-
DNA 기반 반도체 핵심 원천기술 개발
박현규 교수
- 분자 비콘을 이용해 모든(8가지) 논리게이트 구현하는 데 성공 -- 스몰(Small)誌 7월호 표지논문으로 실려 -
초소형 미래 바이오전자기기를 구현하기 위한 핵심기술 개발됐다.
우리 학교 생명화학공학과 박현규 교수 연구팀이 DNA를 이용해 모든 논리게이트를 구현하는 데 성공, 나노분야의 세계적 학술지 ‘스몰(Small)’ 7월호(23일자) 표지논문으로 실렸다.
현재 최첨단 기술로도 10nm(나노미터) 이하의 실리콘 기반 반도체 제작은 불가능한 것으로 알려져 있지만, DNA는 굵기가 2nm 정도로 가늘기 때문에 보다 저렴하면서도 획기적인 집적도를 가진 반도체를 만들 수 있을 것으로 기대된다.
2나노급 반도체가 개발되면 우표 크기의 메모리 반도체에 고화질 영화 10000편을 저장하는 등 현재 상용화중인 20나노급 반도체보다 약 100배의 용량을 담을 수 있게 된다.
DNA는 네 종류의 염기인 아데닌(adenine, A), 시토신(cytosine, C), 구아닌(guanin, G), 티민(thymine, T)이 연속적으로 연결돼 있는데 A는 T와, G는 C와 각각 특이적으로 결합하는 특성을 갖고 있다.
특정 DNA는 특이적으로 결합하는 염기서열을 지닌 또 다른 DNA와 결합해 이중나선 구조를 형성하는 데, 연구팀은 이러한 DNA의 특이적 결합 특성과 구조 변화에 따른 형광신호 특성이 있는 고리모양의 분자 비콘을 이용했다.
연구팀은 생체 DNA물질을 디지털 회로에서 사용되는 논리게이트와 같은 역할을 담당하도록 입력신호로 사용해 고리모양의 DNA가 열리거나 닫히도록 했다.
고리모양 DNA가 열린 형태에서는 형광신호가 증가하고 닫힌 상태에서는 형광 신호가 감소하며 이로 인해 발생하는 형광신호의 변화를 출력신호로 사용했다.
연구팀은 제한적인 시스템만을 구현하는 기존의 논리게이트의 문제점을 극복, 8가지 모든 논리게이트(AND, OR, XOR, INHIBIT, NAND, NOR, XNOR, IMPlCATION)를 구현하는 데 성공해 반도체 기술로써의 적용 가능성을 높였다.
이와 함께, 각각의 논리게이트의 연결을 통한 다중 논리게이트(Multilevel circuits)와 논리게이트의 재생성을 보여주는 데도 성공했다.
박현규 교수는 “하나의 분자 비콘을 모든 게이트 구성을 위한 보편적인 요소로 사용해 저렴하면서도 초고집적 바이오 전자기기의 가능성을 높였다”며 “앞으로 분자 수준의 전자 소자 연구에 큰 변화가 있을 것으로 예상된다”고 말했다.
이번 연구를 주도한 박기수 박사과정 학생(제1저자)은 “DNA는 10개의 염기서열 길이가 3.4nm이고 굵기가 2nm밖에 되지 않는 매우 작은 물질이기 때문에 이를 이용해 전자 소자를 구현하면 획기적인 집적도 향상을 이룰 수 있다”며 “간단한 시스템 디자인을 통해 정확한 논리게이트를 구현해 내 DNA 반도체를 탑재한 바이오컴퓨터가 곧 현실로 다가올 것”이라고 말했다.XOR 게이트 : 입력 DNA A(input A)와 입력 DNA B(input B) 둘 중 하나만 있을 때는 고리모양 DNA가 열려서 형광 신호가 나오고(출력신호 1), DNA A와 B가 모두 없을 경우와 모두 있는 경우에는 고리모양 DNA가 고리모양을 유지하여 형광을 발생하지 않게 함으로써 XOR 논리게이트를 정확하게 구현했다.
2012.09.18
조회수 16334
-
세계에서 가장 빠른 네트워크 침입탐지 시스템 개발
- 100% 공격 패킷만 들어오는 경우에도 10Gbps 가까운 성능 발휘 -
- 19년 역사의 세계 최고 보안학회인 ACM CCS에 국내 최초 논문 발표 -
전용 하드웨어를 사용하지 않고, 범용 하드웨어상의 소프트웨어만으로도 NIDS의 성능을 획기적으로 올려 네트워크 보안 분야에 커다란 지각변동이 예상된다.
우리 학교 전기 및 전자공학과 박경수 교수와 이융 교수팀이 국가보안기술연구소(소장 강석열) 배병철 팀장과 공동으로 범용 서버 상에서 수십 Gbps(초당 기가비트)의 성능을 낼 수 있는 소프트웨어 기반 네트워크 침입탐지 시스템인(이하 NIDS) "카거스(Kargus)"를 개발했다고 5일 밝혔다.
이 기술은 오는 10월 16일~18일 미국 노스캐롤리나주 롤리에서 열리는 美계산기학회(ACM) 컴퓨터 시큐리티 컨퍼런스(CCS, Conference on Computer and Communications Security)에서 발표될 예정인데 국내에서 나온 논문으로는 처음이다.
올해로 19년째를 맞이하는 ACM CCS는 보안 분야 세계 최고 학회로 10%대의 낮은 게재율 때문에 논문채택이 매우 어려운 학회로 유명하다.
네트워크 침입탐지 시스템(NIDS)은 패턴 매칭을 통해 네트워크로 유입되는 공격을 탐지하는 역할을 수행한다.
그러나 범용 컴퓨터 기반의 소프트웨어로 구현되는 기존 NIDS는 하드웨어 사양이 좋더라도 리소스를 효율적으로 사용하지 못해 10Gbps 이상의 초고속 네트워크에서는 적용되기 어려웠다.
KAIST 연구팀이 개발한 ‘카거스’는 1~2Gbps 수준에 머물던 기존 소프트웨어 NIDS의 성능을 메니코어(manycore) GPU, 멀티코어(multicore) CPU 등에 존재하는 하드웨어 병렬성과 여러 패킷을 한 번에 처리하는 일괄처리 방식을 활용해 획기적으로 성능을 끌어 올렸다.
그 결과 해커의 공격이 없는 일반적인 상황에서는 33Gbps, 100% 공격 패킷만 들어오는 경우에도 10Gbps 가까운 성능을 내는 데 성공했다.
