-
생체 에너지 발전소 부산물로 병원균 감염 제어
코로나 팬데믹 이후 바이러스 등 병원성 물질에 대응하는 면역력 조절의 중요성이 높아지고 있다. 사람을 포함한 동물은 외부 감염원에 대항하는 병원체 저항성이 발달해 있다. 미토콘드리아는 우리 몸 세포가 사용하는 에너지를 생성하는 발전소 역할에 더해 병원체에 저항하는 중요한 역할을 한다. 하지만 미토콘드리아가 에너지를 생성할 때 만들어지는 다양한 대사 부산물이 병원체 저항성에 어떤 역할을 하는지는 잘 알려져 있지 않다.
우리 대학 생명과학과 이승재 교수 연구팀(RNA 매개 건강장수 연구센터)이 세포 속 발전소인 미토콘드리아의 부산물을 활용해 병원체 저항성을 제어하는 방법을 찾았다고 10일 밝혔다.
이승재 교수 연구팀은 사람과 많은 유전자를 공유하여 생물학 연구에 많이 활용되는 작은 동물인 예쁜꼬마선충과 인간 세포를 활용한 연구를 수행했다. 그 결과, 세포 안에서 필요한 에너지를 만들어내는 세포 소기관인 미토콘드리아 안에서 에너지 및 대사 부산물을 형성하는 ‘TCA 회로’를 구성하는 효소인 아코니타제-2를 억제하자 개체 내 옥살아세트산 농도가 감소해 병원균 저항성이 강화된다는 사실을 밝혔다.
미토콘드리아의 TCA 회로는 포도당, 지방산, 아미노산 등 세포의 주요 에너지원을 분해하여 에너지를 만들고, 그 과정에서 각종 부산물을 생성한다. 연구진은 생성된 부산물 중 하나인 아코니타제-2의 억제로 줄어든 옥살아세트산이 미토콘드리아가 손상되었을 때 생기는 스트레스 반응인 미토콘드리아 미접힘 단백질 반응 (Mitochondrial unfolded protein response, UPRmt)을 활성화해 병원균 저항성을 강화함을 발견했다. 이러한 현상은 인간의 세포에서도 마찬가지여서 아코니타제-2 및 옥살아세트산의 저하에 의한 병원균 저항성 향상 효과가 예쁜꼬마선충부터 포유류까지 보존되어 있음을 입증했다.
아코니타제-2는 미토콘드리아 기능에 필수적인 효소로, 이를 억제하는 것은 미토콘드리아 손상과 암을 포함한 심각한 질환을 유발하기도 한다. 그러나 이번 연구에서 연구진들은 아코니타제-2의 기능을 적절히 감소시키면 예쁜꼬마선충의 장수를 유도하고 병원균에 대한 저항성을 증진하는 등 긍정적인 효과가 있음을 보고했다. 이는 미토콘드리아 아코니타제가 병원균 저항성을 조절하는 치료제의 새로운 표적이 될 수 있다는 가능성을 제시한다.
이번 연구는 또한 미토콘드리아가 세포 내 발전소로서 에너지를 형성할 뿐 아니라 그 과정에서 생기는 부산물인 옥살아세트산이 병원균 저항성을 조절함을 밝혀 완전히 새로운 방법으로 세포 면역을 조절할 수 있음을 제시하였기에 의의가 크다.
우리 대학 생명과학과 김은아 박사, 이유진 박사, 박혜은 박사와 함석진 박사가 공동 제1 저자로 참여한 이번 연구는 세계적 석학인 아담 안테비 박사 (Adam Antebi, 독일 막스플랑크 연구소) 연구팀과의 공동연구로 진행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 지난 6월 22일 출판됐다.
한편 이번 연구는 한국연구재단 리더연구과제에서 지원을 받았다.
(논문명: Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response)
2023.07.11
조회수 6564
-
형태 변형 및 유지가 가능한 3차원 디스플레이 기술 개발
우리 대학 전기및전자공학부 정재웅 교수와 신소재공학과 강지형 교수 공동 연구팀이 단단한 평판 디스플레이를 비롯하여 유연/신축성 디스플레이를 모두 아우를 수 있는 새로운 유형의 3차원 디스플레이 폼팩터를 개발했다고 밝혔다.
디스플레이 폼팩터 혁신은 사용자들의 이동성 증대 및 기기 간의 기술 융합에 따라 다양한 웨어러블 모바일 기기, 차량 분야에 접목되며 중요하게 대두되고 있다. 현재 디스플레이 산업 분야에서는 단단한 평판 디스플레이를 넘어서 차세대 유연/신축성 디스플레이로 나아가고 있다.
