〈 정유성 교수, 노주환 박사과정〉
우리 대학 EEWS대학원/생명화학공학과 정유성 교수 연구팀이 인공지능을 활용해 원하는 물성을 갖는 신소재를 역설계하는 기술을 개발했다.
연구팀은 알고리즘을 통해 수만 개의 물질을 학습시킨 뒤 인공지능을 통해 원하는 물성을 갖는 소재를 역설계하는 방식으로 4종의 신물질을 발견했다. 향후 신소재 개발에 크게 이바지할 수 있을 것으로 기대된다.
노주환 박사과정이 1저자로 참여한 이번 연구 결과는 ‘셀 (Cell)’ 자매지 ‘매터(Matter)’ 10월 2일 자 온라인판에 출판됐다. (논문명 : Inverse Design of Solid State Materials via a Continuous Representation)
소재 연구의 궁극적인 목표는 원하는 물성을 갖는 신소재를 개발하는 것이다. 하지만 현재까지의 신소재 개발은 화학적 직관과 실험적 시행착오를 통한 방법 위주였기 때문에 개발 비용과 시간이 많이 들어 소재 개념화에서부터 상용화에 걸리는 시간이 평균 30년 정도 소요됐다.
기존의 소재 개발 과정은 소재를 시행착오를 통해 합성하고 난 후 물성을 측정해 만들어진 소재가 응용 목적에 맞는 소재인지를 평가하는 방식으로 개발됐다.
정 교수 연구팀은 인공지능 기술과 슈퍼컴퓨터 활용을 융합해 이러한 소재 개발을 기간을 크게 단축할 수 있는 새로운 소재 역설계 방법을 개발했다. 정 교수팀이 개발한 소재 역설계 방법은 기계(알고리즘)로 기존의 수만 개 물질과 그 물질들이 갖는 물성을 학습하게 한 후, 원하는 물성을 갖는 물질을 인공지능 기반 알고리즘이 역으로 생성하는 방식이다.
연구팀이 개발한 소재 역설계 방법은 기존의 컴퓨터 스크리닝을 통해 소재 설계를 가속화 하는 연구와도 차별성이 있다. 스크리닝 기반의 소재 발견 기술은 발견될 물질이 스크리닝 대상이 되는 물질 데이터베이스를 벗어날 수 없다는 한계를 가지고 있다. 따라서 데이터베이스에 존재하지 않는 새로운 형태의 소재를 발견하지 못한다는 단점이 있다.
연구팀이 개발한 신소재 역발견 모델은 인공지능 모델의 한 종류인 생성모델을 이용한 것으로, 생성모델은 이미지 및 음성 처리에 활발하게 활용되고 있는 기술이다. 예를 들어 수천 명의 얼굴들을 기계로 학습하게 해 새로운 사람의 얼굴을 생성해 내는 인공지능 기법이다.
연구팀은 이미지 생성에 주로 쓰이는 생성모델 기반의 인공지능 기법을 알려지지 않은 무기 고체 소재를 생성하는 데 최초로 적용했다. 특히 기존의 생성모델을 고체 소재에 적용하기 위해 역변환이 가능한 3차원 이미지 기반의 표현자를 도입함으로써 현재까지의 소재 역설계 모델의 한계를 극복했고, 이를 iMatGen(image-based Materials Generator) 이라 이름 지었다.
연구팀은 개발된 소재 역설계 기법을 새로운 바나듐 산화물 결정구조를 예측하는데 적용했다. 이 학습 과정에서 기존에 알려진 물질을 제외해 학습하더라도 제외된 물질들을 역으로 재발견할 수 있음을 확인해 개발 모델의 타당성을 검증했다.
최종적으로 개발된 모델을 통해 학습된 연속 잠재공간을 다양한 방법으로 샘플링하고 역변환 함으로써 기존에 존재하지 않는 전혀 새로운 바나듐 산화물 결정구조를 예측할 수 있었다.
정유성 교수는 “이번 연구는 원하는 물성을 갖는 무기 고체 소재를 역으로 설계하는 방법을 데이터 기반 기계학습으로 최초로 보인 예로, 향후 다양한 응용 분야의 신소재 개발에 도움을 줄 수 있을 것으로 기대한다”라고 말했다.
이번 연구 성과는 한국연구재단, 산업통상자원부 산하 에너지기술평가원, 그리고 KISTI의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 개발된 소재 역설계 모델
음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다. KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다. 이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해
2025-05-07우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한
2025-04-14우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10