또 이 기술의 가장 큰 특징 중 하나는 기존 공개 소프트웨어 기반 시스템인 Snort 탐지규칙을 그대로 활용해 상용화 가능성을 높였다는 점이다. 따라서 상용화에 성공할 경우 약 700만원 정도의 비용으로 수억 원에 달하는 전용 하드웨어 기반 NIDS를 대체할 수 있을 것으로 기대된다.
뿐만 아니라 10Gbps이상의 초고속 네트워크로 접속되는 기업, 정부, 교육기관의 네트워크는 물론 클라우드 서버팜이나 IP로 구동되는 LTE 백본망 등에 대한 공격을 저비용・고유연성을 지닌 소프트웨어 장비로 대비할 수 있을 것으로 전망된다.
박경수 교수는 “이번 논문 발표로 우리나라의 앞선 보안기술의 수준을 국내외에 입증했다”며 “이번 연구를 계기로 국내 보안기술관련 분야 연구진들의 사기를 북돋울 수 있는 기회가 됐으면 한다”고 말했다.
박 교수는 이어 “앞으로 국내 범용 서버 기반 네트워크 장비 시장에 활력을 불어넣는데 주력하겠다”고 강조했다.
한편, 이번 연구는 국가보안기술연구소와 교육과학기술부의 지원으로 수행됐다.
2012.09.05
조회수 22152
-
C형 간염 바이러스의 간 손상 메카니즘 규명
- 부작용 없이 간세포 손상 억제하는 치료제 개발 길 열어 -- 의학분야 세계 최고수준 학술지 ‘헤파톨로지’ 9월호 표지논문 장식 -
의사출신으로 구성된 KAIST 연구진이 C형 간염 바이러스 기전을 밝혀내 치료제 개발에 탄력을 받게 됐다.
우리 학교 바이오및뇌공학과 최철희 교수와 의과학대학원 신의철 교수팀이 공동으로 C형 간염 바이러스에 감염된 환자의 간 손상에 대한 메카니즘을 세계 최초로 규명했다.
이번 연구결과로 앞으로 부작용이 없으면서도 간세포 손상이 적은 C형 간염 바이러스 치료제가 개발될 수 있을 것으로 기대된다.
C형 간염은 C형 간염 바이러스(HCV, Hepatitis C virus)에 감염되었을 때 이에 대응하기 위한 신체의 면역반응으로 인해 간에 염증이 생기는 질환이다.
C형 간염 바이러스는 전 세계적으로 약 1억 7천만 명, 그리고 우리나라에서도 1%정도가 감염되어 있는 것으로 추정된다. 감염되면 대부분 만성으로 변하며, 간경변증이나 간암을 유발해 사망할 수 있는 무서운 질병이다.
하지만 2005년 시험관 내 세포에서 C형 간염 바이러스의 감염이 성공하기 전까지는 세포실험이 불가능했고, 침팬지 이외에는 감염시키는 동물이 없어 동물실험이 어려워 연구에 한계가 있었다.
연구팀은 C형 간염 바이러스에 감염시킨 세포주를 이용해 바이러스가 면역을 담당하는 세포에 의해 분비되는 단백질인 종양괴사인자(TNF-α)에 의한 세포의 사멸이 크게 증가하는 메카니즘을 세계 최초로 밝혀냈다.
이와 함께 이러한 작용을 일으키는 바이러스 구성 단백질도 규명에도 성공했다.
기존에는 C형 간염 바이러스가 간 손상을 일으키는 기전을 밝혀내지 못해 주로 바이러스의 증식을 억제하는 데 초점을 맞춰 신약이 개발돼 부작용이 많았다.
이번 연구결과를 통해 바이러스에 의한 간세포 손상을 억제하는 부작용 없는 신약개발이 가능하게 될 것으로 전망된다.
최철희 교수는 “이번 연구를 통해 C형 간염 바이러스가 숙주의 간세포와 어떤 상호 작용을 하는지 밝혀내 감염 환자의 치료법을 획기적으로 개선할 수 있을 것”이라고 말했다.
신의철 교수는 “이번 연구는 기초의학과 응용의학의 융합연구가 성공한 대표적 사례”라며 “앞으로도 다학제간 융합연구를 실시하면 그동안 풀지 못했던 난제들을 효율적으로 해결할 수 있을 것”이라고 강조했다.
한편, 교육과학기술부 미래기반기술개발사업(신약타겟검증연구사업)의 지원을 받아 수행된 이번 연구 결과는 의학 분야의 세계적 학술지인 헤파톨로지(Hepatolog, Impact Factor=11.665) 9월호 표지 논문으로 선정됐다.
□ 연구 세부사항 설명
TNF-α(종양괴사인자)는 면역을 담당하는 세포에 의해 분비되는 단백질이다. HCV에 감염되면 바이러스의 증식을 억제하기 위해 체내의 면역작용이 활발해지고 TNF-α의 분비도 늘어난다.
TNF-α는 세포의 생존을 담당하는 NF-κB 신호전달과 세포의 죽음을 담당하는 JNK 신호 전달을 동시에 활성화시킨다. HCV에 감염되면, 세포의 생존을 담당하는 NF-κB 쪽 신호전달 경로만 선택적으로 활성을 억제하게 되고, TNF-α의 역할은 세포의 죽음 쪽으로 균형이 기울게 된다.
바이러스의 증식을 억제하기 위해 분비된 TNF-α가 오히려 간세포를 죽이게 되는 것이다. 이는 곧 간 손상을 뜻하며, HCV를 구성하는 10가지의 단백질 중 core, NF4B, NS5B 라는 단백질이 이러한 작용을 한다고 규명해냈다.
2012.09.04
조회수 17991
-
금 알갱이로 항암백신을 만들다
- 앙게반테 케미지 발표,“백신 위치를 추적할 수 있으면서 효능도 탁월한 나노항암백신 개발”
매우 작은 금 알갱이(금 나노입자, 지름이 10억분의 1미터)를 이용해 위치를 추적할 수 있으면서 암을 예방‧치료할 수 있는 효능도 탁월한 항암백신기술이 국내 연구진에 의해 개발되었다.
우리 학교 전상용 교수(42세)가 주도하고 이인현 박사(제1저자) 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 △선도연구센터 △신기술융합형성장동력 △바이오의료기술개발 사업의 지원으로 수행되었고, 연구결과는 독일화학회가 발간하는 화학분야의 권위 있는 학술지인 ‘앙게반테 케미(Angewandte Chemie)’지 7월호(7월 29일)에 게재되었다.
