본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%98%EB%8F%84%EC%B2%B4
최신순
조회순
이제는 세포 내부도 훤히 들여다본다!
- 실제 내시경보다 10만배 작은 나노와이어기반 세포내시경 개발 - - 세포내 생물학적 현상을 관찰해 질병을 효과적으로 치료할 수 있게 될 것 - - 연구 우수성 인정받아 네이처 나노테크놀로지 12월호 온라인 판 게재 - 우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 미세한 빛을 주고받을 수 있는 광학 나노와이어를 이용해 세포내에서 나오는 미세한 광학신호를 세계 최초로 검출하는 데 성공했다. 이 기술개발로 사람의 내장 장기를 직접 관찰하는 내시경처럼 세포의 손상 없이 고해상도로 세포 내부를 관찰할 수 있게 됐다. 이에 따라 세포 내에서 일어나는 미세한 생물학적 현상을 연구해 질병을 보다 효과적으로 치료할 수 있을 것으로 기대된다. 최근에는 광학적 회절한계를 극복하는 초고해상도현미경이 개발돼 배양된 세포를 관찰하는 데 사용되고 있다. 그러나 매우 복잡하고 거대한 시스템이 필요해 생체 내 불투명한 부위에 위치한 세포를 실시간 관찰하기에는 역부족이었다. 연구팀은 나노와이어의 지름은 100나노미터(1나노미터는 10억분의 1m)로 세포에 삽입해도 손상되지 않을 만큼 작게 만들고, 재료는 빛이 잘 통과하는 주석산화물로 구성된 반도체를 사용했다. 개발한 나노와이어를 빛의 송수신에 많이 사용되는 광섬유 끝에 연결해 광섬유로부터 나오는 빛이 나노와이어를 통해 세포 내 특정부위에 전달되고, 또한 세포에서 나오는 광학신호를 검출하는 데 성공했다. 이와 함께 연구팀은 나노와이어에 세포가 손상되지 않는 것에 착안해 나노와이어의 끝에 빛에 반응하는 물질을 입히고 이를 세포에 삽입했다. 그런 다음 빛을 전달하면 그 물질이 빛에 반응해 세포내로 침투하는 것을 확인했다. 따라서 약물을 세포 내 특정부위에 효과적으로 전달해 치료목적으로도 이용할 수 있는 가능성을 제시했다. 박지호 교수는 "이번 연구에서는 생체 외에서 배양된 세포에만 적용했지만 곧 이 기술을 생체 내에 위치하는 특정세포를 아주 미세하게 광학적으로 자극하고 조정할 수 있게 될 것“이라며 ”앞으로 생체 내 특성부위의 세포 안에서 일어나는 생물학적 현상을 연구해 질병을 효과적으로 치료하는 데 활용될 수 있을 것"이라고 말했다. 이번 연구 결과는 세계적 권위의 나노기술 학술지인 "네이처 나노테크놀로지(Nature Nanotechnology)" 12월 18일자 온라인 판에 게재됐다. 한편, 이번 연구는 다학제간 협력을 통해 수행됐으며, KAIST 박지호 교수를 비롯해 생명화학공학과 양승만 교수와 허철준 박사, 고려대학교 생체의공학과 최연호 교수, UC 버클리대 화학과 페이동양(Peidong Yang) 교수와 류슈에 얀(Ruoxue Yan) 박사 및 바이오공학과 루크 리(Luke Lee) 교수가 참여했다.
2012.01.10
조회수 13567
LED의 새로운 발견, 형광체 없이 다양한 색깔의 빛 낸다!
