-
남윤기 교수, 빛과 열로 신경세포의 활성을 억제하다
〈 남 윤 기 교수 〉
우리 대학 바이오및뇌공학과 남윤기 교수와 박지호 교수 연구팀이 빛과 열을 통해 신경세포의 활성을 억제할 수 있는 새로운 플랫폼을 개발했다.
이번 연구는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 9일자 온라인 판에 게재됐다.
신경세포는 활동 전위를 생성해 세포 사이의 정보를 교환하는 역할을 담당한다. 신경세포의 활성은 뇌기능을 이해할 수 있는 핵심 요소로 이를 조절하기 위해 전기 자극, 광유전학 등 다양한 방법의 기술이 연구됐다.
그러나 전기 자극은 신경세포의 활성 유도엔 효과적이나 그 반대인 활성 억제엔 기술적 한계를 갖는다. 광유전학은 빛으로 신경세포 활성을 조절할 수 있지만 유전자 조작이 까다롭고 다른 기술과의 결합이 어려웠다.
연구팀은 문제 해결을 위해 금 나노막대를 신경세포 칩에 결합하는 방법을 선택했다. 금 나노막대는 특정 파장대의 빛을 흡수해 열을 발생시키는 특성이 있어 광열 자극의 매개체로 사용 가능하다.
연구팀은 신경세포가 이 광열 자극에 노출될 경우 그 활성이 억제되는 현상을 발견했고 이를 응용한 전기 광학적 신경플랫폼을 제작했다.
근적외선을 선택적으로 흡수하는 금 나노막대를 합성한 후 생체 친화성을 갖는 중합체(polymer)로 코팅해 신경세포 칩 표면에 결합했다. 신경세포 칩 상의 금속 전극은 금 나노막대가 결합한 후에도 전기적 특성이 변하지 않아 신경세포 활성 측정에 적합하다.
금 나노막대가 결합한 칩에 신경세포를 배양하면 전기적으로 신경세포의 활성을 측정하는 동시에 광열 자극으로 신경세포의 활성을 억제함을 확인했다. 이 기술은 유전자 조작 없이도 빛으로 활성 조절이 가능해 기존의 광유전학 기술의 단점을 상쇄시켰다.
연구팀이 개발한 전기 광학적 신경플랫폼은 광유전학 기술의 대안이 될 것으로 기대된다. 또한 기존 신경플랫폼과 결합해 뇌기능 연구 및 뇌질환 치료에 다각적으로 활용 가능할 것으로 예상된다.
남 교수는 “나노입자와 신경세포를 결합해 새로운 자극 플랫폼을 제시했다”며 “기존의 전기적 신경 시스템을 활용하는 동시에 광열 자극으로 신경세포의 활성을 자유롭게 억제할 수 있다”고 말했다.
우리 대학 바이오및뇌공학과 유상진 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자지원사업 도약연구의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금나노막대와 미세전극칩을 결합한 광-전기 복합 자극칩 플랫폼 모식도
2016.03.31
조회수 11313
-
백무현 교수, 메탄가스의 화학적 분해 성공
〈 백 무 현 교수 〉
우리 대학 화학과 백무현 교수 연구팀이 촉매반응과 합성이 까다로운 메탄가스를 화학적으로 분해하는데 성공했다. 이로써 메탄가스를 대체에너지원은 물론, 플라스틱 등 다양한 화학제품의 원료로 활용할 수 있는 실마리를 제시했다.
기초과학연구원 분자활성 촉매반응 연구단은 전이금속인 이리듐을 활용한 붕소화 촉매반응으로 메탄가스의 탄소-수소 결합을 끊고 화학반응을 활성화하는 과정을 이론과 실험으로 증명했다.
백 교수는 계산 화학으로 화학반응에 필요한 정확한 촉매후보물질을 예측했으며 반응 메커니즘을 규명했다.