특히 이번 성과는 상위 5%이내 논문에만 수여하는 VIP(Very Important Paper)로 선정되는 영예를 얻었다. (논문명 : Imageable Antigen-Presenting Gold Nanoparticle Vaccines for Effective Cancer Immunotherapy In Vivo)
암은 현대의학이 정복하지 못한 대표적인 난치성 질환 중 하나이다. 전 세계적으로 연간 3천만 명의 암 환자가 발생하고 있고, 특히 우리나라에서는 매년 사망원인 1위를 차지하고 있다.
암을 효과적으로 치료하기 위해서 부작용(정상세포까지 죽이는 세포독성)을 최소화하면서도 효과를 극대화할 수 있는 면역치료법(백신)이 전 세계적으로 각광받고 있다. 지금까지 백신은 독감에서부터 난치성 질환인 백혈병에 이르기까지 인류의 다양한 질병을 예방‧치료하는데 활용되어왔다.
그러나 기존 대부분의 항암백신은 몸 밖에서 환자의 암 조직 파편 등으로 사람의 면역세포를 활성화한 후, 다시 그 면역세포를 몸속에 넣어 항암 면역반응을 유도함으로써 암을 치료하는 기술이다. 이렇게 하면 여러 단계의 백신 제조과정을 거치게 되고, 치료비도 비싼 것이 단점이다. 또한 몸속에 주입한 백신이 원하는 곳에 얼마나 도달했는지 추적할 수 없어, 치료효과를 예측하고 가늠할 수 없었다.
전상용 교수 연구팀은 기존 항암백신과는 달리 일반적인 근육주사로 면역세포들이 많이 모여 있는 국소 림프절을 통해 금 나노입자 백신을 효과적으로 전달하여, 항체를 생산하고 항암 면역반응을 유도함으로써 암을 예방‧치료하는데 이용할 수 있는 핵심원천기술을 개발하였다.
또한 병원에서 진단용으로 많이 사용하는 엑스레이 등의 영상기기를 이용해 주입한 금 나노입자 백신을 추적하여, 백신이 목표하는 곳에 제대로 도달하였는지를 직접 확인할 수 있어 향후 개발될 새로운 백신의 효과를 예측할 수 있다는 점이 큰 특징이다.
전 교수팀은 우선 금 나노입자 표면에 모델 암 항원(RFP 단백질)을 화학적으로 결합한 후, 추가적으로 면역보조제(DNA 단편)도 결합하여 금 나노백신 원천기술을 개발하였다.
이 금 나노백신을 몸에 넣으면 국소 림프절로 선택적으로 이동하여 해당 암에 특이적인 항체 생산을 촉진하고, 암세포를 제거할 수 있는 항암 면역세포도 활성화시켜 우수한 항암 효능을 나타낸다.
또한 연구팀은 동물실험을 통해 금 나노백신이 암을 예방할 뿐만 아니라, 이미 존재하는 암의 성장과 전이도 효과적으로 막을 수 있음을 증명하였다.
전상용 교수는 “이번 연구는 금 나노입자를 이용하면 몸속에 투여한 백신을 쉽게 추적할 수 있고, 기존의 백신에 비해 복잡한 과정 없이도 쉽게 면역세포를 활성화할 수 있어 효과적으로 암을 치료할 수 있는 가능성을 보였다. 특히 이 원천 기반기술은 각종 암뿐만 아니라 현재 임상적으로 치료가 어려운 다양한 바이러스성 질환에도 폭넓게 이용될 수 있을 것으로 기대된다”고 연구의의를 밝혔다.
2012.08.16
조회수 17753
-
연성물질의 메조포러스 준결정 개발・분석 성공
오사무 테라사키 교수
- 네이처(Nature)지 7월 19일자 실려 -
메조포러스(mesoporous) 준결정(quaicrystal) 구조에 대한 의문이 우리 대학 연구진에 의해 보다 명확하게 풀렸다.
우리 학교 EEWS(책임교수 강정구) 대학원 소속 오사무 테라사키(Osamu Terasaki) 교수 연구팀이 불규칙적인 입자구조를 가지고 있는 준결정 메조포러스 실리카(quasicrystalline mesoporous silica) 합성에 성공하고 준결정 성장 과정을 분석하는 새로운 방법을 개발했다.
연구팀이 제시한 이론은 연성물질인 교질(micelles) 입자 형성 시 불규칙하게 나타나는 준결정 현상을 과학적으로 규명하는 토대를 만들었다. 세계적인 학술지 ‘네이처(Nature)’는 7월호(19일자)에 테라사키(Terasaki) 교수 연구팀의 논문을 게재했다.
과학자들은 그 동안 연성물질(solidified version of soft matter systems)에서 발견되는 메조포러스 준결정 구조를 체계적으로 설명하는데 많은 어려움을 겪어왔다. 하지만, 이번 연구를 통해 얻은 연성물질 내 준결정 성장에 대한 이론적인 근거는 앞으로 이 분야에 대한 연구를 촉진시켜 나노 구조를 가진 신소재 물질 개발에 박차를 가할 것으로 예측된다.
연성물질의 메조포러스 준결정은 높은 대칭균형(high symmetry)과 나노 스케일(nano scale)보다 더 큰 특성적 크기(large characteristic length scale)를 가지고 있어 광학적 특성을 자유자재로 조절할 수 있는 물질을 구현할 수 있다.
이를 활용하면 태양광을 사용하는 친환경적 에너지 저장 및 변환 기술 개발에 응용되어 지속가능한 에너지의 저장, 사용 및 재생산 기술 발전에 큰 도움을 줄 것으로 예상된다.
테라사키 교수 연구팀은 메조포러스 준결정 실리카 합성에 성공하고 투과전자현미경(Transmission Electron Microscopy)을 통해 실리카 입자 중앙에 12각형 기둥 모양의 순결정이 형성되어 있으며, 전자회절 무늬에서(electron diffraction pattern) 12각형의 회전대칭 무늬(rotational symmetry)가 순결정 주위에 형성되는 것을 증명하였다.
준결정(quasicrystal)은 준주기적 결정(quasiperiodic crystal)의 줄임말로서 금속 같은 일정한 규칙으로 배열된 결정 물질과 유리와 같은 비결정 물질의 중간 성질을 가지는 제 3의 고체(solid)로 최근 발견되었으며 2011년에는 노벨화학상이 이 분야 연구에 수여되기도 했다.
많은 양의 기공(porous)을 지닌 다공성 물질을 준결정으로 제조 하게 되면 기공들의 결정 구조를 ‘타일을 붙이듯(tiling)’ 원하는 방식대로 디자인 하고 성질을 조절하게 되어 다양한 분야에 필요한 새로운 소재를 개발하고 생산할 수 있게 된다.