하지만 기존 디스플레이 폼팩터는 기판 소재의 고정된 기계적 물성으로 인해 특정 사용 목적으로만 활용 가능한 문제점을 보인다. 단단한 평판 디스플레이의 경우, 딱딱한 특성으로 인해 거치용이나 손에 쥐고 사용하기에 적합하지만 기계적 유동성이 떨어져 웨어러블 기기로 사용하기 어렵다. 이와 반대로 유연/신축성 디스플레이의 경우, 우수한 유연성으로 웨어러블 용도로 주로 사용되지만 기기 조작 측면에서 화면을 터치하면 쉽게 형태가 변형되어 사용자에게 불편함을 줄 수 있다.
이에 연구팀은 이러한 문제를 극복하고자 자유롭게 형태 변형 및 유지가 가능한 형상기억 플랫폼을 통해 다양한 사용 목적과 환경에 적합한 차세대 디스플레이를 개발했다. 개발된 디스플레이는 기계적 물성변환이 가능한 가변성 플랫폼에 신축성 발광기판을 집적한 것이다.
연구팀이 개발한 가변성 플랫폼은 온도 변화에 의해 물성변환이 가능한 액체금속(특정 지어, 필즈 메탈(Field’s metal)) 미세방울과 그래핀 나노 입자를 포함한 고분자 복합소재로 전기적/열적 자극에 의해 다양한 3차원 구조를 구현할 수 있는 핵심적인 요소이다.
제작된 가변성 플랫폼은 약 23.9배의 큰 폭의 강성도 변화를 보인다. 이에 따라 가변성 플랫폼은 전기적/열적 자극을 통해 우수한 형상기억 특성을 보이며 3차원 변형에 대하여 약 94% 이상의 형태 유지 능력과 93% 이상의 형태 회복 능력을 가진다. 또한 그래핀 나노 입자를 통해 전기전도성을 향상 시켜 전기적 자극에 의해 균일한 발열과 30초 이내의 빠른 상변화를 통해 효율적인 형태 변형 및 유지가 가능하다.
연구팀은 개발된 가변성 플랫폼을 신축성 전기발광 디스플레이와 결합해 다양한 입체 구조 구현이 가능한 3차원 디스플레이를 개발하였다. 더불어 해당 디스플레이 기술이 형태 변형이 가능한 스마트 아트 디스플레이, 다목적 가변형 웨어러블 디스플레이, 시각-촉각형(Visio-tactile) 차량용 디스플레이로 활용 가능함을 입증하였다. 이는 기존 디스플레이 폼팩터가 구현할 수 없는 3차원 형태 실현을 통해 혁신적 폼팩터를 제시하였다는 점에서 의미가 크다.
정재웅 교수는 “개발된 디스플레이 기술은 새로운 폼팩터 유형을 제시하여 디스플레이의 활용성을 높일 것이며, 다양한 전자소자에도 응용 가능하여 차세대 다목적 전자기기 개발의 발판이 될 것이다.”라고 밝혔다.
본 연구 결과는 전기및전자공학부 오수빈 박사과정 학생이 제1 저자로 참여한 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈 (Advanced Functional Materials)' 6월 12일 字 내부 뒤 표지 논문(Inside back cover paper)으로 게재됐다. (논문명 : 3D Shape-Morphing Display Enabled by Electrothermally Responsive, Stiffness-Tunable Liquid Metal Platform with Stretchable Electroluminescent Device).
이번 연구는 LG 디스플레이(주) 및 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.06.27
조회수 6866
-
상온에서 쉽게 이산화탄소 실시간 분해하다
기후변화를 포함한 환경 및 에너지 문제에 직접 맞닿아 있는 온실가스 전환 기술은 주로 G7 국가를 비롯한 OECD 회원국들을 중심으로 최근 많은 논의가 이뤄지고 있으며, 대한민국 역시 2050년까지 탄소중립 글로벌 스탠다드 달성을 위해 산・학・연 및 민・관 협력 연구를 활발히 촉진하고 있다. 대기 중의 온실가스를 제거함과 동시에, 미래 청정 연료로 주목받는 메탄올 합성에 필요한 이산화탄소 분해 반응은 탄소중립 달성을 위한 산업계 패러다임 전환 대응에 필요한 핵심 기술이지만, 이산화탄소 분자가 화학적으로 매우 안정된 탓에 공업적으로 유용한 화학 물질로의 전환은 여전히 난제로 여겨진다.
우리 대학 화학과 박정영 교수 연구팀이 광주과학기술원 (GIST) 물리·광과학과 문봉진 교수 연구팀과 공동연구를 통해 초미세 계단형 구리(Cu) 촉매 표면이 이산화탄소(CO2) 분자를 보다 효과적으로 분해할 수 있음을 입증했다고 26일 밝혔다.