기존 연구에서 탄소-수소 결합 활성화 반응 생산율은 2~3%에 머물러 사실상 불가능에 가까운 화학반응으로 간주되었다. 하지만 연구팀은 촉매로 탄소-수소 결합 활성화 생성물의 생산율을 약 60%까지 끌어올렸다.
메탄가스는 탄소와 수소로만 이뤄진 탄화수소(hydrocarbon)* 물질 중 하나다. 매년 5억톤 이상 발생하고 발생량이 점차 늘고 있다. 탄화수소 혼합물은 활용성이 높지만 메탄가스는 탄소-수소 결합이 매우 강해 활용이 어렵다.
상온에서 기체 상태인 메탄가스를 액화시키려면 높은 압력과 온도가 필요한데, 복잡한 공정이 동반되고 많은 경제적 비용이 소요된다. 메탄가스를 운송하려 해도 액화 중 에너지 밀도가 낮아져 활용도가 떨어진다.
원유 생산지에서 발생하는 메탄가스는 경제성이 없어 태우는 게 일반적이다. 이 때 환경에 유해한 이산화탄소, 일산화탄소가 다량 발생한다.
이번 연구는 메탄가스를 새로운 에너지원과 석유화학 산업의 원료로 사용할 수 있다는 가능성을 보여줬다는데 의의가 있다.
연구팀이 촉매반응으로 만든 탄소-수소 결합 활성화 생성물은 어떤 분자와 작용하느냐에 따라 다양하게 활용될 수 있다. 생성물에 물을 더하면 메탄올을 만들 수 있으며 다른 화합물과 반응시키면 플라스틱, 의약품, 의류 등의 화학제품의 원료로도 사용할 수 있다.
또한 연구진이 규명한 화학 반응을 활용하면 이산화탄소와 함께 기후 변화의 주요인으로 꼽히는 메탄가스를 제어할 수 있으므로 온실가스를 크게 줄일 수 있다.
다만 촉매로 사용한 붕소와 이리듐 가격이 비싸기 때문에 이를 대체할 유기금속촉매를 개발하는 것이 과제다.
이번 연구는 미국 펜실베니아 대학의 대니얼 민디올라(Daniel J. Mindiola) 교수 그룹과 미국 미시간 주립 대학의 밀턴 스미스(Milton R. Smith Ⅲ) 교수 그룹과의 공동연구로 진행되었다. 연구결과는 세계적 학술지인 사이언스(Science, if=33.611)에 3월 26일에 게재되었다.
□ 그림 설명
그림1. 메탄가스의 탄소-수소 결합 활성화 반응물을 위한 연구진 실험 내용
그림2. 메탄가스의 탄소-수소 결합 활성 붕소화 촉매반응 기작
2016.03.29
조회수 12889
-
김희탁, 박정기 교수, 보호막 씌워 리튬공기전지 수명 연장
〈 김 희 탁 교수 〉 〈 박 정 기 교수 〉
우리 대학 생명화학공학과 김희탁(44) 교수와 박정기 (65) 교수 공동 연구팀이 차세대 리튬공기전지의 수명연장 기술을 개발했다.
이 기술은 리튬공기전지 리튬금속을 보호막을 씌워 발생 가능한 문제점을 차단하는 방식으로 전지기술의 한계를 극복할 수 있을 것으로 기대된다.
이 성과는 재료과학 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 2월 3일자에 게재됐고, 우수성을 인정받아 표지논문으로 선정됐다.
리튬공기전지는 공기 중의 산소와 리튬금속으로 구동되는 이차전지로 기존 리튬이차전지보다 5배에서 10배 높은 에너지 밀도를 구현할 수 있다.
따라서 전기 자동차 등의 차세대 대용량 전지로 각광받고 있지만 양극에서의 낮은 가역성 및 에너지 효율, 급속한 수명 저하가 한계로 지적됐다.
