이 1㎜ 정도의 선충류다. 배양이 쉽고 사람과 유전 정보 특성이 닮아 실험동물로 널리 활용된다.
한편 에너지 센서라 불리는 AMPK는 공복이나 운동 등으로 에너지 수준이 낮아질 때 활성화돼 세포가 항상성을 유지하도록 돕는다.
예쁜꼬마선충과 생쥐, 초파리 등에서 AMPK가 식이를 제한해 수명 연장을 돕는 역할을 한다는 연구는 그동안 활발히 진행되어 왔지만, AMPK를 자극하는 상위 조절 인자는 알려지지 않았다.
연구팀은 VRK1이 활성화될 때 2만여개의 예쁜꼬마선충 유전자가 단백질로 발현되는 패턴이 AMPK가 활성화될 때의 패턴과 비슷하다는 사실을 발견했다.
VRK1은 AMPK를 인산화시키고, 인산화된 AMPK는 미토콘드리아가 세포에 에너지를 공급하는 데 필수적인 과정인 '전자 전달계'의 기능을 억제함으로써 노화를 늦춘다는 것도 확인했다.
실제 VRK1의 자극에 반응하지 않는 AMPK 돌연변이 예쁜꼬마선충에서는 수명 연장 효과가 나타나지 않았다.
생명과학과 이승재 교수는 "이번 연구 결과는 AMPK 이상으로 인한 대사질환 치료와 항노화 약물 개발에 기여할 것"이라고 말했다.
한편, 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스'(Science Advances) 7월 2일 자에 실렸다.
2020.07.16
조회수 25275
-
임성갑 교수 연구팀, 초고굴절 투명 플라스틱 필름 개발에 성공
우리 대학 생명화학공학과 임성갑 교수 연구팀이 서울대 차국헌 교수(화학생물공학부) 및 경희대 임지우 교수(화학과) 연구팀과 공동 연구를 통해 단 한차례의 증착 반응을 이용해 1.9 이상의 고굴절률을 갖는 투명 플라스틱 필름을 제조하는 기술을 개발했다.
생명화학공학과 김도흥 박사와 장원태 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제적인 학술지 '사이언스 어드밴시스(Science Advances)'誌 7월 8일 자 온라인판에 게재됐다. (논문명: One-Step Vapor-Phase Synthesis of Transparent High-Refractive Index Sulfur-Containing Polymers
굴절률이란 진공상태에서의 빛의 속도와 어떤 물질에서의 빛의 속도의 비율로, 빛이 그 물질을 통과할 때 꺾이는 정도를 나타내는 척도다. 최근 모바일 기기 및 이미지 처리(imaging) 등에 사용되는 다양한 광학 부품의 소형화 추세와 함께 더욱 얇은 두께에서 많은 빛의 굴절을 유도하는 고굴절률 투명 소재의 수요가 급격히 늘어나고 있다.
고분자(플라스틱) 소재들은 특성이 우수하고, 다양한 형태로 쉽게 가공할 수 있다는 장점으로 인해 플라스틱 안경 렌즈 등과 같이 다양한 분야에 널리 활용되고 있다. 하지만 현재까지 개발된 고분자 소재 가운데 굴절률이 1.75를 넘는 재료는 극히 드물고, 비싼 원료와 복잡한 합성 과정이 필요하며, 무엇보다도 소재 관련 원천기술의 대부분은 일본이 보유하고 있다는 데 문제가 있다. 따라서 기존 재료와 비교할 때 가볍고 저렴하며 자유자재로 가공할 수 있는 광학 소자 부품 제작을 위해서는 고성능의 고굴절 고분자 재료 확보가 매우 중요하다.