테라사키 교수는 “높은 대칭성(high symmetry)을 가지는 준결정의 발견은 물질의 광학적 성질을 쉽게 조절해 가시광 영역대의 포토닉 크리스탈을 구현할 수 있다”며 “물질의 광학적 에너지 흡수를 조절 할 수 있는 이 기술은 향후 에너지 저장(energy harvesting)의 핵심기술이 될 수도 있을 것이다”라고 말했다.
이번 연구는 KAIST EEWS 대학원의 오사무 테라사키 교수와 스웨덴 스톡홀름(Stockholm University) 대학과 공동으로 수행되었다.(끝)
그림 1. 물질에서의 원자 배열 방법에 따라 구분되는 결정, 준결정과 비결정을 나타낸 모식도. 일반적으로는 원자가 일정한 패턴을 가지고 배열되어 있는 것을 결정, 그렇지 않은 것을 비결정이라고 하였으나, 준결정은 결정에서의 원자배열을 가지지는 않지만 정돈 되어 있는 구조이다. 투과전자현미경에서의 회절무늬를 보고 준결정을 판단할 수 있다.
그림 2. 메조포러스 실리카 준결정의 실제 모양과 원자 배열을 나타내는 투과전자현미경 이미지. 투과전자현미경으로부터 메조포러스 실리카가 12각형 기둥 모양을 하고 있음을 알 수 있으며(왼쪽 위의 이미지), 이는 투과전자현미경의 회절무늬에서도 나타난다(왼쪽 아래 이미지). 고배율의 투과전자현미경은 메조포러스 실리카의 실제 구조를 나타내고 있다(오른쪽).
그림 3. 메조포러스 실리카 준결정의 결정구조를 3차원 모델로 나타낸 모식도. 각각 다른 세 가지 다각형이 서로 정돈되어 결합해 메조포러스 준결정을 구성한다.
2012.07.24
조회수 22203
-
자폐증에 관여하는 새로운 유전자 및 발병원인 첫 발견
김은준 교수
- 세계 최고 Nature지 발표,“자폐증의 유전요인과 새로운 치료법 제시”-
국내 연구진이 자폐증의 유전적 요인과 발병원인을 규명하고, 약물 부작용도 줄일 수 있는 새로운 자폐 치료법을 제시하였다.
서울대 강봉균 교수(50세), 연세대 이민구 교수(47세) 및 KAIST 김은준 교수(47세)가 주도하고, 원혜정, 이혜련, 지헌영, 마원, 김재익 박사(이상 제1저자)와 KAIST 김대수 교수 및 경북대 배용철, 이경민 교수 연구팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 리더연구자지원사업(창의적연구)과 선도연구센터지원사업(SRC)의 지원으로 수행되었다.
연구결과는 세계 최고 권위의 과학전문지인 ‘네이처(Nature)’지 6월 14일자에 게재되었고, 연구의 중요성을 인정받아 ‘Nature Reviews Drug Discovery’ 7월호에도 소개될 예정이다.
(논문명 : Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function)
연구팀은 시냅스 단백질을 만드는 유전자(생크2, Shank2)가 결핍되면 자폐와 비슷한 증상이 나타난다는 사실을 동물실험(생쥐)을 통해 발견하였다. 이것은 생크2 유전자의 결손이 자폐와 관련된다는 최근 임상결과와 함께, 생크2 유전자의 결손이 자폐를 유도한다는 직접적인 증거가 되어 의미가 크다.
자폐증은 △사회성 결핍 △반복행동 △정신지체 △불안 △과잉행동 등을 동반하는 뇌 발달 장애로, 전 세계 인구의 1~2%인 약 1억명이 증상을 보이는 심각한 뇌 질환이다. 특히 최근 연구결과(미국 워싱턴대)에 따르면, 자폐계 질환을 앓는 젊은 성인 3명 중 1명이 직장생활에 적응하지 못하거나 대학에 진학하지 못하는 등 다른 장애보다 훨씬 위중한 것으로 알려졌다. 그러나 지금까지 이를 효과적으로 치료할 수 있는 약물이 개발되지 못했고, 현재 반복행동만을 경감시키는 수준에 머무르고 있다.
연구팀은 생크2가 결손된 생쥐에서 사회성 결핍, 인지학습기능 저하, 반복행동 및 과잉행동과 같은 자폐와 비슷한 증상들이 나타난 것을 확인하였다. 또한 연구팀은 생크2가 결손된 생쥐는 NMDA(N-메칠 D-아스파르트산염) 수용체에 의한 신경전달이 감소하였고, 해마*에서의 시냅스 가소성** 등도 손상되었음을 관찰하였다.
*) 해마(Hippocampus) : 대뇌의 양쪽 측두엽에 존재. 일화, 의미 기억 등 인지기능 담당
**) 가소성(plasticity) : 기억, 학습 등 뇌 기능의 유연한 적응능력으로, 비교적 짧은 기간 내에 가해진 자극으로 뇌에 장기적인 변화가 생겨, 자극이 제거된 후에도 그 변화가 지속되는 것
특히 연구팀은 특정 수용체(mGluR5, 대사성 글루타민산염 수용체5)를 자극하여 NMDA 수용체의 기능을 간접적으로 회복시키는 것이 기존의 NMDA 수용체를 직접 자극하는 것보다 사회성 행동을 완전히 회복시킨다는 사실도 확인하였다. 이것은 NMDA 수용체를 직접 자극하기 위해 사용하는 약물의 부작용을 줄일 수 있는 새로운 자폐증 치료법으로 평가된다.
연구팀은 NMDA 수용체의 기능을 직접적으로 회복시키는 약물을 사용하면, 생크2가 결손된 생쥐에서 나타나는 NMDA 수용체 신경전달 이상과 사회성 결핍이 부분적으로(약 50%) 회복된다는 사실을 관찰하였다.
또한 연구팀은 mGluR5 수용체를 자극하여 NMDA 수용체의 기능을 간접적으로 회복시키는 약물(CDPPB)을 사용하면, 생크2가 결손된 생쥐의 해마에서의 시냅스 가소성 손상이 회복되고, NMDA 수용체에 의한 신경전달 등도 정상화되며, 사회성 결핍도 NMDA 수용체에 직접 작용하는 약물보다 더욱 효과적으로 회복되는 사실을 발견하였다.