- 나노 피라미드 반도체에서 복합 에너지 구조가 형성됨을 규명 - - 형광체 없는 단일 칩 다중 파장 LED 개발 길 열어 -- ‘어드밴스드 머티리얼스’ 12월호 표지논문 선정 - 우리 학교 물리학과 조용훈 교수팀이 나노미터 크기의 육각 피라미드 구조를 적용한 LED 소자에서 다양한 색깔의 빛을 낼 수 있는 현상을 규명했다. 빛의 혁명을 주도하고 있는 LED(발광다이오드)는 반도체에 전류를 흘려주면 빛을 내는 성질을 이용한 반도체 발광 소자로 조명, TV, 각종 표시장치 등에 널리 활용되고 있다. 일반적으로 조명에 주로 사용되는 백색 LED는 청색 LED칩 위에 노란색 형광체를 도포하거나 또는 복잡한 회로를 이용해 여러 개의 LED칩을 동시에 구동해야 백색 빛을 낼 수 있다. 조용훈 교수 연구팀은 반도체에 매우 작은 육각 피라미드 구조를 만들고 LED 소자를 구현해 전류를 흘려주면 육각 피라미드의 면, 모서리, 꼭지점에서 각각 다른 에너지 크기를 갖는 복합구조가 형성된다는 현상을 발견했다. 위치에 따른 에너지 차이로 인해 피라미드의 면, 모서리, 꼭지점에서 각각 청녹색, 노란색, 주황색의 빛이 발생했는데 이러한 특성은 백색 LED 뿐만 아니라 다양한 빛을 낼 수 있는 가능성을 보여준 것이다. [그림 1] (상) 전류 구동에 의해 발광하는 나노 피라미드 LED 개념도 및 LED 발광 사진. (하) 나노 피라미드의 위치에 따라 서로 다른 차원을 갖는 양자 구조에서 다른 파장의 빛이 방출됨을 보이는 고해상도 발광 이미지. 따라서 LED에 나노 피라미드 구조를 적용하면 일반적인 넓은 파장대역을 갖는 발광이 전류 구동만을 통해서도 가능해지기 때문에 형광체를 사용하지 않으면서도 단일 LED칩에서 다양한 색상의 빛을 낼 수 있는 새로운 개념의 발광소자 개발이 가능할 것으로 기대된다. 또한, 기존 LED는 다양한 색을 내기 위해 형광체를 칩 위에 도포하는 구조적 특성으로 인해 빛의 에너지 효율에 제약이 있었으나, 형광체가 필요 없는 나노 피라미드구조는 이러한 단점을 극복해 더욱 밝은 빛을 낼 수 있을 것으로 예상된다. 조용훈 교수는 “나노미터 크기의 피라미드 반도체 안에서 위치에 따라 서로 다른 에너지를 갖는 흥미로운 현상을 이용하면, 형광체를 사용하지 않는 단일 칩 백색 LED와 함께 신개념의 나노 광원을 개발하는데 응용될 수 있을 것”이라고 말했다. 이번 연구결과는 재료 분야의 세계적 학술지인 "어드밴스드 머티리얼즈(Advanced Materials)" 12월호(1일자) 표지 논문으로 선정됐다. KAIST 물리학과의 고영호 (1저자)와 김제형 (2저자) 박사과정 학생이 주도적으로 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학) 육성사업 등의 지원을 받아 수행됐다. 연구자사진 [그림 2] 복합 양자구조를 가지고 있는 나노 피라미드 LED가 전류 구동으로 발광되는 개념도. (12월 1일자 Advanced Materials 표지 논문 그림)
2011.12.14
조회수 18326
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 20822
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 18706
고성능 전자소자 소재 "절반-금속" 나노선 개발