공동 연구팀은 단 한 차례의 화학 반응만으로 1.9 이상의 굴절률을 가지면서도 투명도가 우수한 새로운 형태의 고분자 박막 제조 기술을 개발하는 데 성공했다. 공동 연구팀은 원소 상태의 황이 쉽게 승화한다는 점을 이용, 기화된 황을 다양한 물질과 중합하는 방법을 적용해 고굴절 고분자를 제조했다. 이 방법으로 지나치게 긴 황-황 사슬의 형성을 억제하는 한편 높은 황 함량에서도 우수한 열 안정성과 동시에 가시광선 전 영역에서 투명한 비결정성 고분자를 만드는 개가를 올렸다. 연구팀은 기상 반응의 특성 때문에, 실리콘 웨이퍼나 유리 기판뿐만 아니라, 미세 요철 구조가 있는 다양한 표면에도 표면 형상 그대로 고굴절 박막을 코팅할 수 있다는 점과 함께 1.9 이상의 굴절률을 갖는 고분자를 세계 최초로 구현하는 데 성공했다.
이 기술은 고 굴절 플라스틱 소재 원천기술의 국산화와 더불어, 디스플레이의 밝기 향상을 위한 표면 코팅 재료, 디지털카메라 센서용 마이크로 렌즈 어레이 등 얇은 두께와 높은 굴절률, 우수한 가공성 등이 요구되는 최신 IT 기기 분야에 널리 적용될 수 있을 것으로 기대가 크다.
이번 연구에 교신저자로 참여한 경희대학교 임지우 교수는 "기체 상태의 황을 고분자 제조에 이용한다는 발상의 전환이 초 고굴절, 고 투명성 고분자 박막 제조기술의 원천이 됐다ˮ면서 "향후 고굴절 소재뿐만 아니라 평면 렌즈, 메타 렌즈 등으로 대표되는 차세대 초경량 광학 소재를 구현하는데 핵심적인 역할을 할 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 과학기술정보통신부 글로벌프론티어사업(나노 기반 소프트 일렉트로닉스 연구단) 및 선도연구센터 지원사업(웨어러블 플랫폼 소재 기술센터), 그리고 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2020.07.14
조회수 24081
-
중증 코로나19 환자의 사이토카인 폭풍 원인 찾았다
우리 대학 의과학대학원 신의철 교수와 생명과학과 정인경 교수 연구팀이 서울아산병원 김성한 교수·연세대 세브란스병원 최준용·안진영 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 중증 코로나19 환자에서 나타나는 과잉 염증반응을 일으키는 원인을 발견했다.
과잉 염증반응이란 흔히 '사이토카인 폭풍'이라고도 불리는 증상인데 면역 물질인 사이토카인(cytokine)이 과다하게 분비돼 이 물질이 정상 세포를 공격하는 현상이다.
☞ 사이토카인(cytokine): 면역세포로부터 분비되는 단백질 면역조절제로서 자가분비형 신호전달(autocrine signaling), 측분비 신호전달(paracrine signaling), 내분비 신호전달(endocrine signaling) 과정에서 특정 수용체와 결합하여 면역반응에 관여한다. 세포의 증식, 분화, 세포사멸 또는 상처 치료 등에 관여하는 다양한 종류의 사이토카인이 존재하며, 특히 면역과 염증에 관여하는 것이 많다. 세포를 의미하는 접두어인 ‘cyto’와 그리스어로 ‘움직이다’를 의미하는 ‘kinein’으로부터 cytokine이 명명됐다.
☞ 사이토카인 폭풍(cytokine storm): 인체에 바이러스가 침투하였을 때 면역 물질인 사이토카인이 과다하게 분비되어 정상 세포를 공격하는 현상
빠르게 확산하고 있는 코로나19 바이러스는 전 세계적으로 이미 1,300만 명 이상이 감염됐고 이 중 50만 명 이상이 사망했다. 코로나19 바이러스에 감염된 환자들은 경증 질환만을 앓고 자연적으로 회복되는 경우가 많으나, 어떤 환자들은 중증 질환으로 발전해 심한 경우 사망하기도 한다. 흔히 사이토카인 폭풍 때문에 중증 코로나19가 유발된다는 사실이 널리 알려져 있다. 하지만 어떤 이유에서 과잉 염증반응이 일어나는지 구체적인 원인은 아직도 알려지지 않아 중증 코로나19 환자의 치료에 많은 어려움을 겪고 있다.