강봉균 교수는 “생크2 유전자 결손으로 인한 NMDA 수용체의 기능 저하가 자폐증을 일으키는 새로운 원인임을 밝힌 의미 있는 연구”라고 연구의의를 밝혔다.
또한 이민구 교수는 “신경조직에서 생크2 유전자의 생리적 역할을 새롭게 규명한 연구로서, 국내 각 분야의 전문가들이 협력하여 우수한 성과를 거둔 대표적인 사례가 될 것”이라고 연구결과를 평가하였다.
아울러 김은준 교수는 "반복행동뿐만 아니라 자폐증의 주요한 증상인 사회성 결핍도 약물을 통해 충분히 개선할 수 있다는 사실을 새롭게 증명한 연구로, 자폐 치료의 새로운 가능성을 열었다”고 밝혔다.
2012.06.14
조회수 15569
-
신개념 나노발전기 원천기술 개발
- 나노복합체 이용해 복잡한 공정과 고비용 문제 해결 -- 어드밴스드 머터리얼스 6월호 표지논문 게재 -
우리 학교 연구진이 나노복합체를 이용해 나노발전기를 적은 비용으로도 대면적으로 만들 수 있는 원천기술 개발에 성공했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 나노복합체를 이용한 신개념 나노발전기 원천기술을 개발해 재료분야 세계적 학술지인 ‘어드밴스드 머터리얼스(Advanced Materials)’ 6월호 표지논문에 게재됐다.
이번에 개발된 기술은 간단한 코팅 공정을 통해 만들어 비용을 획기적으로 줄일 수 있을 뿐만 아니라, 넓은 면적도 쉽게 제작 가능해 공정이 복잡했던 기존의 한계를 극복해냈다는 평가를 받고 있다.
나노발전기는 나노 크기(10억분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 ‘압전 효과’를 이용한다.
압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐으며, 2010년 미국의 유명한 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되기도 했다.
나노발전기 개발을 위한 압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 적용한 ‘산화아연(ZnO)’이 유일했다.
2010년 KAIST 신소재공학과 이건재 교수 연구팀은 산화아연보다 15~20배 높은 압전 특성을 갖고 있는 세라믹 박막물질인 ‘티탄산화바륨(BaTiO3)’을 이용해 나노발전기 효율을 한층 업그레이드 시킨데 이어, 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공해 적은 비용으로도 넓은 면적의 나노발전기를 구현해낼 수 있게 됐다.
연구팀은 수백 나노 크기의 고효율 압전 나노입자인 ‘티탄산화바륨’과 비표면적이 크고 전기 전도성이 높은 ‘탄소나노튜브’ 또는 ‘산화 그래핀(RGO)’을 폴리머(polydimethylsiloxane, PDMS)와 섞은 후 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했다.
이건재 교수는 “압전효과를 바탕으로 한 ‘나노자가발전 기술’은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받고 있지만, 기존 기술은 제작공정이 복잡하고 고가의 비용문제 및 소자크기의 한계성을 극복하지 못했다”고 말했다.
아울러 “이번에 개발된 기술에 패키징 및 충·방전 기술을 융합하면, 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에 응용될 수 있다“고 덧붙였다.
한편, 이번 기술은 해외 1건, 국내 2건의 특허가 출원 및 등록됐다.
<동영상>http://www.youtube.com/watch?v=90rk7G3t30k&feature=player_embedded
압전 나노복합체 제작공정과 소자를 다양한 방법으로 구부릴 때마다 전기가 발생하는 것을 보여주는 동영상
※응용사례
- 에너지블럭(부산 서면역 적용)
지하철 선로에 압전소자를 적용해 전동차 운행으로 얻어지는 진동을 통해 발전하는 장치로 국내 최초의 압전에너지 상용화 제품http://blog.naver.com/ioyou64?Redirect=Log&logNo=130093513496
- 이스라엘은 고속도로에 압전발전기를 적용해 발생되는 전기로 가로등을 밝히고 있음
- 필립스는 사람이 리모컨 버튼을 누르는 힘만으로 전기를 생산해 배터리가 없어도 작동되는 리모컨 개발
- 수 많은 나노 발전기를 겹쳐 옷감 형태로 만든 재킷을 입으면 단순히 걷는 것과 같은 일상생활만으로도 휴대전화나 MP3 등을 충전할 수 있을 것으로 예상됨
- 아주 작은 전원만으로도 몸속에서 독자적인 임무를 수행하는 나노센서 개발가능
※그림설명
그림1. 압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림.
그림2. 구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)
2012.06.12
조회수 21268
-
장소에 따라 유용한 앱이 한눈에..
한동수 교수
- 위치에 따라 유용한 앱을 자동으로 추천해주는 앱 스토어 ‘플레이스 앱스’ 개발 -
“버스 정류장에 도착했더니 버스 운행정보 앱을 추천해줘서 유용하게 썼어요. 다른 장소로 갔더니 또 그곳에 잘 맞는 어플을 추천해줘서 신기하기도 하구요. 카톡만 쓰던 스마트폰을 이제 진짜로 스마트하게 사용할 수 있겠네요”
SNS시대가 도래하면서 정보는 우리가 애써서 찾는 것이 아니라, 정보가 우리에게로 다가오고 있다. 이러한 흐름을 이용한 앱이 KAIST 연구진에 의해 개발됐다.
KAIST(총장 서남표)는 전산학과 한동수 교수 연구팀이 스마트 폰 소지자가 특정 위치에 접근하면 해당 장소 근처에서 사용할 수 있는 앱을 자동으로 추천해 주는 위치 기반 앱 스토어 ‘플레이스 앱스(PlacesApps)’를 개발했다고 21일 밝혔다.
이 앱은 지난 15일부터 18일까지 서울 코엑스에서 열린 ‘2012 월드 IT 쇼(World IT Show 2012)에서 선보여 참가자들로부터 커다란 호응을 받았다.
사용자가 자신이 원하는 앱을 키워드나 카테고리 검색을 통해 찾는 기존의 방식과는 달리, 개발된 앱은 특정 위치에서 사용 가능한 앱을 자동으로 추천하고 추천된 앱을 사용자가 선택하는 방식이다.
예를 들면 버스를 타려고 정류장에 도착하면 버스 운행 관련 앱이 추천되고, 관광지에 가면 해당 관광지를 소개하는 앱이 추천된다. 또한 코엑스와 같이 복잡한 건물로 들어서면 코엑스의 다양한 정보를 한 눈에 확인할 수 있는 ‘myCoex’ 앱이 추천된다.
이에 따라 원하는 앱을 실시간으로 찾아 활용하는 것에 익숙하지 않은 사람들이 새로운 앱을 접하고 사용하는 환경을 획기적으로 개선해 줄 것으로 기대된다.