포집된 온실가스의 전환은 일반적으로 고온・고압의 촉매 화학반응 환경에서 이뤄지고 있다. 보통 구리 기반 촉매물질을 이용하여 이산화탄소 분자가 일산화탄소(CO) 및 산소 원자(O)로 분해할 때 수십 기압에 이르는 고압 반응환경이 요구된다. 따라서, 기존의 촉매 물질을 개선하고 최적의 이산화탄소 전환 반응을 유도함으로써 온실가스의 전환 효율을 획기적으로 높일 수 있는 새로운 촉매의 개발이 필요한 실정이다.
상압 전자터널링 현미경(AP-STM) 기술을 활용해 직접 관찰된 연구팀의 이번 연구 결과는, 머리카락 두께의 10만 분의 1 크기의 계단형 표면 구조가 온실가스의 분해 반응 향상에 크게 기여한다는 시각적 증거를 처음으로 제시했다. 연구진은 그 크기가 수 옹스트롬(Å·100억 분의 1 미터)에 불과한 이산화탄소 분자는 촉매 물질의 표면 구조에 따라서 반응 활성도가 달라질 수 있다는 점에 착안, 머리카락 두께의 10만 분의 1에 불과한 계단형 초미세 구리 표면과 반응하는 이산화탄소 분자의 분해 과정을 실시간 포착했다.
초미세 계단형 구조를 갖는 구리 원자의 표면 배열은 평평한 구조를 갖는 넓은 구리 표면 구조에 비해 훨씬 낮은 활성화 에너지를 필요로 하기 때문에 온실가스의 분해가 상대적으로 용이하다. 연구진은 관찰 결과, 구리 촉매 표면의 계단 위치와 충돌한 이산화탄소 분자가 상온에서도 쉽게 분해됐고, 더 나아가 분해된 일산화탄소 분자와 산소 원자가 표면의 구조변화를 동시에 유도함으로써 촉매반응 경로에 영향을 끼칠 수 있음을 발견했다.
박정영 교수는 “이번 연구는 기존에 진행된 구리 표면에서의 이산화탄소 촉매 현상의 이해를 뛰어넘는 새로운 발견이며, 이를 통해 고효율 이산화탄소 촉매의 개발을 통해 인류의 가장 시급한 문제 중의 하나인 지구온난화 및 지속가능성 문제 해결에 기여할 것이다”라고 밝혔다.
한국연구재단(NRF) 중견연구자지원사업, 과학기술분야 기초연구사업과 한-프랑스 협력기반조성사업(STAR) 등의 지원을 받은 이번 연구성과는 국제학술지 네이처 커뮤니케이션스(Nature Communications IF 17.694) 온라인판에 6월 6일 자 게재됐다. (논문제목: Revealing CO2 dissociation pathways at vicinal copper (997) interfaces)
2023.06.26
조회수 7155
-
광반도체 소자 집적도 100배 이상 높이다
라이다(LiDAR) 및 양자 센서·컴퓨터와 같은 복잡한 광학 시스템을 하나의 작은 칩으로 만들어 줄 수 있어 세계적으로 많은 연구와 투자가 이루어지고 있는 차세대 반도체 기술이 집적 광학 반도체(이하 광반도체) 기술이다. 기존의 반도체 기술에서 5나노, 2나노 등의 단위로 얼마나 작게 만드느냐가 관건이었는데, 광반도체 소자에서 집적도를 높이는 것은 성능, 가격, 에너지 효율 등을 결정짓는 핵심적인 기술이라 말할 수 있다.
우리 대학 전기및전자공학부 김상식 교수 연구팀이 광반도체 소자의 집적도를 100배 이상 높일 수 있는 새로운 광 결합 메커니즘을 발견했다고 19일 밝혔다.
하나의 칩당 구성할 수 있는 소자 수의 정도를 집적도(集積度)라고 하는데, 집적도가 높을수록 많은 연산을 할 수 있고 공정 단가 또한 낮춰준다. 하지만 광반도체 소자의 집적도를 높이기는 매우 어려운데, 이는 빛의 파동성으로 인해 근접한 소자 사이에서 광자 간에 혼선(crosstalk)이 발생하기 때문이다.
기존 연구에서는 특정 편광에서만 빛의 혼선을 줄여줄 수 있었는데, 연구팀은 이번 연구에서 새로운 광 결합(coupling) 메커니즘의 발견으로써 기존에는 불가능이라 여겨졌던 편광 조건에서도 집적도를 높이는 방법을 개발했다.
김상식 교수가 교신저자로 주도하고 미국 텍사스 공과대학 재직 당시 지도하던 학생들과 함께한 이번 연구는 국제학술지‘라이트: 사이언스 앤 어플리케이션(Light: Science & Applications)’ [IF=20.257]에 6월 2일 字 게재됐다. (논문명: Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk).