우리 대학 의과학대학원 이정석 연구원 및 생명과학과 박성완 연구원이 주도한 이번 연구에서 공동연구팀은 중증 및 경증 코로나19 환자로부터 혈액을 얻은 후 면역세포들을 분리하고 단일 세포 유전자발현 분석이라는 최신 연구기법을 적용해 그 특성을 상세히 분석했다. 그 결과, 중증 또는 경증을 막론하고 코로나19 환자의 면역세포에서 염증성 사이토카인의 일종인 종양괴사인자(TNF)와 인터류킨-1(IL-1)이 공통으로 나타나는 현상을 발견했다. 연구팀은 특히 중증과 경증 환자를 비교 분석한 결과, 인터페론이라는 사이토카인 반응이 중증 환자에게서만 특징적으로 강하게 나타남을 확인했다.
☞ 인터페론(interferon): 사이토카인(cytokine)의 일종으로 숙주 세포가 바이러스, 세균, 기생균 등 다양한 병원체에 감염되거나 혹은 암세포 존재 하에서 합성되고 분비되는 당단백질이다. 일반적으로 바이러스에 감염된 세포에서 분비되는 제 1형 인터페론이 많이 알려져 있으며 주변 세포들이 항바이러스 방어 효과를 나타낼 수 있도록 돕는다.
지금까지 인터페론은 항바이러스 작용을 하는 착한(?) 사이토카인으로 알려져 있으나, 공동연구팀은 인터페론 반응이 코로나19 환자에서는 오히려 과도한 염증반응을 촉발하는 원인이 될 수 있다는 사실을 다양한 방법을 통해 이를 증명했다.
삼성미래기술육성재단과 서경배과학재단의 지원을 받아 수행한 공동연구팀의 이번 연구결과는 면역학 분야 국제 학술지인 사이언스 면역학(Science Immunology)誌 7월 10일 字에 게재됐다(논문명: Immunophenotyping of COVID-19 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19).
연구팀은 중증 코로나19 환자의 과잉 염증반응 완화를 위해 현재에는 스테로이드제와 같은 비특이적 항염증 약물이 사용하고 있는데 이번 연구 성과를 계기로 인터페론을 표적으로 하는 새로운 치료방법도 고려할 수 있음을 보여준다며 중증 코로나19 환자 치료에 새로운 패러다임을 제시한 획기적인 연구라고 이 연구에 대한 의미를 부여했다.
관련 학계와 의료계에서도 코로나19의 재확산 등 팬데믹이 지속되는 현 상황에서 KAIST와 대학병원 연구팀이 긴밀한 협력을 통해 코로나19의 면역학적 원리를 밝히고 새로운 치료전략을 제시한 이번 연구를 중개 연구(translational research)의 주요 성과로 높게 평가했다.
공동연구팀은 현재 중증 코로나19 환자의 과잉 염증반응을 완화해 환자 생존율을 높일 수 있는 약물을 시험관 내에서 효율적으로 검색하고 발굴하는 방법을 개발하는 후속연구를 진행중에 있다.
이번 연구를 주도한 이정석 연구원은 내과 전문의로서 의과학대학원 박사과정에 재학 중인데 "중증 코로나19 환자의 의료적 문제를 해결하기 위해 정인경 교수 연구팀과 함께 이번 연구를 긴박하게 시작했는데 서울아산병원과 연세대 세브란스병원·충북대병원의 적극적인 지원에 힘입어 불과 3개월 만에 마칠 수 있게 됐다ˮ고 말했다.