한동수 교수는 “현재 대전 KAIST 주변과 서울 코엑스를 중심으로 시범 서비스를 실시하고 있는 ‘플레이스 앱스’에는 아직 등록된 앱이 많지 않아 서비스를 제공하는 데 한계가 있다”며 “앞으로 다양한 장소에 많은 앱을 등록해 사용자들이 불편함 없이 사용할 수 있도록 할 것”이라고 말했다.
앞으로 한 교수는 플레이스 앱스의 기능을 보강해 위치 기반 앱 스토어 기술의 상용화에 관심을 보이는 국내 앱 스토어 운영 기업에 기술을 제공하거나, 해외 특허가 확보되면 구글, 애플과의 협력도 모색할 계획이다.
한 교수 연구실에서 고안한 위치 기반 앱 스토어와 관련된 2건의 발명은 지난해와 올해 각각 국내 특허로 등록되었고 국제 특허 출원을 위한 PCT 출원도 완료된 상태다.
향후에도 KAIST ISI LAB에서는 PlacesApps 앱 스토어의 기능을 더욱 보강하고 등록되는 앱의 종류도 보강하여 PlaceApps의 유용성을 널리 알려 많은 사용자들이 사용케하고 구글, 애플, 삼성, SKT등 앱 스토어를 운영하는 기업에서도 카이스트에서 개발한 위치 기반 앱 스토어의 기술을 채택하여 사용하도록 노력할 계획이다.
<작동 원리>위치 기반 앱 스토어인 ‘PlacesApps’가 특정 위치에 머무르는 사용자에게 해당 장소에서 사용하면 유용한 앱을 추천하기 위해서는 다음과 같은 과정이 필요하다.
1. 앱 개발자가 위치 기반 방식으로 자신의 앱을 사용자에게 노출시키기 위해서는 PlacesApps에서 제공하는 앱 등록 사이트(http://placesapps.com/wp/)에 자신의 앱을 위치 정보와 함께 등록한다. 이때 등록을 위해서는 로그인 하는 절차가 필요하다. 위치 정보는 주소를 입력한 뒤 맵 상에 표시되는 마커를 이동시켜 위치를 선택한다. 아래 그림은 myCoex를 서울 삼성동 코엑스에 등록하는 화면의 일부를 보여주고 있다. 그 밖의 앱 등록 절차는 구글 Playstore나 SKT T-Store와 크게 다르지 않다. 다만 일반적인 앱 스토어는 바이러스 체크 등의 기능이 필요한데 PlacesApps에는 그러한 기능이 없어 기존의 앱 스토어에 등록된 앱 만을 등록할 수 있다.
2. 등록된 앱이 원하는 위치에 올바르게 등록되었는지 PlacesApps 웹 사이트(http://placesapps.com/wp/) 상에서 확인한다. 등록된 앱을 확인하는 데 있어서는 로그인 절차는 필요치 않다. 현재는 코엑스 주변과, 카이스트 주변, 그리고 뉴욕 맨하탄 주변에 몇 개의 앱을 등록하고 베타 테스트를 진행하고 있다. 아래 그림은 코엑스 주변에 등록되어 사용 가능한 앱들과 myCoex 앱을 선택한 상태의 화면이다.
3. 위의 코엑스 주변과 같이 특정 위치에서 사용 가능한 앱 들이 PlacesApps에 등록된 상태에서 스마트 폰 사용자가 PlacesApps 앱을 구동시키면 해당 위치에서 사용 가능한 앱 들이 맵 상에 표시되거나 리스트 형태로 표시된다. 사용자는 표시된 앱에서 원하는 앱을 선택하여 자신의 스마트 폰에 내려 받고 구동하여 사용하게 된다. 아래 그림은 코엑스 주변에 머무는 스마트폰 사용자가 PlacesApps를 구동하였을 때 코엑스 주변에서 사용 가능한 앱을 맵 상에 보여주는 화면의 스냅 샷이다. 사용자는 자신의 주변에 사용 가능한 앱이 다수 존재함을 확인할 수 있고 어떤 종류의 앱이 존재하는 지도 쉽게 확인할 수 있으며, 필요한 앱이 확인되면 해당 앱을 내려 받아 사용함으로써 앱을 찾는 노력을 획기적으로 개선할 수 있다.
2012.05.22
조회수 16133
-
나노 바이오칩 질병진단 시대 본격 개막
정기훈 교수
- 1초이내 극미량의 용액 내 DNA 염기 검출 가능해 -
- 반도체 양산공정 활용해 상용화 성큼 -- 글로벌 신약개발 및 각종 질환 조기진단기술로서의 활용 기대 -
혈액 몇 방울로 집에서 암을 포함해 모든 질환을 진단할 수 있다는 연구 성과가 최근 쏟아져 나오고 있다. 첨단기술이 집약된 ‘바이오칩’ 덕분인데 KAIST 연구진이 이 칩을 상용화 할 수 있는 연구에 성공했다.
향후 실시간 초고감도 DNA 분석은 물론, 신약개발용 약물 스크리닝 등 다양한 질환의 조기진단기술에 크게 기여할 수 있을 것으로 기대된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 3차원 나노플라즈모닉스 구조를 이용해 검출가능 한계를 수십배 이상 향상시킨 초고감도 바이오칩 양산기술 개발에 성공했다.
이번 연구 성과는 재료 및 나노분야 세계적 학술지인 ‘어드밴드스 머터리얼스(Advanced Materials)’ 5월호(2일자) 표지논문으로 선정됐다.
나노플라즈모닉스는 금속나노구조표면에 빛을 집광시켜 특정파장의 세기를 크게 향상 시킬 수 있는 나노광학 분야다. 최근 DNA, 단백질, 항체 또는 세포 등을 감지하는 위한 바이오칩 개발에 필수적인 기술로 학계에서 커다란 관심을 받고 있다.
그러나 사람머리카락의 1/1000의 크기를 갖는 금속나노구조를 넓은 면적의 유리기판에 균일하게 제작하기가 어려워 상용화에 커다란 걸림돌이었다.
정기훈 교수 연구팀은 반도체 양산공정을 활용해 이를 해결했다.
연구팀은 유리기판 위에 은나노 필름을 입히고 열을 가해 은나노섬을 만들었다. 이후 반도체에 적용되는 식각공정을 이용해 3차원 금속나노구조를 유리기판에 균일하게 형성하고 나서 은나노 입자를 증착시켰다.