김상식 교수는 “이번 연구가 흥미로운 점은 기존에는 오히려 빛의 혼선을 크게 해줄 거라고 여겨졌던 누설파(leaky wave, 빛이 옆으로 잘 퍼지는 특성을 가짐)를 통해 역설적으로 혼선을 없애준 점이다”라며 “이번 연구에서 밝혀진 누설파를 이용한 광 결합 방법을 응용한다면 더욱 작고 노이즈가 적은 다양한 광반도체 소자를 개발할 수 있을 것이다”라고 말했다.
김상식 교수는 광반도체의 집적도에 있어서 전문성과 연구 업적을 인정받는 연구자다. 선행 연구를 통해 반도체 구조물을 파장보다 작은 크기로 패턴화해 빛이 옆으로 퍼지는 정도를 제어할 수 있는 무손실 메타물질(all-dielectric metamaterial)을 개발했고, 실험을 통해 이를 입증해 광반도체 집적도에 있어서 세계적인 기록을 보유하고 있다. 이러한 연구는 ‘네이처 커뮤니케이션즈(Nature Communications) 9, 1893 (2018)’와 ‘옵티카(Optica) 7, 881-887 (2020)’에 보고됐다. 김 교수는 이러한 성과를 인정받아 미국 국립과학재단(National Science Foundation, NSF)에서 NSF 커리어 어워드(NSF Career Award)와 재미한인과학기술자협회에서 젊은과학기술자상을 수상한 바 있다.
한편 이번 연구는 한국연구재단 우수신진연구 사업 및 미국 NSF의 지원을 받아 수행됐다.
2023.06.19
조회수 5136
-
단일 센서만으로도 혼합 가스 분류가 가능한 초저전력, 초소형 전자코 개발
우리 대학 기계공학과 박인규 교수, 기계공학과 윤국진 교수 공동 연구팀이 ‘단일 센서만으로도 혼합 가스 분류가 가능한 전자코 시스템'을 개발하는 데 성공했다고 13일 밝혔다. 일반적으로 금속산화물 저항변화식 가스센서는 반응성을 가진 가스들에 비선택적인 응답을 보이기 때문에 가스들을 선택적으로 판별하는 것이 어려웠다. 특히, 두 가지 이상의 서로 다른 가스들이 섞인 혼합가스를 실시간으로 분류하는 것은 가스센서의 실상황 활용도를 높이는 것에 반드시 필요한 기술이나 아직까지 해결되지 못했다. 가스센서에 선택성을 부여하기 위해 센서 어레이와 패턴인식 알고리즘을 적용한 전자코 시스템이 활발히 연구중이나, 전자코에 사용되는 센서의 수가 많아질수록 전체 시스템의 소모전력과 부피 또한 필연적으로 증가하였다.
공동 연구팀은 전자코에 사용되는 개별 센서의 소모전력을 최소화하고, 적은 수의 센서만으로도 선택적 가스감지가 가능한 기술 개발에 집중하였다. 기존의 저항변화식 가스센서는 고온의 줄히팅으로 가스감지소재인 금속산화물을 가열하기 때문에 소모전력이 수십 mW로 높았다. 공동 연구팀은 마이크로 크기의 초소형 LED 기반의 광원일체형 가스센서를 개발하여 줄히팅 방식 대비 소모전력을 백 분의 일 이하 수준으로 줄였다. 이후 LED의 광량을 불규칙하게 주기적으로 변화시키며 구동하는 가변 광조사 기법을 적용하였다. 서로 다른 타겟가스들은 LED의 광량이 변화함에 따라 각기 다른 유니크한 응답 패턴을 나타내기 때문에 이 현상을 응용하면 동일 시간 내에 수집할 수 있는 센서 데이터가 훨씬 많아지고 풍부해진다. 결론적으로 가변광조사 기법으로 마이크로 LED 가스센서를 구동하고 데이터전처리와 딥러닝 알고리즘을 적용하여 단일 센서만으로도 선택적 가스판별이 실시간으로 가능한 전자코 시스템을 개발하였다. 센서의 크기는 5 × 5 mm2 초소형이고 평균 소모전력은 0.53 mW이고 에탄올과 메탄올이 혼합된 상황에서 각 가스의 종과 농도를 실시간으로 구별해낼 수 있었다.
연구책임자인 기계공학과 박인규 교수는 "본 연구에서 제안된 가변광조사 구동 기법은 빠른 ON/OFF가 가능하고 상온 동작하여 열적/기계적 내구성이 우수한 마이크로 LED 가스센서에 최적인 원천 기술이고, 이 기법을 활용하여 하나의 센서만으로도 우수한 선택성을 가진 전자코 시스템을 개발할 수 있었다“라고 기술에 대한 자신감을 밝혔다. 또한 ”단일 센서만을 사용하기 때문에 소모전력과 시스템 부피가 최소화되었고, 특히 혼합가스의 각 성분과 농도를 실시간으로 판별해내는 기술은 실상황에서 매우 활용성이 높을 것“이라고 연구의 의미를 설명했다.