이런 단점을 극복하기 위해 ‘산화환원 중계물질(Redox mediator)’이라는 촉매가 들어간 리튬공기전지가 개발돼 중계물질에 의한 가역성이 획기적으로 향상됐다.
그러나 반응성이 높은 리튬 금속을 음극 소재로 사용하기 때문에 음극 표면이 쉽게 산화돼 전지 수명이 제한된다는 한계를 갖는다.
특히 가역성 향상을 위한 중계물질이 리튬 금속에 노출되면 양극에서의 중계 효과가 제한되고 중계물질이 소실돼 효율 및 수명이 급격히 감소하는 현상은 큰 문제로 남아있었다.
연구팀은 문제 해결을 위해 리튬 금속에 보호막을 씌우는 방법을 개발했다. 리튬 금속과 전해액의 직접 접촉을 물리적으로 차단하면서 리튬 이온만 효과적으로 전도시킬 수 있는 유무기 복합 보호층을 개발해 리튬 음극 표면에 도입한 것이다.
이 유무기 복합 보호층은 리튬 금속 음극의 급격한 산화를 억제하고 중계물질과 리튬금속 간의 반응을 물리적으로 차단하는 역할을 한다.
보호층은 산화된 중계물질이 리튬 금속 표면에서 스스로 환원되는 현상을 물리적으로 차단한다. 이를 통해 중계물질이 양극 표면에서 방전 생성물 분해에만 집중할 수 있고, 리튬 금속 표면에서의 분해로 인한 소실 문제를 차단할 수 있다.
연구팀은 리튬금속 음극 안정성과 중계물질의 지속성을 동시에 증대시켜 리튬공기전지의 충전 및 방전 사이클 수명을 3배 연장하는 데 성공했다.
개발한 유무기 복합 보호층을 통한 리튬 표면 안정화 기술은 리튬-황, 리튬 금속 전지와 같은 차세대 리튬 전지에도 적용 가능해 향후에도 활용 가능성이 높을 것으로 기대된다.
김 교수는 “차세대 에너지 저장장치인 리튬공기전지의 수명 한계를 극복할 단서를 제시했다”며 “이는 리튬공기전지의 실용화를 위한 유용한 전략이 될 것이다”고 말했다.
이번 연구는 한국연구재단의 일반연구자사업과 기후변화대응기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 머티리얼스 표지논문
그림2. 전기화학 구동 후 리튬 금속 음극형상
2016.03.09
조회수 14194
-
은(銀)으로 덮은 종이 크로마토그래피 개발
〈 정 기 훈 교수 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속나노입자를 증착시켜 저렴하면서도 정교한 결과를 내는 크로마토그래피용 종이를 개발했다.
이번 연구는 광학분야의 국제 학술지 ‘빛: 과학과 응용(Light: Science and Applications)’지 1월 15일자 온라인 판에 게재됐다.
크로마토그래피는 특정 용매를 이용해 혼합물을 분리하는 기술이다. 가장 전통적인 종이 크로마토그래피를 비롯해 박막, 가스 등 다양한 방법을 이용한 크로마토그래피가 존재한다.
그 중 종이 크로마토그래피는 종이를 용매에 살짝 담근 후 종이 내 혼합 물질의 성분과 종이의 인력 차이에 의해 물질이 나아가는 정도가 달라지는 것을 이용한 혼합물 분리 방법이다.
종이 크로마토그래피는 저렴하고 다수의 성분을 동시에 검출할 수 있어 광합성 산물 및 다양한 생체 혼합물의 분리, 검출에 응용된다.
크로마티그래피 기술로 혼합물을 분리하고 나면 다음 단계로 물질의 성분을 파악하기 위해 물질에 빛을 조사한다.
분자는 각자 다른 성질을 갖고 있어 빛을 받은 후 분출하는 파장이 모두 다르다. 파장의 차이를 분석하면 혼합물에 어떤 분자가 포함됐는지 파악이 가능하다. 사람의 지문과 같은 역할을 하는 것이다.