-교과부 21세기 프론티어사업단 김봉수교수팀, 나노신소재 합성성공- 한 물질이 금속과 비금속의 특성을 나타내 기존 반도체 소자의 성능을 획기적으로 개선시킬 수 있는 "절반-금속 (half-metallic) 강자성 규화금속 나노선"이 개발됐다. 우리학교 화학과 김봉수 교수팀이 절반-금속성을 갖는 규화철 나노선을 최초로 합성함으로써 통하여 ‘차세대 스핀전자공학’에 필수적인 스핀 주입(spin injection) 물질을 개발했다. 스핀주입이란 외부의 전기장이나 자기장에 의해 물질 내 전자의 자기적 특성(스핀)을 조절하는 것인데, 이번에 개발된 규화철 나노선은 한 방향 스핀을 갖는 전자들에게는 전도성 금속으로 작용하고 그 반대방향 스핀을 갖는 전자에게는 절연체로 작용하여 한 가지 스핀방향만을 가지는 전류를 만들어 낼 수 있다. 이런 기능은 정보신호로 변환이 가능하기 때문에 이 나노선으로 고성능, 고집적, 저전력 특성을 가지는 전자소자를 만들면 현재 실리콘 반도체의 한계를 극복할 수 있다. 김 교수팀은 기존에 개발한 규화철(FeSi) 나노선에 산소기체를 도입한 간단한 열확산 법을 이용하여 매우 높은 큐리 온도 (Tc=840 K)에서도 강자성을 유지하고 높은 스핀편극도를 가지는 절반-금속 강자성 규화철(Fe3Si) 나노선으로 완벽하게 변환하였으며, 같은 방법으로 규화코발트(Co2Si) 나노선을 변환시켜 최초로 단결정 코발트(Co) 나노선을 합성하는 등 소재의 조성을 조절하는 합성법의 일반화에도 성공하였다. 김 교수팀이 개발한 강자성 규화철(Fe3Si) 나노선은 나노 소자 제작을 위한 빌딩 블록(building blocks)에 활용될 수 있어, 효율적이고 소형화된 초고성능 자기 메모리 및 거대 자기저항(GMR) 센서의 개발이 가능해졌다. 이에 따라 양자 메모리 처리와 고주파 전자통신 소자 등 다양한 나노 소자 개발에 기술적 전기(轉機)가 마련됐다. 한편, 이번 연구결과는 8월초 나노기술(NT) 분야의 가장 권위있는 학술지인 "나노 레터 (Nano Letters)"지 온라인판에 게재되었고, 현재 국내 특허 출원 중이다.
2010.08.19
조회수 18312
KAIST, 미국 TI社 지원받아 미래 CPU개발
- 전기 및 전자공학과 유회준교수 연구실, 공식 TI Lab 지정 - 우리학교 전기및전자공학과 유회준 교수 연구실이 공식 TI Lab(Texas Instruments Lab.)으로 선정돼 연구비와 3억원 상당의 연구장비를 지원받는다. 미국의 종합 반도체 생산업체인 Texas Instruments社(이하 TI社)는 유회준 교수 연구실과 ‘사람의 뇌를 모방한 매니코어 프로세서 칩(Many-core Processor Chip) 개발’을 위한 협약을 7월초 가진 바 있다. 21일에는 박현욱 KAIST 전기및전자공학과장, 유회준 전기및전자공학과 교수와 유혜경 TI사 한국지부 반도체영업부장은 유회준 교수 연구실에서 TI Lab 선정 현판식을 가졌다. 최근 하나의 칩상에 수십 개 이상의 프로세서를 집적하는 미래형 CPU가 미국 인텔사 등을 중심으로 활발하게 연구되고 있다. KAIST 전기 및 전자공학과 유회준 교수팀은 인텔 기술을 뛰어 넘는 새로운 CPU기술을 개발해오고 있다. TI사 관계자는 “KAIST와의 연구 협력을 통해 미래 세계를 이끌어갈 지능형 컴퓨터의 핵심 기술인 매니코어 프로세서개발에 새로운 전기를 마련할 계획”이라며 “유회준 교수 연구실과의 기술 교류를 통해 차세대 기술 개발을 선도할 수 있을 것으로 기대 한다”고 밝혔다. 