기계공학과 조인철 박사와 이기철 박사과정이 공동 제1 저자로 참여하고 한국연구재단의 지원으로 수행된 이번 연구 결과는 네이처 (Nature) 자매지인 `빛 : 과학과 응용 (Light: Science & Applications)' (impact factor=20.257)에 2023년 4월 18일 字 정식 게재됐다. (논문명: Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor)
2023.06.14
조회수 6151
-
새로운 준입자 애니온 현상 발견
우리 대학 물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 특이 준입자 애니온 (anyon)의 새로운 현상을 발견했다.
이는 새로운 입자인 가환 애니온 (Abelian anyon)의 기본 성질인 braiding 특성을 입증한 것으로, 가환 애니온의 존재 규명에 기여한 성과이다. 이는 물리학의 난제로 남아있는 비가환 애니온 (non-Abelian anyon, Majorana fermion) 발견을 위한 후속 연구에 활용될 것으로 기대된다.
우리 대학 물리학과 이준영 박사과정 학생이 1저자로 참여하고, 이스라엘 와이즈만 연구소와 공동으로 수행한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 5월 11일 자에 게재됐다. (논문명 : Partitioning of diluted anyons reveals their braiding statistics)
여기에 추가로, 심흥선 교수 연구팀은 관련 연구를 기본 입자인 전자 (electron)의 경우에도 수행해, 국제 학술지 ‘네이처 나노테크놀러지(Nature Nanotechnology)’에 논문 2편을 연이어 게재하였다. (5월 11일 온라인 게재) 이 연구에는 물리학과 박완기 박사과정 학생이 주저자로 참여하였다. (논문명 : Time-resolved Coulomb collision of single electrons, 논문명 : Coulomb-mediated antibunching of an electron pair surfing on sound)
애니온이 특이한 입자로 불리는 이유는 알려진 기본 입자들의 성질을 따르지 않기 때문이다. 자연계의 모든 기본 입자들은 보존 (boson)이나 페르미온 (fermion)으로 분류되는데, 애니온은 그 분류를 따르지 않는다. 가령, 이차원 계에서 전자 (electron)가 다른 전자 주위를 아주 천천히 한바퀴 돌게 되면, 돌기 전 상태와 후 상태가 정확하게 같게 된다. 모든 보존과 페르미온이 이러한 특성을 보인다. 하지만, 애니온 경우에는 돌기 전 상태와 후 상태가 달라지며 (아래 그림 a), 어떻게 달라지냐에 따라 가환 애니온, 비가환 애니온으로 분류된다. 이러한 특성은 braiding이라고 불리운다. 특정 애니온의 braiding을 이용하면 국소적 에러에 둔감한 위상 양자컴퓨터 (topological quantum computing)를 구현할 수 있다는 기대 방향도 있다.
애니온 발견에 있어 핵심은 braiding 현상을 입증하는 것이다. 세계 최선도 그룹들이 braiding을 관측하기 위해 지난 30 여년 동안 경주해왔다. 심흥선 교수 연구팀은 애니온이 포텐셜 장벽에서 산란(scattering)될 때, 기존 현상과는 완전히 다른 현상이 발현되는 것을 예측하고 [Phys. Rev. Lett. (2019)], 이를 관측하는 방법을 제시한 바 있다 [Nat. Comm (2022)]. 이 현상에서는 포텐셜 장벽에 애니온이 입사될 때, 포텐셜 장벽에서 발생한 애니온 진공 요동 (anyonic virtual vacuum fluctuation)과 입사된 애니온 사이에 braiding이 일어난다 (아래 그림 c). 제시한 방법을 기반으로 심흥선 교수 연구팀은 이스라엘 와이즈만 연구소 Moty Heiblum 교수 실험팀과 협력하여, 예측한 braiding 현상을 입증하고 교신저자 논문을 발표하였다 [Nature (2023)]. 관측된 현상은 가환 애니온 존재에 대한 증거로 학계에 받아들여지고 있다.
심흥선 교수는 “비가환 애니온의 발견은 학계의 숙원으로, 이번 연구에서 확립한 가환 애니온 관측 방법은 비가환 애니온의 존재 입증에 활용될 것으로 기대된다”라며, “이러한 노력은 새로운 특이 입자의 존재를 입증하는 일련의 주요 여정으로 받아들여질 것이다”라고 말했다.