그러나 이 과정에서 문제가 발생한다. 현존하는 종이 크로마토그래피 기술은 가격이 저렴한 대신 혼합물 분리의 정교성이 떨어지고, 혼합물 내 분자의 농도가 낮을 경우 빛을 조사해도 성분 검출이 잘 되지 않는 등의 한계가 있다.
분자를 검출하기 위해 형광 표지(label)을 붙여 빛을 조사하는 방법도 있지만 형광 표지로 인해 분자의 본래 특성이 변하게 되는 문제가 발생한다.
연구팀은 문제 해결을 위해 나노플라즈모닉스 특성을 갖는 은 나노섬을 종이 표면에 균일하게 증착했다. 나노플라즈모닉스 기술은 금속 나노구조 표면에 빛을 집광시키는 기술로 신경전달물질, 유전물질, 생체 물질 검출 등 다양하게 응용 가능하다.
은과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 가져, 연구팀은 종이의 특성을 유지하면서 기판 표면에서의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀은 개발한 종이에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목해 별도의 표지 없이 혼합물을 분리하고 피코몰(10-12M) 수준의 극 저농도 물질도 측정하는 데 성공했다.
이 기술은 검출가능한계를 최고 수준으로 향상시켜 진단의학, 약물 검사 등 특정 성분의 분리 검출이 요구되는 다양한 분야에 응용 가능할 것으로 예상된다.
연구팀은 “진공증착, 저온 열처리 등 일반적인 반도체공정을 이용해 정밀하고 대면적 양산이 가능한 금속나노구조를 제작했다”며 “기존 기술의 단점인 비싼 가격, 셀룰로스의 특성 변화 등의 문제를 해결할 수 있을 것이다”고 밝혔다.
정 교수는 “이번 결과를 바탕으로 향후 저비용 무표지 초고감도 생체 분자 혼합물의 분리 및 분석이 가능해질 것이다”며 “또한 신약 개발용 약물 스크리닝, 환경 지표 검사, 생리학적 기능 연구 등에 크게 기여할 것이다”고 말했다.
□ 그림 설명
그림1. 크로마토그래피용 금속나노입자를 갖는 종이의 단면 주사전자현미경 사진
그림2. 크로마토그래피용 금속나노입자를 갖는 종이의 주사전자현미경 사진
그림3. 각종 크로마토그래피용 종이 광학사진
그림4. 비타민 혼합물의 분리 및 무표지 검출
2016.02.02
조회수 12270
-
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수>
우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다.
연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다.
각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다.
하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다.
박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다.
대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다.
박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다.
이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다.
박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다.
이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다.
□ 그림설명
그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과
그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15605
-
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다.
이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다.
그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다.
최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다.
이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다.
최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다.
이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다.
연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝.
그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진
그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’
그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀
그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15198
-
감도 1000배 높은 금나노선 탐침 개발
우리 학교 화학과 김봉수 교수 연구팀(제1저자 강미정 박사)은 단결정 금 나노선을 이용해 만든 세계에서 가장 가는 나노탐침으로 쥐의 신경신호를 측정하는데 성공했다.
굵기가 100nm(나노미터, 10억분의 1미터)에 불과한 이 나노탐침은 기존보다 1,000배 이상 뛰어난 감도를 나타냈으며 1mm 이하의 극히 정밀한 간격으로 뇌신경 신호 측정이 가능하다. 기존 신경탐침은 삽입 시 조직 손상이 커서 검출신호가 약한 반면 개발된 탐침은 손상을 최소화해 신경 신호가 상대적으로 크다.
뇌에서 발생하는 전기적 신경신호를 정확하게 수집·분석하는 신경탐침은 뇌 연구에서 가장 핵심적인 요소다. 신경탐침은 조직손상을 최소화해야하며 우수한 전기적 감도를 가져야한다.