유 교수는 “이번 기회로 미래 CPU를 국내 기술이 선도할 수 있는 계기로 삼고 싶다”고 말했다. 유 교수는 면적을 적게 소모하며 계산 속도가 뛰어난 아날로그 회로와 전력 소모가 낮고 정밀도가 높은 디지털 회로를 한 칩으로 하는 혼합형 회로를 통해 인체의 뇌를 모방하는 신경회로망을 설계하였으며, 이를 Many-core Processor에 일부분으로 삽입하여 인간의 뇌의 종합적인 지능을 단순처리에 능한 종래의 프로세서에 접목시키는 연구를 해오고 있다. 특히 이를 이용해 지능형 감시 카메라, 로봇 및 자동차 등의 ‘눈’을 한층 더 똑똑하게 만들어 2008년부터 매년 미국 샌프란시스코에서 발표해오고 있다. 국제 전기전자공학자학회(IEEE) 석학회원이며 세계 최고 권위의 국제 고체회로학회(ISSCC)의 아시아 지역 회장이기도 한 유 교수는 미국의 국제적인 출판사인 Wiley사에서 올해 ‘Mobile 3D Graphics SoC’라는 책을 출간했으며 2년전에는 미국 CRC 출판사에서 ‘Low-Power NoC for High Performance SoC Design’이라는 책을 펴낸 바 있다.(끝) <용어설명> ○ Texas Instruments社 : 인텔, 삼성, 도시바와 함께 세계 4대 반도체 엔진 생산업체 중 하나 ○ Many-core Processor : 10개 이상의 코어를 탑재하여 만든 프로세서, 싱글코어에 비해 처리 속도가 빠르고 전력 소모량이 적다. ○ 신경회로망 : 인간의 뇌가 물체를 인식하는 방법을 모사하여 설계한 칩으로 기존의 복잡한 연산과정을 거치지 않기 때문에 컴퓨터의 물체 인식 처리 시간을 20배 이상 빨라지게 하였으며 전력 소모량도 크게 줄였다.
2010.07.22
조회수 19614
유회준 교수 연구팀, 세계 최초로 가슴에 붙이는 심장건강상태 모니터링 장치 개발
- 붙이는 파스형태의 심장 건강상태 모니터링 장치, ‘스마트 파스’ 세계 최초개발 - 전기및전자공학과 유회준 교수 연구팀이 세계 최초로 가슴에 붙이는 심장건강상태 모니터링 장치를 최근 개발했다. 붙이는 파스형태로 제작돼 휴대폰 등의 휴대용 단말기기를 통하여 원격으로 켜고 끌 수 있으며 데이터통신도 가능하다. 고성능 반도체 집적회로(헬스케어 칩)가 파스 안에 장착돼 있고 파스 표면에 25개의 전극이 형성돼 있어 다양한 형태로 전극을 사용할 수 있으며 심장의 수축·이완 능력과 심전도 신호를 동시에 검출해 무선으로 외부에 알려 준다. 이 장치의 핵심은 크게 심혈관 저항 및 심전도 측정 집적회로(헬스케어 칩)와 이 칩을 내부에 장착하고 있으며 표면에 전극을 형성시킨 4층 헝겊형 기판기술이다. 직물 위에 전극 및 회로 기판을 직접 인쇄할 수 있는 P-FCB(Planar Fashionable Circuit Board)기술로 서로 다른 헝겊에 전극, 무선 안테나, 회로기판(이 헝겊의 중앙부에 헬스 케어 칩을 부착)형성한 후 플렉시블 배터리와 함께 적층해 이 장치를 제작했다. 또한 전극 제어부, 심전도·혈관 저항 측정부, 데이터 압축부, SRAM, 무선 송수신 장치 등을 가지고 초저전력으로 동작하는 특수 헬스 케어 집적회로(크기 5mm X 5mm)를 제작해 헝겊형 회로 기판 위에 부착시켰다. 전극이 형성된 헝겊 면에는 접착제가 발라져 있어 일반 파스처럼 가슴에 부착시켜 사용하게 된다. 완성품은 가로 세로 15Cm X 15Cm이며 두께는 가장 두꺼운 중앙 부분이 1mm정도이다. 