정인경 교수는 "코로나19와 같은 신규 질환의 특성을 신속하게 규명하는데 있어 최신 단일세포 전사체 빅데이터 분석법이 매우 효과적ˮ이었음을 밝혔다.
신의철 교수도 "이번 연구는 코로나19 환자의 면역세포에서 어떤 일이 벌어지는지 상세히 연구함으로써 향후 치료전략을 설계할 수 있는 토대를 마련했다는 점에서 매우 중요하고 의미가 있는 연구ˮ라고 평가했다.
신의철 교수와 정인경 교수는 이와 함께 "중증 코로나19 환자의 생존율을 높일 수 있도록 새로운 면역기전 연구 및 환자 맞춤 항염증 약물 사용에 관한 연구를 지속적으로 수행할 것ˮ이라고 강조했다.
2020.07.14
조회수 27640
-
두뇌 인지 기능 조절하는 신경 펩타이드 발견
우리 대학 생명과학과 이승희 교수 연구팀이 두뇌에 존재하는 신경 펩타이드 중 하나인 소마토스타틴(somatostatin)이 두뇌 인지 기능을 높일 수 있음을 밝혔다.
이 교수 연구팀은 특정 가바(뇌세포 대사 기능을 억제 신경 안정 작용을 하는 신경 전달 억제 물질) 분비 신경 세포에서 분비되는 펩타이드 중 하나인 소마토스태틴이 시각 피질의 정보 처리 과정을 조절하고 높일 수 있음을 규명했다. 이번 연구 성과는 치매 등의 뇌 질환에서 인지 능력 회복을 위한 치료제 개발의 계기가 될 것으로 기대된다.
생명과학과 송유향 박사, 황양선 석사, 바이오및뇌공학과 김관수 박사과정, 서울대학교 의과학대학 이형로 박사과정이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 4월 22일 자 온라인판에 게재됐다(논문명 : Somatostatin enhances visual processing and perception by modulating excitatory inputs to the parvalbumin-positive interneurons in V1).
2019년 기준 국내 65세 이상 노인 중 10명 중 1명은 치매 질환을 갖고 있다. 치매는 기억력 손실, 인지 기능 및 운동기능 저하 등의 일상생활 장애를 유발해 그 심각성은 나날이 두드러지고 있다.
이승희 교수 연구팀은 치매의 한 종류인 알츠하이머 질환 환자의 뇌척수액에서 소마토스타틴의 발현율이 현저히 감소했다는 점에 주목해 소마토스타틴에 의한 인지 능력 회복 가능성을 밝히는 연구를 수행했다.
소마토스타틴은 인간을 포함한 포유류의 중추신경계에서 존재한다. 특히 정상적인 포유류의 대뇌 피질에서 소마토스타틴을 발현하는 신경 세포인 가바(GABA, γ-aminobutyric acid)를 신경전달물질로 분비해 흥분성 신경 세포의 활성을 억제함으로써 정보 처리 정도를 조율한다.
그러나 기존 연구는 가바의 효과에만 국한돼, 동시에 분비될 수 있는 신경 펩타이드인 소마토스타틴의 고유한 효과 관련 연구는 부족한 상황이다.
연구팀은 자유롭게 움직이는 실험용 생쥐에서 시각정보 인지 및 식별 능력을 측정할 수 있는 실험 장비를 개발 및 도입했다. 이를 통해 생쥐의 시각피질 또는 뇌척수액에 소마토스타틴을 직접 주입한 후 이를 관찰해 생쥐의 시각정보 인지 능력이 현저히 증가함을 발견했다.
나아가 소마토스타틴의 처리에 따른 생체 내 또는 뇌 절편에서의 신경 세포 간 신경전달 효율의 변화를 측정하고, 해당 신경망을 연속 볼록면 주사전자현미경(SBEM)으로 관찰해 소마토스타틴에 의한 시각인지 기능의 향상이 이루어지는 생체 내 신경 생리적 원리를 규명했다.