연구팀은 탐침의 재료인 금에 열을 가해 증기상태로 만든 다음 온도가 낮은 기판으로 운반한 후 기판에서의 응결에 의해 단결정 금 나노구조가 생성되는 원리를 이용해 금 나노선을 개발했다. 만들어진 금 나노선은 결함이 없는 단결정구조이기 때문에 전기전도성이 높으면서도 강하고 유연한 특성을 보였다.
김 교수 연구팀은 개발된 나노탐침을 간질을 유발하는 약물을 투여한 쥐의 뇌에 삽입해 신경신호를 측정한 결과 간질을 일으키는 뇌의 특정 영역을 정확히 찾을 수 있었다. 또 낯선 쥐의 침입에 의한 신경신호의 변화도 탐지해냈다.
김봉수 교수는 “뇌 신경 세포를 손상시키지 않으면서 단일 신경세포로부터의 신호를 높은 감도로 포착할 수 있다”며 “정밀한 뇌신경 3차원 지도 작성에 유용할 뿐 아니라 치매, 파킨슨병 등의 전기치료에도 도움이 될 것”이라고 말했다.
연구결과는 나노분야 국제학술지 ‘ACS 나노(ACS Nano)’ 12일자 온라인 판에 게재됐다.
□ 금나노선 합성 방법석영관으로 이루어진 가열로 내에서 금 slug를 가열하여 형성시킨 금 vapor가 수송 기체에 의해 사파이어 기판에 도달하여 나노선으로 성장함
□ 금나노선 성장사파이어 기판에 도달한 금 vapor가 half-octahedral seed를 형성하고, 그 seed에 금 vapor가 결합하여 나노선으로 성장함
□ 금나노선 탐침 제작방법텅스텐 팁으로 기판 위에 수직 성장된 나노선 중 하나를 집어낸 뒤, 텅스텐 팁은 절연층으로 코팅함
□ 신경신호 감도 비교금 나노탐침과 텅스텐 마이크로탐침을 쥐 뇌에 삽입하여 측정한 신경신호 비교. 금 나노탐침에서 스파이크 형태의 신경 신호가 뚜렷하게 관찰됨
□ 행동실험낯선 쥐의 침입에 의한 신경신호의 변화를 금 나노탐침과 텅스텐 마이크로탐침으로 측정. 금 나노탐침에서만 뚜렷한 신호 변화가 측정됨
□ 약물실험세 개의 금 나노탐침 또는 텅스텐 마이크로탐침을 쥐 뇌에 삽입한 후, 쥐에 간질을 유발하는 약물을 주사하여 발작 상태를 보일 때 측정한 신경신호. 세 개의 금 나노탐침은 세 영역의 신호를 구분하여 간질 중심을 찾아낼 수 있는 반면 세 개의 텅스텐 마이크로탐침은 세 영역의 신호를 구분하지 못함
2014.08.27
조회수 12205
-
모델 촉매 시스템을 이용한 스필오버 현상 규명
- 새로운 메커니즘의 상업촉매 개발을 위한 원천기술 확보 -
1960년대 초 발견된 이래 오늘날까지도 학계에서 논란이 되고 있는 물리학적 현상이 KAIST 연구진에 의해 세계 최초로 규명됐다.
KAIST(총장 강성모) 생명화학공학과 최민기(34) 교수팀은 비결정질 알루미노실리케이트 내부에 백금이 선택적으로 위치한 모델 촉매 시스템을 개발해 ‘스필오버(spillover)’ 현상을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 25일자 온라인 판에 실렸다.
스필오버 현상은 백금과 같은 금속 표면에서 활성화된 수소원자가 촉매 표면으로 이동하는 현상이다.
이 현상을 이용하면 높은 활성과 안정성을 갖는 촉매를 설계하는데 이용될 수 있을 것이라고 믿어져 지난 50여년간 촉매 분야에서 활발히 연구됐다.