이 구조는 나노플라즈모닉 현상을 유발하는 다수의 나노갭을 갖고 있어 입사되는 빛의 세기를 수십배 향상시킬 수 있다. 또한, 상용화중인 반도체 증착공정을 그대로 사용 가능하기 때문에 즉시 양산기술에 적용할 수 있는 장점을 갖고 있다.
정기훈 교수는 “이 기술은 유리기판위에 표면강화라만분광기술을 접목해 별도의 형광물질 없이 나노몰 수준의 DNA 염기 4종류를 1초 안에 구분했다”며 “각종 질환을 조기에 진단할 수 있는 바이오칩을 일반 반도체공정을 이용해 넓은 면적의 기판 위에 3차원 나노구조를 저렴하고도 정밀하게 제작할 수 있는 양산기술을 확보하게 됐다”고 말했다.
한편, KAIST 바이오및뇌공학과 정기훈 교수(제1저자 오영재 박사과정 학생)이 수행한 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 실시됐다.
그림1. 유리기판에 넓은 면적으로 제작된 나노플라즈모닉 기판의 사진.
그림2. 나노플라즈모닉 기판의 전자현미경 사진(단면도) 및 전자기장 시뮬레이션. 전자현미경 사진은 3차원적인 금속나노구조가 형성된 것을 보여주고 있으며 이를 통해 나노미터 수준의 갭(gap)을 가진 구조를 설계해 국소 전자기장 극대화를 통해 라만분광 신호 증가를 유도하였음. 시뮬레이션은 나노갭에서 강화된 전자기장을 나타냄.
그림3. 초고감도 나노플라즈모닉 기판의 대면적(직경4인치) 나노공정 순서도.
a) 은나노섬을 증착해 식각과정의 마스크로 사용. b) 식각과정을 통한 유리 나노필라어레이(glass nanopillar arrays) 형성. c) 증착을 통한 다수의 나노갭을 가지는 나노플라즈모닉 구조 형성.
그림4. 좌측 : 정기훈 교수, 우측 : 오영재 박사과정(제1저자)
그림5. 논문표지
2012.05.02
조회수 18210
-
단백질 분해조절 효소 정보 담은 바이오마커 발굴 시스템 개발
- Mol Cell Proteomics지 게재, “바이오마커 개발의 새로운 패러다임 제시” -
단백질의 분해를 조절하는 효소와 기질에 대한 관계정보를 담은 바이오마커* 발굴 시스템(E3Net)이 국내 연구진에 의해 개발되어, 고부가가치의 새로운 바이오마커 개발에 가능성이 열렸다.
※ 바이오마커(Biomarker) : 유전자, 단백질 등에서 유래된 특이한 패턴의 분자적 정보로, 유전적․후천적 영향으로 발생한 신체의 변화를 감지할 수 있는 생물표지인자
우리학교 바이오및뇍 이관수 교수(49세)가 주도하고, 한영웅 박사과정생, 이호동 박사 및 박종철 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 선도연구센터지원사업(NCRC), 신기술융합형성장동력사업 및 교육과학기술부의 KAIST 미래형 시스템 헬스케어 연구개발사업의 지원으로 수행되었고, 단백질체 연구 분야의 권위 있는 학술지인 ‘Molecular and Cellular Proteomics"지 4월호(4월 1일자)에 게재되었다. (논문명: A system for exploring E3-mediated regulatory networks of cellular functions)이관수 교수 연구팀은 전 세계 바이오 관련 DB(데이터베이스)와 논문(약 2만 편)으로부터 정보를 추출해 단백질 분해를 조절하는 효소(E3 효소)와 기질*들 간의 네트워크를 집대성하여, 이와 관련된 세포의 기능과 질병을 분석하는 ‘E3Net’ 시스템을 개발하였다.
※ 기질(substrate) : 효소와 특이적으로 결합하여 화학반응을 일으키는 분자로, 소화작용은 우리의 몸속에서 일어나는 효소와 기질간의 반응의 대표적인 사례
세포는 시시각각 변하는 환경에 대응하여 필요한 단백질들을 생산, 폐기 및 재활용하는 정교한 시스템을 가지고 있는데, 만일 이 과정에서 오류가 생기면 ‘질병’으로 이어질 수 있다.
따라서 단백질 분해를 조절하는 E3 효소와 기질 간의 관계를 파악하면 관련 질병을 치료하거나 예방할 수 있게 된다. 특히 E3 효소는 단백질 분해의 80%를 담당하는 것으로 알려져 수많은 질병이 관련되어 있을 것으로 예측되고 있다.
그러나 E3 효소와 기질 간의 정보들이 개별 논문과 DB에 흩어져 있어, 단백질 분해 조절과 관련된 세포의 기능과 질병의 특성을 종합적․체계적으로 분석할 수 없었다.
이 교수팀은 모든 E3 효소(2,201개)와 기질(4,896개) 및 그 조절관계(1,671개)에 대한 정보를 통합하여 E3 효소 조절 네트워크 내에 존재하는 관련된 세포의 기능과 질병을 시스템적으로 분석할 수 있는 E3Net을 구축하는데 성공하였다.
이 네트워크는 지금까지 구축된 조절정보를 모두 합친 것보다 무려 10배에 이르는 방대한 양으로, E3 효소가 독자적으로 또는 협력해서 조절하는 세포의 기능과 관련 질병을 정확히 파악할 수 있는 토대가 마련된 첫 사례로서 의미가 크다.
연구팀은 E3Net을 이용하면 각각의 질병과 관련된 단백질들의 분해조절을 담당하는 E3 효소들을 찾을 수 있고, 분해조절 원리와 세포기능 네트워크를 함께 파악하여 질병의 발생 원인이나 환자에 적합한 맞춤형 치료방법을 제공할 수 있는 바이오마커를 발굴할 수 있을 것으로 기대한다.
실제 연구팀은 E3Net을 활용해 암, 뇌심혈관 질환 및 당뇨병 등 현대인의 대표적 질환과 관련된 E3 바이오마커 후보 수십 개를 새롭게 발견하는 등 눈에 띄는 성과를 거두었고, 현재 이를 검증할 후속 연구를 계획하고 있다. 이관수 교수는 “이번 연구결과로 E3 효소와 관련된 단백질 분해조절의 네트워크가 구축되고, 이 네트워크에 존재하는 세포의 기능과 질병의 특이성을 시스템적으로 분석할 수 있게 됨에 따라, E3 효소와 관련된 세포의 기능 연구와 질병 연구에 새로운 전기가 마련되었다”고 연구의의를 밝혔다.