이러한 연구 성과는 향후 인간을 비롯한 포유류의 두뇌 인지 기능을 조절 가능할 수 있을 뿐 아니라 퇴행성 뇌 질환 등에서 나타나는 인지 기능 장애 치료에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
이승희 교수는 “이번 연구는 두뇌 기능을 높이고, 뇌 질환을 치료할 수 있는 새로운 약물 개발로 이어질 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 중견연구자 지원사업의 지원을 받아 수행됐다.
2020.04.23
조회수 14386
-
초안정 광대역 광주파수 안정화 기술 개발
기계공학과 김정원 교수 연구팀이 광섬유 광학 기술을 이용한 고성능 주파수 안정화 기술을 개발했다.
이 기술을 이용하면 150테라헤르츠(THz)의 넓은 대역폭에 걸쳐 일정한 간격으로 분포한 60만 개 이상의 광주파수 모드들의 선폭을 동시에 1헤르츠(Hz) 수준으로 낮출 수 있다. 이를 통해 원자시계나 주파수 분광학에 활용할 수 있고, 광주파수를 기반으로 한 양자 센서의 성능도 크게 높일 수 있을 것으로 기대된다.
권도현 박사과정이 1 저자로 참여하고 한국표준과학연구원 시간표준센터와 공동연구로 수행된 이번 연구는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’ 3월 27일 자에 게재됐다. (논문명: Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform)
레이저의 선폭과 광주파수의 안정도는 시간/주파수 표준, 양자광학, 분광학 등 기초과학 분야뿐 아니라 거리 측정, 형상 이미징 및 분산형 센서 등 다양한 공학 응용에서의 측정 분해능을 결정한다.
특히 작년 5월 기본단위의 재정의를 통해 7개의 국제 단위계(SI) 중 6개(시간, 길이, 질량, 전류, 온도 및 광도)가 주파수를 기반으로 정의되기 때문에 광주파수의 안정도를 확보하는 것은 초정밀 측정 및 센서 분야에서 매우 중요한 이슈이다.
기존에는 다수의 광주파수를 안정화하기 위해 Q인자가 높은 초안정 공진기에 연속파 레이저를 주파수 잠금한 후 이를 다시 펄스 레이저에 주파수 잠금하는 방식을 사용했다. 하지만 이 방식은 장치의 크기가 클 뿐 아니라 주변 환경에 매우 민감한 수억 원 이상의 고가 장치이기 때문에 소수의 표준 연구소에서만 활용됐다.
연구팀은 부품의 신뢰성과 가격 경쟁력이 확보된 광통신용 광섬유 광학 기술을 이용한 광주파수 안정화 기술을 개발했다. 그 결과 A4 용지 절반보다 작은 면적의 소형 장치를 이용해 펄스 레이저에서 발생하는 60만 개 이상의 광주파수 모드들의 선폭을 1Hz 수준으로 낮출 수 있었다. 또한, 각각의 주파수 모드에서 1천조 분의 1(10-15) 수준의 주파수 안정도를 확보했다.
연구팀의 기술은 다양하게 활용 가능해, 특히 최근 대기 중 유해물질 모니터링 등의 분야에서 활용되고 있는 듀얼콤 분광학을 위한 고성능 광원으로 활용할 수 있다.
연구팀은 하나의 광섬유 링크에 두 펄스 레이저를 동시에 안정화하는 방식을 통해 150THz의 넓은 주파수 대역에 걸쳐 1Hz 수준의 선폭으로 흡수 스펙트럼을 측정할 수 있는 고분해능 듀얼콤 분광학 광원을 선보였다.
불변하는 원자의 특성을 이용해 고정확도 측정이 가능한 양자 센서의 경우도 광주파수 분광학 기반이기 때문에, 광주파수의 선폭과 안정도가 측정의 정확도와 신뢰도에 매우 중요하다.