하지만 기존에 알려진 촉매들의 경우에는 노출된 금속 표면에서 여러 가지 다른 경로로 경쟁반응이 일어나기 때문에 스필오버의 존재 및 생성 메커니즘을 직접적으로 규명하는 것이 불가능했다.
연구팀이 개발한 촉매는 백금 나노입자가 수소 분자만 통과할 수 있는 알루미노실리케이트로 덮여있어 다른 경쟁 반응들이 일어나는 것을 원천 차단, 스필오버 현상을 효과적으로 연구하는데 이용할 수 있었다.
연구팀은 촉매에 대한 다양한 구조분석, 촉매 반응성 분석, 컴퓨터 모델링을 통해 알루미노실리케이트에 존재하는 브뢴스테드 산점이 스필오버에 결정적인 역할을 함을 밝혀냈다.
그동안 학계에서 50여년간 정립되지 않은 ‘스필오버’라는 현상을 최초로 규명했다는 점에서 학술적으로 큰 영향력을 발휘할 수 있을 것으로 기대된다.
이와 함께 이번 연구에서 제안된 스필오버에 기반한 수소화 촉매의 경우 높은 수소화·탈수소화 활성을 보임과 동시에 석유화학공정에서 일반적으로 원치 않는 부반응인 수소화 분해(hydrogenolysis) 반응을 확연하게 억제할 수 있다는 점에서 산업적으로도 그 잠재력이 매우 크다고 연구팀은 전했다.
최민기 교수는 “스필오버 현상만으로 반응이 진행되는 해당 촉매의 경우 촉매구조를 적절하게 설계하면 기존 금속촉매를 훨씬 능가하는 촉매를 구현할 수 있을 것”이라며 “향후 높은 활성 및 선택성을 가지는 꿈의 촉매를 만들 것”이라고 말했다.
SK이노베이션 오승훈 수석연구위원은 “촉매계의 오랜 논쟁거리였던 스필오버 현상을 이론과 실험을 통해 규명하고 이에 대한 이해를 높였다는 점이 이번 연구의 가장 큰 성과”라며 “SK이노베이션에서는 이번 연구를 통해 확보한 기술을 바탕으로 새로운 상업촉매 개발 연구를 계속할 것”이라고 말했다.
SK이노베이션(대표 구자영)과 미래창조과학부의 지원을 받아 수행된 이번 연구는 KAIST 최민기 교수 지도아래 임주환 연구원, 신혜영 연구원이 공동 제1저자로 참여했으며 EEWS 대학원 김형준 교수가 컴퓨터 모델링을 수행했다.
2014.02.26
조회수 16994
-
배추 절이는 원리로 광결정 미세캡슐 개발
- “반사형 컬러 디스플레이 소자 및 인체 주입 바이오센서에 응용가능” -- 콜로이드 및 유체역학 분야의 대가 故 양승만 교수에게 연구결과 헌정 -
우리 학교 생명화학공학과 김신현 교수 연구팀이 하버드대와 공동으로 삼투압 원리를 이용해 차세대 광학소재로 주목받는 광결정의 미세캡슐화 기술을 개발했다.
연구결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
남미 열대림에서 서식하는 몰포(Morpho)나비의 날개는 파란 색으로 보이지만 색소가 없다. 날개 표면에 있는 규칙적인 나노 구조로 인해 파란색 파장의 빛만을 반사하기 때문에 우리 눈에는 파란 색으로 보이는 것이다.
이처럼 물질의 광구조가 특정 파장의 빛만 반사하고 나머지는 통과하는 배열을 갖도록 만들어낸 물질을 ‘광결정’이라고 한다.
광결정은 빛의 파장 절반 수준에서 굴절률이 주기적으로 변하는데 특정 파장의 빛만을 제어할 수 있는 특성과 다양한 응용가능성을 갖고 있어 ‘빛의 반도체’라고도 불린다.