특히, 헬스 케어 칩은 차동전류주입기와 재구성이 가능한 고감도 검출 회로를 통해 심혈관 임피던스 변화를 16가지 서로 다른 조합으로 0.81% 신호왜곡 이하로 검출 가능하다. KAIST 얜롱(Yan Long, 전기및전자공학과 박사과정)연구원은 “헝겊 위에 직접 전극 배열을 인쇄하고 건강관리 칩과 플렉시블 배터리를 부착함으로서 편의성과 착용감을 확보해 간편하게 심전도와 심혈관 임피던스 변화를 동시에 측정할 수 있다.”라고 말했다. 자신의 건강상태를 실시간으로 간편하게 자가진단을 할 수 있어 지속적인 관리가 필요한 만성 심부전 환자 등을 포함한 심혈관 질병이 있는 사람들에게 안성맞춤이다. 만성 심혈관 관련 환자를 위한 건강관리 기술은 2000년 이후 전 세계적으로 꾸준한 관심을 받고 있으나, 대부분 심장의 전기적 특성 즉 심전도 신호만을 검출하는데 그쳤다. 현재까지 개발된 측정기는 크고 이물감이 있으며, 유선으로 연결되는 등 외부와의 저전력 통신이 어려워 일상생활에서 널리 사용되지 못하고 있다. 이번 연구결과는 지난 2월 8일부터 10일까지 미국 샌프란시스코에서 개최된 국제반도체회로 학술회의(ISSCC)에 발표됐다. ❋ ISSCC (International Solid State Circuit Conference: 국제 고체 회로 학회)학회:1954년부터 국제 전기전자공학회 (IEEE SSCS) 주관으로 매년 2월에 미국 San Francisco, Marriot 호텔에서 개최되는 이 분야 최고 권위의 학회로 ‘반도체 올림픽’이라고 불리우고 있음. 전 세계로부터 4천여명의 학자와 연구원들이 참여한 가운데 매년 반도체 분야 최우수 논문 210편만을 엄선하여 3일 동안 발표하면서 연구 성과와 정보를 교환하고 미래의 반도체 산업과 기술을 논의하는 학회임. (사진 1) 스마트 파스 구조 스마트 파스는 총 4층 구조로 형성 되어 있으며 그 크기는 15cm x 15cm 이다. 가슴에 부착하는 면인 제 1층은 25개의 전극이 형성되어 이 중 4개는 전류 주입 전극으로 16개는 전압 측정 전극으로 5개는 기준 전극으로 사용할 수 있다. 제 2층은 직물형 인덕터(2.2uH, Q=9.2)로 스마트 파스의 무선 데이터 통신을 지원한다. 제 3층은 플렉시블 배터리(1.5V, 30mAh)로 파스를 하루이상 지속적으로 사용할 수 있도록 전원을 공급한다. 제 4층은 직물형 인쇄 회로 기판으로 그 위에 고성능 반도체 칩이 장착되어 있다. (사진 2) 스마트 파스 사용 예 사용자가 스마트 파스를 가슴에 붙인 모습을 보여 준다. 휴대폰 등의 휴대용 단말기기를 통하여 원격으로 켜고 끌 수 있으며 25개의 전극배열이 피부와 접착되어 있어 심혈관 저항 및 심전도를 여러 가지 형태로 측정하여 내장메모리에 저장 또는 휴대용 단말기기로데이터를 고속으로 송신도 가능하다. (사진 3) 스마트 파스 측정 예스마트 파스를 통하여 측정된 심전도 신호와 심혈관의 저항의 변화를 보여 준다. 이러한 신호로부터 심장의 수축 이완 능력을 편리하게 일상생활 속에서 측정 가능하다. (사진 4) 스마트 파스에 장착된 헬스 케어 칩 직물형 인쇄 회로 기판에 장착되어 있는 고성능 반도체칩(헬스케어 칩)의 사진과 제원이다. 본 헬스케어 칩은 최대 3.9mW의 전력을 소모하며 평균 2.4mW의 전력소비로 0.1옴이하의 저항 변화를 고감도 회로를 통하여 검출 가능케 하는 것이 특징이다.