김 교수는 “이번 연구 결과를 활용하면 소형, 경량, 저가의 장치로 1천조분의 1 수준의 광주파수 안정화가 가능해 다양한 양자 센서를 센서 네트워크 형태로 확장하는 데 기여할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.04.09
조회수 16368
-
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다.
이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites)
기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다.
하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다.
연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다.
연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다.
신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 17111
-
해상도 높인 곤충 눈 구조 초박형 카메라 개발
바이오및뇌공학과 정기훈 교수 연구팀이 고해상도 이미징을 위한 곤충 눈 구조의 초박형 카메라를 개발했다. 이 카메라는 독특한 시각 구조를 가진 제노스 페키(Xenos peckii)라는 곤충의 눈을 모사해 개발돼, 상용 카메라보다 더 얇은 렌즈 두께와 넓은 광시야각을 갖는다. 이러한 특징을 이용해 모바일, 감시 및 정찰 장비, 의료영상 기기 등 다양한 소형 카메라가 필요한 분야에 적용 가능할 것으로 기대된다.
김기수 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 2월 27일 자 온라인판에 게재됐다. (논문명: 고대비 고해상도 이미징을 위한 생체모사 초박형 카메라, Biologically Inspired Ultrathin Arrayed Camera for High Contrast and High Resolution Imaging)
최근 초소형 및 초박형 스마트 기기의 개발로 소형화된 이미징 시스템의 수요가 커지고 있다. 그러나 기존의 카메라는 물체의 상이 일그러지거나 흐려지는 현상인 수차를 줄이기 위해 다층 렌즈 구조를 활용하기 때문에 렌즈 두께를 감소하는 데 한계가 있다. 또한, 기존의 곤충 눈을 모사한 미세렌즈 배열(Microlens arrays)은 렌즈 사이의 광학 크로스토크(Optical crosstalk)로 인해 해상도가 저해되는 단점이 있다.
연구팀은 문제 해결을 위해 제노스 페키 곤충의 시각 구조를 모사한 렌즈를 제작했고 이를 이미지 센서와 결합해 초박형 카메라를 개발했다. 곤충의 눈은 렌즈와 렌즈 사이의 빛을 차단하는 색소 세포(pigment cells)가 존재해 각 렌즈에서 결상(어떤 물체에서 나온 광선 등이 반사 굴절한 다음 다시 모여 그 물체와 닮은꼴의 상을 만드는 현상)되는 영상들 간의 간섭을 막는다. 이러한 구조는 렌즈들 사이의 광학 크로스토크를 막아 고 대비 및 고해상도 영상을 획득하는 데 도움을 준다.
연구팀은 이러한 광 차단 구조를 포토리소그래피(Photolithography) 공정으로 매우 얇게 제작해 렌즈들 사이의 광학 크로스토크를 효율적으로 차단했다. 렌즈의 두께를 최소화하기 위해 렌즈의 방향을 이미지 센서 방향인 역방향으로 배치했으며, 이를 통해 최종 개발된 카메라 렌즈의 두께는 0.74mm로 이는 10원짜리 동전 절반 정도의 두께이다. 연구팀은 카메라의 원거리에 있는 물체를 모든 렌즈에서 같은 시야각을 통해 동일한 영상을 획득하고, 이 배열 영상들은 해상도를 하나의 이미지로 합성했다. 합성된 영상은 합성 전 단일 채널 영상보다 향상된 해상도를 가짐을 확인했다.
정기훈 교수는 “실질적으로 상용화 가능한 초박형 카메라를 제작하는 방법을 개발했다”라며 “이 카메라는 영상획득이 필요한 장치에 통합돼 장치 소형화에 크게 기여할 것으로 확신한다”라고 말했다.