1987년 미국 벨연구소 이론 물리학자 엘리 야블로노비치(Eli Yablonovitch)와 프린스턴대학 사지브 존(Sajeev John)이 광결정 개념을 최초로 보고한 이래 지난 27년 동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해왔다. 그러나 반사색이 대부분 고정된 구조에 의해 발현돼 색을 바꾸는 것이 불가능하고 제조 공정이 까다로워 상용화가 어려웠다.김 교수 연구팀은 △액체 상태의 광결정을 잉크처럼 캡슐화하고 △광결정을 덩어리 형태가 아닌 머리카락 굵기(약 100나노미터) 수준의 미세캡슐형태로 제조해 제작의 공정성을 높였으며 △고무재질의 캡슐막을 적용해 모양을 자유자재로 바꿀 수 있도록 제작했다.
연구팀은 배추를 소금물에 절일 때 발생하는 ‘삼투압현상’을 활용했다. 배춧잎은 물 분자만을 투과시키는 반투막으로 이뤄져있는데 배추가 소금물에 잠기면 높은 삼투압을 갖는 소금물이 배춧잎 내부의 물 분자를 반투막 밖으로 꺼내고 배춧잎은 부피가 줄어드는 원리를 이용한 것이다.
연구팀은 이 현상을 나노입자를 담은 미세 물방울에 적용했다. 삼투압현상에 의해 물방울의 부피가 줄어듦에 따라 나노입자가 스스로 규칙적인 구조로 배열돼 캡슐막 내부에 액상의 광결정을 만들었다. 이 과정에서 머리카락 굵기 수준의 작은 통로를 구현한 미세유체소자를 활용해 광결정 미세캡슐을 균일한 크기로 제조하는데 성공했다.
김신현 교수는 “미세 광결정 잉크캡슐은 상용화 가능한 수준으로 향후 구부리거나 접을 수 있는 차세대 반사형 컬러 디스플레이 소자 및 인체 내로 주입 가능한 바이오센서 등을 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 이번 연구 의의를 설명했다.
KAIST 및 하버드 연구진들은 이번 연구 결과를 지난해 9월 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 KAIST 생명화학공학과 교수)에게 헌정했다고 전했다.
한편, 이번 연구는 산업통상자원부에서 지원하는 선진기술국가 국제공동기술개발사업으로 진행됐다.
□ 용어설명- 광결정 (Photonic crystals): 빛의 파장의 절반 수준에서 굴절률이 규칙적으로 변하는 물질로써 특정 에너지를 갖는 광자가 물질 내에 존재할 수 없는 광밴드갭 (photonic bandgap)을 갖는 물질을 말함. 광밴드갭에 해당하는 파장이 가시광선 영역에 있을 때, 외부에서 입사하는 백색광 중 광밴드갭에 해당하는 파장의 빛이 선택적으로 반사되어 금속 광택과 흡사한 느낌의 색깔을 보임.
- 미세유체소자(Microfluidic device) : 머리카락 굵기 수준의 미세한 유로를 집적화함으로써 유체 흐름을 매우 정교하게 제어할 수 있게 해주고, 균일한 크기와 구조의 이멀젼(emulsion) 을 생성시킬 수 있는 소자.
□ 그림설명
그림1. 삼투압 차에 따른 캡슐 크기 감소를 보여주는 모식도
그림2. 균일한 크기의 광결정 캡슐을 제조할 수 있는 미세유체소자
그림3. 초록색 및 파란색 반사색을 보이는 광결정 캡슐의 광학현미경 사진
그림4. 광결정캡슐의 변색 및 변형을 보여주는 광학현미경 사진
그림5. 자연계에 존재하는 광결정의 예: 오팔보석, 공작새 깃털, 극락조의 날개
2014.01.15
조회수 25721
-
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 -
우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다.
연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다.
이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다.
나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다.
연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다.
연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다.
이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다.
김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다.
또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다.
KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다.