이 연구는 한국연구재단의 기초과학 SRC 선도연구센터 지원사업의 지원을 통해 수행됐다.
2023.06.01
조회수 5636
-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 7105
-
백금보다 80배 저렴한 수소전지 대체 촉매 개발
탄소 중립에 도달하기 위해 수소가 미래 에너지원으로 주목받고 있다. 수소 연료전지는 수소와 공기 중의 산소를 반응시켜 전기를 생산하는 발전장치로, 중소형 발전뿐만 아니라 승용차, 버스, 선박 등과 같은 운송 수단의 동력원으로 개발되고 있다. 그러나, 현재 전극 재료로 귀금속인 백금을 사용하고 있어 가격을 낮추는 데 걸림돌이 되고 있다.
우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 백금을 대체할 수 있는 저렴하지만 고성능을 가진 전극 소재를 개발하는 데 성공했다고 11일 밝혔다.
조은애 교수 연구팀은 차세대 연료전지로 개발되고 있는 음이온 교환막 연료전지용 전극 소재로 백금보다 우수한 성능을 갖는 `니켈-몰리브데넘 소재'를 개발했다고 밝혔다. 특히, 신규 개발 촉매를 실제 연료전지에 적용하는 경우 다양한 변수에 의해 실성능을 얻지 못하는 경우가 많다. 그러나, 연구팀은 이번 연구에서 이를 극복하고 실제 연료전지에 신규 개발 촉매를 적용하는 것에 성공했다.
니켈은 음이온 교환막 연료전지용 비귀금속 전극 소재로 주목받았으나, 백금 성능의 100분의 1에도 미치지 못하여 실제 적용되지 못하고 있었다. 그러나 이번에 연구팀이 개발한 니켈-몰리브데넘 촉매는 백금보다 성능이 우수하고 (백금: 1.0 mA/cm2, 니켈-몰리브데넘 촉매: 1.1 mA/cm2), 가격은 80분의 1에 불과하여 백금을 대체할 수 있을 것으로 기대된다. 연구팀은 니켈-몰리브데넘 촉매를 연료전지에 적용하여 성능을 확보하는 데에도 성공하였다.
조은애 교수는 "순수한 니켈은 성능이 낮지만, 산화 몰리브데넘을 이용해 니켈의 전자구조를 변화시켜 성능을 비약적으로 향상했다ˮ고 설명하며 “공정 특성상 대량 생산에도 적합하며 향후 음이온 교환막 연료전지에 적용할 수 있을 것으로 기대한다”고 말했다.
신소재공학과 권용근 박사가 제1 저자로 참여한 이번 연구 결과는 재료 분야 저명 국제 학술지 `어플라이드 카탈리시스 비: 엔바이론멘탈(Applied Catalysis B: Environmental)' 2023년 4월 5일 자 온라인판에 게재됐다. (논문명: A Ni-MoOx composite catalyst for the hydrogen oxidation reaction in anion exchange membrane fuel cell)
한편, 조은애 교수팀이 수행한 이번 연구는 한국연구재단이 추진하는 중 나노 및 소재기술개발사업의 지원을 받아 이뤄졌다.
2023.05.11
조회수 7730
-
산업 균주 제작 및 병원균 억제 범용기술 개발
박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다.
※ 논문명 : Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 조재성(한국과학기술원, 현 MIT 박사후연구원, 공동 제1저자), 양동수(한국과학기술원, 현 고려대학교 조교수, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), Mohammad Ghiffary (한국과학기술원, 공동저자), 한태희 (한국과학기술원, 공동저자), 최경록 (한국과학기술원, 공동저자), 문천우 (한국과학기술원, 공동저자), Hengrui Zhou (한국과학기술원, 공동저자), 류재용 (한국과학기술원, 현 덕성여자대학교 조교수, 공동저자), 김현욱 (한국과학기술원, 공동저자) - 총 11명
sRNA는 대장균에서 표적 유전자를 억제하기 위해 합성 조절하는 효과적인 도구이지만 그동안 대장균과 같은 그람 음성균 외에 산업적으로 유용한 고초균이나 코리네박테리움 같은 그람 양성균에서는 적용이 어려웠다.