2010.02.10
조회수 22465
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 21337
누설전류의 원천적 차단 가능한 ‘20nm갭 기계식 나노집적소자’ 세계 최초 개발
- CPU, 메모리 적용 시 에너지 절감 年 7,480억원․329만톤의 CO2배출저감 효과 기대 - 고가의 반도체 기판 대신 저렴한 유리기판이나 플렉서블(flexible) 플라스틱 기판에도 적용이 가능하고, 3低(초저가․초저전력․초 저탄소) CPU를 실현할 수 있는 나노집적소자 원천 기술이 국내연구진에 의해 세계 최초로 개발되었다. 우리대학 전기 및 전자 공학과 윤준보 교수팀과 부설 나노종합팹센터(소장 이희철)는 공동연구를 통하여 세계 에서 가장 작은 이격거리를 가지는 “20nm갭 기계식 나노집적소자(3단자 나노전자 기계스위칭소자)”를 세계 최초로 개발하는데 성공했다고 밝혔다. 반도체로 만들어진 기존의 CPU는 반도체 특성을 활용하여 전기신호의 차폐를 제어함으로써 PC내에서 평균적으로 3.2W의 대기전력을 소모하고 있다. 업무용 PC 보급대수와 대기시간을 각각 1000만 대와 14시간으로 가정하면 대기전력은 년 163,520 MWh로 계산된다. 고리원자력발전소 1호기의 발전량(2007년 총 발전량 2,254,988 MWh) 7%에 해당하는 전력량이다. 이에 윤준보 교수팀은 나노종합팹의 첨단 장비․시설 등 인프라와 나노 전자기계 기술(Nano Electro Mechanical System, NEMS)을 적용하여, 트렌지스터와 동일한 역할을 수행하면서도 누설전류를 원천적으로 차단한 新개념 전자소자인 ‘기계식 나노집적 소자’를 개발했다. 본 소자의 핵심원리는 질화티타늄(TiN)으로 만든 3차원 나노구조물의 기계적인 움직임을 통해 기계적인 이격정도의 차이로 전기신호를 제어한다는 것이다. 대기 상태에서 누설전류를 원천적으로 차단하는 원리를 가지기 때문에, 이를 CPU에 적용하면 1W 미만의 대기전력을 가지는 CPU개발이 앞당겨 질 것으로 기대를 하고 있다. 사진설명: 20nm갭 기계식 나노집적 소자의 단면 사진 좌측- TEM (투사 전자 현미경) , 우측 - SEM (주사 전자 현미경) 또한, 저온 공정이 가능하기 때문에 기존의 반도체 회로 상부에 3차원으로 적층형 집적이 가능하고, 기존의 반도체를 만들던 단결정 실리콘보다 훨씬 저렴한 유리 기판이나 휘어지는 플라스틱 기판에서도 전자 스위치 소자를 형성할 수 있어, 초저가․초고성능․초저전력의 전자 회로를 만들 수 있다는 데 특징이 있다. 그리고, 무엇보다도 세계 최고 수준의 나노종합팹센터의 첨단 반도체 설비와 공정을 그대로 활용하여 본 소자의 핵심인 초미세 나노패턴 형성과 희생박막 형성 기술을 연구․실증했기 때문에, 상용화 실현 가능성이 매우 높다는 데 의의가 크다. 개발된 기계식 나노집적소자를 활용하여 대기전력 1W이하의 저전력 PC가 실현함으로써 기대되는 에너지 절감효과는 2010년 1,100GWh/年(1,210억원), 2020년 6,800GWh/年(7,480억원)에 이르고 각각 53만톤, 329만톤의 이산화탄소 배출량 억제효과를 가져올 수 있을 것으로 보인다. 또한, 기계식 나노집적소자의 시장 점유율을 전체 반도체 시장의 0.1%로만 잡더라도 시장규모가 2015년 3천 6백억원에 이를 것으로 전망하고 있다. 우주항공 장비와 통신용 소자 및 바이오소자 응용 등 관련 산업에 미치는 파급효과까지 고려하는 경우 그 경제적 부가가치는 매우 클 것으로 기대된다. 