<물 표면을 이용한 나노박막의 기계적 물성 평가 과정>
<왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 16827
-
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 -
우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다.
연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다.
인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다.
당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다.
연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다.
이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다.
연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다.
김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다.
김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다.
미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다.
그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단)
그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지
그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석
그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20650
-
금 나노선 세포 주사기 개발
- 유전자를 세포 핵 안으로 직접, 원하는 순간에, 원하는 양만큼만 정교하게 전달-
우리 학교 연구팀이 금 나노선을 이용해 유전자를 살아있는 세포의 핵에 직접 전달할 수 있는 나노 주사기를 개발했다.
우리 학교 화학과 김봉수 교수와 생명화학공학과 이상엽 특훈교수 공동 연구팀이 단결정 금 나노선에 유전자를 부착해 세포의 핵에 정교하게 찌른 후 전기 신호로 유전자를 전달하고 유전형질을 발현시키는데 성공했다.
연구결과는 나노 분야 세계적 권위지인 ‘나노 레터스(Nano Letters)’ 5월 2일자 온라인 판에 게재됐다.
인체는 약 100조 개의 세포로 이뤄진 대단히 복잡한 시스템이다. 각각의 세포는 주변 세포와 유기적으로 신호를 교환함으로써 인간의 고차원 생명활동을 수행한다. 생명현상을 이해하기 위한 첫 단계는 하나의 세포에서 일어나는 현상 및 세포 간의 신호 전달을 정확하게 밝혀내는 것이며, 이는 생물학, 바이오 연료전지, 신약 개발 분야 등에서 매우 중요하다.
단일 세포에 생활성(bioactive) 분자를 선택적으로 전달하는 기술은 세포 내 생체현상을 세밀히 규명하고 질병 치료법을 개발하는데 필수적이다. 세포에 주사기를 꽂고 물질을 전달할 때 세포를 다치지 않게 하는 것이 무엇보다도 중요한데 이를 위해 다양한 나노소재를 이용한 전달 방법이 연구되고 있다.
연구팀은 직경이 100나노미터 정도로 매우 가는 금 나노선에 DNA를 붙이고 이를 정확하게 세포핵에 찌른 후 외부에서 전기 신호를 보내 원하는 만큼의 유전자를 정확히 전달하는 나노주사기를 개발했다.
금 나노선 주사기로 DNA를 세포 핵 안으로 제대로 전달하면 세포는 DNA로부터 정보를 받아 단백질을 만들어낸다. 연구팀은 녹색 형광을 내는 단백질을 만드는 DNA를 세포 핵 안으로 전달한 뒤 세포에서 녹색 형광이 나오는 것을 관찰함으로써 DNA가 성공적으로 전달된 것을 확인했다.
금 나노선 나노주사기는 지금까지 보고된 DNA 전달 주사기 중 가장 가늘어서 세포에 상처를 전혀 주지 않고도 핵 안에 정교하게 삽입할 수 있다. 이 주사기를 이용하면 DNA를 세포의 핵 안으로 직접 정확히 전달함으로써 전달 효율을 크게 높일 수 있고 매우 정교한 유전물질 조절이 가능하다.
김봉수 교수는 이번에 개발한 금 나노선 주사기에 대해 “이 주사기는 세포 내부의 원하는 위치에, 원하는 시간에, 원하는 양만큼 유전 물질이나 단백질 등을 정교하게 전달해 원하는 대로 유전현상 및 세포현상을 조절 및 연구하는데 대단히 유용하다”며 “특히, 유전자 치료요법, 표적형 약물 전달 개발, 세포 내 신호전달의 연구에서 선도적 역할을 할 수 있을 것”이라고 말했다.
한편, KAIST 화학과 김봉수 교수와 이상엽 교수가 공동으로 주도한 이번 연구는 강미정 박사과정 학생과 유승민 박사가 참여했다.
2013.05.15
조회수 11969