이에 생명화학공학과 이상엽 특훈교수 연구팀은 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다. 연구팀은 우선 미생물 데이터베이스를 이용해 수천 종의 미생물 유래 sRNA 시스템을 검토했고, 그중 가장 높은 유전자 억제능을 보여준 `고초균(Bacillus subtilis)' 박테리아 유래 sRNA 시스템을 최종 선정했고 이를 ’광범위 미생물 적용 sRNA‘(Broad-Host-Range sRNA, 이하 BHR-sRNA)라고 명명했다.
sRNA와 유사한 시스템으로는 유전자 가위로 잘 알려진 크리스퍼(CRISPR)를 개량한 크리스퍼 간섭(CRISPR interference, CRISPRi) 시스템이 있다. 유전자 가위의 핵심인 Cas9 단백질에 돌연변이를 일으켜 DNA를 자르지 않으면서 유전자 전사 과정만을 억제해 유전자 발현을 억제하는 시스템인데, Cas9 단백질의 분자량이 매우 높아 몇몇 박테리아에서 성장을 저해하는 현상이 보고됐다. 하지만 이번 연구에서 개발한 BHR-sRNA 시스템은 박테리아의 성장에 전혀 영향을 끼치지 않으면서도 CRISPR 간섭과 유사한 유전자 억제능을 보였다.
BHR-sRNA 시스템의 범용성을 검증하기 위해 연구팀은 다양한 그람 음성균 및 그람 양성균 16종을 선정하여 테스트했고, 그중 15종의 박테리아에서 BHR-sRNA 시스템이 성공적으로 작동함을 증명했다. 또한, 10종의 박테리아에서 기존의 대장균 기반 sRNA 시스템보다 유전자 억제능이 뛰어남을 증명했다. 이와 같이 BHR-sRNA 시스템은 다양한 박테리아에서 효과적으로 유전자 발현을 억제할 수 있는 범용 도구임을 입증했다.
최근 점차 심각해져 가는 항생제 내성 병원균 문제를 해결하기 위해, 연구팀은 BHR-sRNA를 이용해 독성인자를 생산하는 유전자를 억제하고, 결과적으로 병원성을 억제하고자 했다. 특히 BHR-sRNA를 활용해 병원 발생 감염균인 표피포도상 구균(Staphylococcus epidermidis)에서 항생제 내성의 원인 중 하나인 바이오필름 형성을 73% 억제할 수 있었고, 폐렴균인 폐렴막대균(Klebsiella pneumoniae)에서 항생제 내성을 58% 약화하는 결과를 보였다. 연구팀은 또한, BHR-sRNA를 산업용 박테리아에 적용해 표적 물질을 고효율로 생산하고자 했다. 특히 폴리아마이드 고분자의 원재료인 발레로락탐(valerolactam), 포도향 첨가제인 메틸안트라닐산(methyl anthranilate), 그리고 청색 천연염료인 인디고이딘(indigoidine)을 최고 농도로 생산할 수 있었다.
이번 연구를 통해 개발한 BHR-sRNA를 활용해 다양한 산업공정으로의 응용이 기대되며, 항생제 내성 병원균 퇴치를 통한 연구에도 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “기존에는 각각의 박테리아마다 유전자 억제 도구를 새로 개발해야 했는데, 이번 연구를 통해 다양한 박테리아에서 범용으로 작동하는 도구를 개발했다”며 “앞으로 합성생물학과 대사공학, 그리고 병원균 대응연구 발전에 큰 도움이 될 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.05.10
조회수 7682
-
천 조분의 1초 까지 정확한 반도체칩용 클럭 개발
최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다.
우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다.
기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다.
기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 4월 24일 字에 게재됐다. (논문명: Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses)
고성능의 반도체 칩 내에서 클럭 신호를 분배하기 위해서는 클럭 분배 네트워크(clock distribution network, CDN)에 많은 수의 클럭 드라이버(clock driver)들을 사용해야 하는데, 이로 인해 발열과 전력 소모가 커질 뿐 아니라 클럭 타이밍도 나빠지게 된다. 칩 내의 클럭 타이밍은 무작위적으로 빠르게 변화하는 지터(jitter)와 칩 내의 서로 다른 지점 간의 클럭 도달 시간 차이에 해당하는 스큐(skew)에 의하여 결정되는데, 클럭 드라이버들의 개수가 늘어남에 따라 지터와 스큐 모두 통상 수 피코초 이상으로 커지게 된다.
연구팀은 이 문제를 해결하기 위해 펨토초 이하의 지터를 가지는 광주파수빗(optical frequency comb) 레이저를 마스터 클럭으로 하는 새로운 방식의 클럭 분배 네트워크 기술을 선보였다. 이는 광주파수빗 레이저에서 발생하는 광 펄스들을 고속 광다이오드를 이용해 광전류 펄스(photocurrent pulse)로 변환한 후 반도체 칩 내의 금속 구조 형태로 된 클럭 분배 네트워크를 충전 및 방전하는 과정을 통해 구형파 형태의 클럭 신호를 생성하는 방식이다.