2020.03.23
조회수 17126
-
온실가스 감소·수소 생산성 높일 촉매 개발
우리 대학 생명화학공학과 자패르 야부즈(Cafer T. Yavuz) 교수 연구팀이 장시간 사용해도 코킹(coking)과 소결(sintering) 현상이 발생하지 않는 메탄의 건식 개질 반응(dry reforming of methane) 촉매를 개발했다.
연구팀의 기술은 온실가스의 가장 큰 부분을 차지하는 이산화탄소와 메탄을 이용해 합성가스를 생산할 수 있는 기술로, 지구온난화 해결에 이바지할 것으로 기대된다. 또한, 개발된 촉매는 비활성화 없이 안정적으로 합성가스를 생산할 수 있어 수소 생산성 향상 및 합성가스 생산비용 절감 등의 효과를 기대할 수 있다. 야부즈 교수 연구팀은 단결정 마그네슘 산화물의 꼭짓점에서 탄소가 자라는 현상을 발견하고 이를 막기 위해 니켈 기반의 니켈-몰리브데넘 합금 나노입자를 올리는 방법을 설계했다. 이러한 기술은 향후 다른 개질 반응 및 기존의 수소 생산반응인 메탄의 습식 개질 반응에도 직접 적용이 가능할 것으로 기대된다.
송영동 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 (Science)’ 2월 14일 자에 게재됐다.(논문명 : Dry reforming of methane by stable Ni-Mo nanocatalysts on single crystalline MgO)
메탄의 건식 개질 반응은 온실가스인 메탄과 이산화탄소를 동시에 감축할 수 있으면서도 화학산업의 기반이 되는 합성가스를 생산할 수 있어 큰 관심을 받고 있다. 하지만 반응이 진행될수록 촉매의 표면에 탄소가 쌓여 반응성을 낮추는 코킹(coking) 현상과 나노입자가 서로 뭉치게 되는 소결(sintering) 현상 때문에 실제 산업에서 적용에 큰 어려움이 있다.
연구팀은 문제를 해결하기 위해 니켈-몰리브데넘 합금 나노입자를 단결정의 마그네슘 산화물 지지체에 담지했다. 이렇게 제조된 니켈-몰리브데넘 합금 나노입자 촉매는 800도로 온도를 높이는 과정에서 단결정 지지체의 꼭짓점을 막아 안정되는 현상을 보였다. 이는 충분한 열에너지가 공급됐을 때 니켈-몰리브데넘 나노입자가 지지체의 표면을 이동하다가 열역학적으로 불안정한 꼭짓점을 덮은 후 안정화되는 원리임을 규명했다.
연구팀은 개발한 촉매를 온도변화에 민감한 메탄의 건식 개질 반응에 적용하기 위해 온도를 변화시키며 활성도를 측정했다. 그 결과 800도에서 700도까지의 변화 구간에서도 활성도가 안정적인 것으로 나타났으며, 반응 중간에 온도를 상온으로 낮추었다가 재가동해도 활성도에 영향을 주지 않음을 확인했다. 나아가 실제 산업에서 사용하는 반응조건에 적용하기 위해 고압 조건에서 측정한 결과 15바(bar)의 압력에서도 안정적인 것으로 나타났다. 또한, 장시간 안정성 역시 800도에서 850시간 동안 사용 후에도 코킹 및 소결 현상이 발생하지 않는 것으로 확인됐다.
연구팀이 개발한 촉매는 메탄의 건식 개질 반응에 적용할 수 있어 온실가스 감축을 통한 환경문제 해결에 큰 도움을 줄 수 있다. 또한, 현재 수소생산의 90% 이상을 차지하는 메탄의 습식 개질 반응에도 직접 적용이 가능하다. 이를 통해 합성가스 생산비용 절감, 니켈 기반의 저렴한 촉매생산, 성능 강화 등에 이바지할 수 있을 것으로 기대된다.