이번 연구결과는 12월 7일 미국 볼티모어에서 개막되는 국제 학술 회의인 “국제전자소자회의(International Electron Device Meeting, IEDM)”에서 발표될 예정으로 지난 50년간 반도체 소자를 이용하여 만들어 오던 초고집적회로(VLSI)에서 CMOS 반도체 소자가 극복 할 수 없었던 재료와 성능의 한계들을 극복할 수 있는 새로운 가능성을 제시했다는 것에 의미가 있다. 한편, 해당 기술과 관련하여 미국에 1건이 특허 등록되었으며 미국, 중국, 유럽, 일본 등에 4건의 후속 특허가 출원되어 있다. 국내에는 8건의 관련 특허 등록과 2건의 특허가 출원되어 있다. 나노종합팹센터 이희철 소장은 “나노전자 기계소자를 이용한 집적회로 기술은 2008년에서야 ITRS(세계반도체협회) 로드맵에 등재될 정도로 차세대 기술이며, 우리 기술진의 개발수준이 미국의 스탠포드대, UC버클리대학의 연구수준을 뛰어넘는 결과로 이번 기술 개발이 포스트-반도체 기술력을 선점할 수 있는 중요한 디딤돌이 될 것”이라고 내다보고 있다. 또, 연구개발에 주도적으로 참여한 이정언 박사과정은 “공동연구 개발을 통하여 얻은 기술은 실용화와 상용화를 목적으로 하고 있으며, 기술정보, 연구인력, 노하우 등 연구결과를 산업체에 제공하여 향후에 우리나라가 세계 차세대 반도체 시장에서 유리한 입지를 확보하는데 기여하고 싶다”고 앞으로의 계획을 밝혔다. 용어설명 ○ 스위칭소자 : 전류를 on/off 시키는 장치, 스위치 장치를 조합하여 논리회로, 마이크로프로세서등 을 만들 수 있음. ○ 기계식 나노집적 소자 : 반도체 공정을 이용하여 만든 나노 크기의 기계장치로 전기신호에 의하여 제어되는 소자. ○ 3단자 스위칭 소자 : 3개의 단자로 구성된 전자 부품으로 1개의 단자에 인가된 전기신호로 나머지 2개의 단자의 단락 여부를 제어하는 전자 장치 ○ 패키징 : 전자소자의 제품화를 위하여 기판상태에서 제작된 소자를 외부의 환경에 안정적인 상태가 되도록 최종적으로 마무리 하는 단계 ○ 트랜지스터 : 규소나 저마늄으로 만들어진 반도체를 세 겹으로 접합하여 만든 전자회로로 전류나 전압흐름을 조절하여 증폭, 스위치 역할을 한다. 사진설명: 개발된 기계식 집적 소자를 활용한 미래형 전자 기판의 개념도
2009.12.07
조회수 22630
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 24529
KAIST, POSTECH 공동연구팀 전자의 입자-파동 이중성에 대한 새로운 이론 발표
- 비평형 상태에서의 물질특성 규명에 도움 기대- 미국 물리학회 피지컬 리뷰 포커스 프로그램에 소개 반도체에 형성된 가는 선 모양 구조에서의 전자 움직임을 공동 연구한 KAIST(총장 서남표) 물리학과 심흥선(沈興善, 35) 교수와 대학원생 윤석찬(尹錫燦, 25)씨, 포스텍(총장 백성기) 물리학과 이현우(李鉉雨, 39) 교수팀은 최근 미국 물리학분야 학술지(Physical Review Letters)를 통하여 전자의 입자-파동 이중성에 대한 새로운 이론을 발표했다고 밝혔다. 이 논문의 결과는 전자의 입자-파동 이중성에 대한 많은 학자들의 예상을 벗어난 결과로 거의 동시에 비슷한 결과를 얻은 이스라엘 학자들의 논문과 같이 지난 22일자 미국 물리학회 피지컬 리뷰 포커스(Physical Review Focus)에 소개되었다. 이 프로그램은 미국물리학회에서 출간하는 여러 학술지에 매월 게재되는 천 편 이상의 논문들 중 과학계 전반에 특별 소개가 필요하다고 판단되는 논문을 한 달에 5편 내외를 골라 논문의 내용과 가치를 전문가의 평과 함께 소개하고 있다. 