특히 이 기술을 사용하면 클럭 분배 네트워크의 클럭 드라이버들을 제거한 금속 구조만을 통해 칩 내에서 클럭을 분배할 수 있어, 타이밍 성능을 개선할 수 있을 뿐 아니라 칩 내 발열도 획기적으로 줄일 수 있다. 그 결과 지터와 스큐를 기존 대비 1/100 수준인 20펨토초 이하로 낮춘 뛰어난 타이밍 성능을 보일 수 있었으며, 칩내 클럭 분산 과정에서의 전력소모 및 발열 역시 기존 방식 대비 1/100 수준으로 낮출 수 있었다.
김정원 교수는 "현재 아날로그-디지털 변환기와 같은 고속 회로에 매우 낮은 지터의 샘플링 클럭 신호를 공급해 성능을 향상하는 연구를 진행 중ˮ이라고 밝히면서 "3차원 적층 칩과 같은 구조에서 발열을 줄일 수 있을 지에 대한 후속 연구도 계획 중ˮ이라고 밝혔다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.05.09
조회수 7492
-
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다.
우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다.
대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다.
강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다.
공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다.
따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다.
또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다.
이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다.
우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly)
한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 9239
-
다결정 및 단결정 재료 극한 변형 메커니즘 규명
우리 대학 항공우주공학과 연구팀 (익스트림역학 및 멀티피직스 연구실; https://continuum.kaist.ac.kr)이 미국 로스앨러모스국립연구소, 오크리지국립연구소 및 위스콘신대학과의 공동연구를 통해 초고온 및 초고압용 체심입방 결정재료의 극한 변형 메커니즘을 실험 및 이론적으로 규명했다.
주기율표의 Group V 및 Group VI에 속한 체심입방 금속재료 (그림 1-a)는 높은 용융점, 우수한 기계 및 내화학적 성능 및 가공성으로 인해 항공우주, 원자력 및 초전도체 등 다양한 극한 환경에서 주로 사용돼왔으며 최근엔 의료기기용 재료로도 큰 주목을 받고 있다.
체심입방 금속재료의 극한 환경 하의 변형 및 흐름에 관한 예측은 원자미끄러짐 기반 비탄성 변형 메커니즘 특유의 물리 및 수학적 복잡성으로 인해, 대부분 경험적 방법론에 의존해왔다. 또한 기존에 제시된 대부분의 이론 모델들은 단결정 또는 다결정 상태의 극한 거동을 부분적으로만 예측할 수 있었지만, 본 연구에서는 체심입방 단결정 및 다결정 재료의 극한 거동을 다양한 온도 및 속도 조건에서 동시에 설명할 수 있는 연속체역학 기반 이론 모델을 제시하였다. 연구팀은 새롭게 제시된 이론 모델을 통해 대표적 체심입방금속재료인 단결정 및 다결정 탄탈럼의 극한의 기계적 변형, 전위 결함 및 미세 구조 발달을 정확하게 예측하고 (그림 1-b 및 1-c) 이를 로스앨러모스국립연구소가 보유한 Los Alamos Neutron Science Center (LANSCE)의 중성자 디프랙션 장비를 통해 실험적으로 검증했다 (그림 1-d). 또한 기존의 경험론적 이론 모델에서는 설명할 수 없었던 체심입방 단결정 구조체에서 주로 발견되는 원자 미끄러짐의 불안정성을 수리적으로 규명하였으며, 이는 향후 극한 환경용 재료 및 구조체 설계에 적극 활용될 수 있을 것으로 기대되고 있다.
본 연구 결과는 이론 및 실험에 관한 국제협력을 통해 얻어졌으며, 우리학교 항공우주공학과의 조한솔 교수 연구실과 위스콘신-매디슨 대학 기계공학과의 커트 브롱크홀스트(Curt Bronkhorst) 교수 연구실 및 오크리지국립연구소에서 이론 정립 및 단결정 및 다결정 거동 경계값 문제에 관한 수치 계산을 수행하고, 로스앨러모스 국립연구소에서 검증 실험을 수행했다.
우리 대학 항공우주공학과의 이승현 박사과정 학생이 제1 저자로 참여한 이번 연구는 고체 및 응용역학 분야 최상위 학술지인 인터내셔널 저널 오브 플라스티시티 (Int. Journal of Plasticity) 에 연속 출간됐다.
https://doi.org/10.1016/j.ijplas.2023.103529
https://doi.org/10.1016/j.ijplas.2020.102903
https://arxiv.org/abs/2303.06743
한편 본 연구에 참여한 박사과정 이승현 학생은 로스앨러모스국립연구소의 여름 프로그램에 지원 및 선정돼 이번 6월 로스앨러모스국립연구소의 이론부에 방문하여 후속 연구를 진행할 예정이다.
본 연구는 한국연구재단 신진과제 (2020R1C1C101324813), 기초연구실 (2021R1A4A103278312) 그리고 미국립과학재단 (CMMI 2118399)의 지원을 통해 수행됐다.
2023.05.02
조회수 6470