2012.05.01
조회수 24478
-
‘테라헤르츠파’를 아시나요?
정기훈 교수
- 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 -
광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다.
테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다.
이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다.
또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다.
테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다.
정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다.
이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다.
정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다.
바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다.
한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다.
그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.
그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.
그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
2012.04.23
조회수 24969
-
보다 밝은 투명디스플레이 개발
- KAIST 이성민 박사과정 학생, 투명 LCD‧PDP‧LED 광 효율 개선에 적용 가능한 원천기술 -
- 나노 표면 플라즈몬 현상 이용해 1.6배 이상 발광효율 향상돼 -- 나노기술 분야 세계적 학술지 "스몰(Small)" 3월호 게재 -
우리 학교 전기및전자공학과 이성민 박사과정 학생(지도교수 최경철)이 나노 표면 플라즈몬 현상을 이용해 투명 디스플레이의 효율을 획기적으로 향상시킬 수 있는 원천기술을 개발했다.
이 기술을 스마트 쇼윈도우, 스마트 미러, 투명 단말기, 투명 핸드폰 등과 같은 투명한 디스플레이에 적용하면 보다 선명하게 볼 수 있는 투명디스플레이가 나올 것으로 기대된다.
현재 개발되고 있는 투명디스플레이는 출력되는 영상이 선명하지 않아 미세한 구별이 어렵기 때문에 실질적으로 상용화하기에는 역부족이라는 게 관련업계의 평이다. 왜냐하면 빛을 내는 형광체의 발광세기가 충분히 높지 않기 때문이다. 또 형광체 재료로 사용되는 희토류 금속의 가격이 폭등하고 있는 것도 상용화를 위한 걸림돌로 지적돼왔다.
이번 연구는 전기 및 전자 공학과 최경철 석좌교수팀의 이성민(31) 박사과정 학생이 주도했으며, 연구결과는 나노기술 분야 세계적 권위지 ‘스몰(Small)’ 온라인 판 3월호에 게재됐다.
최 교수 연구팀은 이번 연구를 위해 금속은 불투명하고 빛을 반사하는 특성이 있는데, 금속을 나노입자 수준으로 아주 작게 만들면 빛이 금속입자를 통과해 투명하게 보이고, 금속입자들은 공명현상을 일으켜 발광세기를 증가시키는 ‘표면 플라즈몬’ 현상에 착안했다.
이 현상을 이용해 최 교수팀은 나노크기의 은(Ag)을 희토류 금속이온이 첨가된 투명 형광물질로부터 수십 나노미터 이내에 위치하게 하면 투명 형광물질의 발광세기가 최대 63.7% 향상시킬 수 있다는 사실을 밝혀냈다.
또 이 원리를 이용하면 전기·광학적 효율도 11%나 향상돼 저전력 투명디스플레이 소자를 구현할 수 있다는 점도 이번 연구를 통해 밝혀낸 또 다른 성과다.
이 기술은 최 교수 연구팀이 지난 2009년 나노 표면 플라즈몬을 이용해 OLED의 밝기를 증가시킨 것에 대한 후속 연구 성과로 나노 표면 플라즈몬의 차세대 디스플레이에 대한 활용 가능성을 높였다는 점에서 획기적인 연구 성과로 꼽힌다.
최경철 교수는 “표면 플라즈몬은 금속박막 또는 나노입자 표면에서 일어나는 표면 자유전자들의 집단적인 진동현상”이라며 “발광체 주변에서 표면 플라즈몬 공명 특성이 나타날 경우 발광체의 발광 재결합 속도가 증가해 발광체의 발광 특성이 향상될 수 있다”고 설명했다.
특히 “이번 연구 성과는 나노 표면 플라즈몬 기술을 사용하기 때문에 소자의 투명도를 유지하면서 발광체의 광 특성을 향상시켜 투명한 LCD, PDP, LED 등 미래 투명디스플레이 소자에 확대적용이 가능하다”고 강조했다.
최 교수는 또 “이번 기술은 디스플레이 형광체에 사용되는 희토류 금속 이온의 발광 특성을 원천적으로 향상시킬 수 있는 기술로서 희토류 금속 사용량을 적게 하면서도 높은 광 효율을 얻을 수 있다”며 “최근 들어 희토류 금속 가격이 3~6배 폭등하는 세계 시장 속에서 국가 경쟁력을 강화시킬 수 있는 핵심 원천기술이 될 것”이라고 덧붙였다.(끝).
□ 용 어 해 설
- 투명 디스플레이 : 빛을 내는 형광물질과 광자발광, 전계발광, 음극선 발광 원리를 이용하여 구성된 디스플레이로서 투명 재료 기술을 접목하여 발광하지 않는 상태에서는 투명하다가, 발광을 하는 경우 이미지 및 동영상을 구현할 수 있는 형태의 차세대 디스플레이 소자.
- 나노 플라즈몬 현상 : 나노 크기로 형성된 금속 나노 입자에 특정 광원이 입사되었을 때, 광원의 파장에 따라 금속 나노입자의 표면에 위치한 전자가 공진적으로 진공하는 유사입자를 지칭한다. 금속 나노 입자의 재질, 모양 및 주변의 굴절률에 따라 공진하는 파장이 결정되므로 특정 색상을 띠게 되고, 유도된 표면 플라즈몬은 금속 나노 입자주위로 한정되는 특징이 있다.
- 진공 열증착법 : 10-4 Torr 이하 높은 진공상태에서 증착하고자 하는 물질에 열을 가하여 기화시킨 후, 기체상태의 물질이 목표 기판에 도달하여 박막으로 증착시키는 방법.
- 광효율 : 소비되는 전기량(전력) 대비 빛의 밝기가 어는 정도 인지는 알려주는 물리적인 양.
- 희토류 금속 : 첨단 산업에서 많이 사용되는 원소로서 란타넘 계열의 금속 원소 및 스칸듐과 이트륨을 합쳐 총 17종의 금속원소를 지칭하는데, 디스플레이 산업에서는 가시광선 영역의 빛을 발광하는 형광체를 제조하는 데 사용된다. 최근 디스플레이 산업의 원자재 가격 상승 문제와 관련하여 희토류 금속의 가격이 상승에 대한 관심이 증가하고 있다.
그림1. "나노 표면 플라즈몬‘ 이 발생하는 경우 전기적 필드가 집중되는 모습
그림2. "나노 표면 플라즈몬‘ 이용한 투명 디스플레이
그림 3 : 나노 플라즈몬 공명을 유도하기 위한 은 나노 입자의 형상
2012.03.21
조회수 28054