1 저자인 송영동 박사과정은 “그동안 큰 문제였던 코킹 현상을 값비싼 귀금속이나 복잡한 제조과정 없이 해결할 수 있는 촉매를 개발했다”라며 “단결정 위에서 나노입자가 안정화되는 기술을 다른 지지체와 금속 나노입자를 이용해 적용하면 다양한 문제를 해결할 수 있을 것이다”라고 말했다.
이번 연구는 사우디 아람코-KAIST CO2 매니지먼트 센터 및 한국연구재단의 지원을 받아 수행됐다.
2020.02.18
조회수 15596
-
암세포의 약물 교차저항 원리 규명
우리 대학 생명화학공학과 김유식 교수 연구팀이 암 치료의 난제 중 하나인 암세포의 다중약물 내성 원리를 규명하는 데 성공했다.
이 연구는 학부생 연구 참여 프로그램(URP: Undergraduate research program)을 통해 마크 보리스 알돈자(Mark Borris Aldonza) 학생이 참여해 그 의미를 더했다. 마크 보리스 알돈자 학부생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2월 7일 자 온라인판에 게재됐다. (논문명 : Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms).
암 치료과정에서 약물을 장기간 투여하면 세포는 특정 약물에 대해 내성을 갖는다. 이를 극복하기 위한 가장 흔한 방법은 다른 약물을 투여하는 것이다. 하지만 특정 암세포들은 다양한 종류의 약물에 내성을 가지는 교차저항(cross-resistance) 성질을 보인다. 실제로 교차저항으로 인해 활용 가능한 약물의 종류가 줄어들고, 이는 암 재발 원인이 돼 암 극복에 큰 걸림돌이 된다. 따라서 암 극복을 위해선 암세포의 다중 약물 내성 기전의 이해가 필요하다.
연구팀은 폐암 세포가 화학 요법 약물 중 하나인 파크리탁셀에 대한 내성을 가지는 과정에서 표적 치료제인 EGFR-TKI에도 교차저항을 갖는 현상을 발견했다. 1차 약물에 대한 적응과정에서 암세포가 줄기세포화 해 전혀 다른 표적 치료제인 2차 약물에 저항을 가진다는 현상을 확인했다. 이러한 줄기세포화로 인해 포도당 부족에 의한 대사 스트레스 상황에서 암세포는 죽지 않고 활동휴지 상태로 전환된다. 활동휴지 상태인 암세포는 약물에 반응하지 않으며 약물이 없어지고 영양분이 공급되면 다시 빠르게 증식했다.
실제로 세포자살을 주관하는 아포토시스(apoptosis) 신호체계 주요 인자인 FOXO3a가 세포자살을 유도하지 않고, 오히려 세포사멸을 억제하는 방향으로 유전자의 기능이 변화해 세포가 약물을 극복할 수 있게 했다. 연구팀은 이러한 교차저항 세포의 특성을 실제 파크리탁셀 약물을 투여받은 유방암 환자의 검사대상물을 활용해 검증했다. 특히 파크리탁셀에 저항을 갖는 재발환자의 암 조직에서 FOXO3a 유전자의 발현이 증가돼 연구의 임상적 의미를 더했다. 나아가 연구팀은 FOXO3a의 발현을 억제하면 세포가 파크리탁셀과 EGFR-TKI의 저항성을 잃게 돼 교차저항 세포를 극복할 수 있을 것이라는 새 방향을 제시했다.
연구팀이 제시한 약물 교차저항 특성 및 기전은 효과적인 암 약물치료 전략을 개발하는데 이바지할 수 있을 것으로 기대된다. 논문의 제1 저자인 마크 보리스 연구원은 “이 연구가 파크리탁셀과 EGFR-TKI뿐 아니라 다른 약물에 대한 내성 기전 연구에 돌파구를 제시할 수 있을 것으로 기대한다”라며 “암 극복에 효과적인 치료 전략을 개발하는데 적용될 것이다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업과 KAIST 시스템헬스케어 사업의 지원을 받아 수행됐다.
2020.02.17
조회수 11470