전자와 같은 입자들이 야구공과 같은 입자처럼 행동할 수도 있지만 어떤 경우에 음파나 빛과 같이 파동처럼 행동할 수도 있다는 양자물리학의 입자-파동 이중성 이론이 많은 학자들이 생각했던 것보다 복잡하다는 사실이 이번 공동연구를 통해 밝혀졌다. 입자-파동 이중성은 원자의 성질뿐 아니라 금속이나 반도체와 같은 여러 물질의 특성에 영향을 미치는 중요 요인으로 이 발견은 양자물리학의 효과가 강하게 나타나는 저온에서의 물질 특성들, 특히 비평형 상태에서의 물질 특성을 규명하는데 도움이 될 것으로 기대된다. 전자들 간에는 서로 밀어내는 강한 전기력이 작용하고 이 전기력을 통해서 각 전자들은 다른 전자들의 위치를 어느 정도 파악할 수 있다. 이제까지 많은 학자들은 전기력이 강해질수록(예를 들어 전자간의 거리가 작아져서) 전자 위치가 더 정확히 파악되고 이로 인해 파동성이 약해지고 입자성이 강해질 것으로 믿어왔다. 그런데 이번 공동논문에 의하면 전기력이 강해질 때 어느 한계까지는 파동성이 점점 약해지지만 전기력의 세기가 이 한계를 넘어서고 나면 파동성이 다시 강해지고, 전기력의 크기가 더 커져 두 번째 한계를 넘고 나면 파동성이 다시 약해지는 형태로, 파동성의 세기가 전기력의 세기에 따라 진동할 수 있다고 한다.
2008.05.29
조회수 17895
세계에서 가장 작은 나노전자소자 공동 개발
KAIST 최양규 교수팀 / 나노종합팹센터 공동 연구 새로운 구조의 3차원 3nm급 나노전자소자(FinFET) 공동개발 현재 반도체소자 기술의 한계를 극복하여 향후 세계 반도체 시장에서 유리한 입지 확보 KAIST (총장 로버트 러플린) 최양규 교수팀과 나노종합팹센터(소장 이희철)가 테라급 차세대 반도체소자에 적용 가능한 세계에서 가장 작은 새로운 구조의 3차원 3nm급 ‘나노전자소자(FinFET)’를 공동 개발하는데 성공했다 이번에 공동 개발한 나노전자소자는 게이트가 채널의 전면을 감싸고 있는 새로운 형태의 3차원 구조를 고안하여 3nm급 트랜지스터를 개발한 것이다. 이것은 기존의 실리콘 반도체 기술의 한계를 한단계 진전시킨 의미 있는 연구 결과이다. 칩의 집적도를 높이기 위한 5nm급 나노소자 구현은 기존의 실리콘 기술이 아닌 탄소나노튜브나 분자소자 등과 같은 신소재를 사용해야 할 것으로 예상되었으나, 본 연구 결과는 실리콘 기술만으로도 5nm급 이하 소자 구현이 가능하고 ‘무어의 법칙’이 향후 20년 이상 계속 유지될 수 있다는 가능성을 제시했다. 현재까지 발표된 세계에서 가장 작은 소자는 2003년 12월 일본 NEC가 국제전자소자회의(IEDM)에서 발표한 ‘표준형 2차원 평면 소자구조를 이용한 4nm 소자’로 알려져 있으나, 이는 누설 전류가 크고 동작 시 충분한 전류를 얻지 못하는 등 만족스러운 소자 특성을 얻지는 못했다. 그러나 공동 개발된 3차원 구조(게이트가 채널의 전면을 감싸고 있는 구조)는 NEC의 4nm 소자에 비해 소자의 크기가 작을 뿐만 아니라 ‘단채널 효과’가 크게 개선된 결과를 얻었다. 이번에 공동 개발된 나노소자는 프로세서나 테라급 DRAM, SRAM, 플래시 메모리 소자로 응용이 가능하며, 휴대인터넷, 동영상 회의, 입는 컴퓨터 등의 차세대 정보처리 기기의 필수부품으로 사용될 것으로 전망되며, 컴퓨터의 두뇌에 해당되는 마이크로프로세서에 이 나노소자를 적용할 경우 처리속도가 100GHz (현재보다 25배 빠름)를 넘을 수 있을 것으로 예상된다. 전체 반도체 시장의 연평균 성장률을 7%로 가정할 경우 그 시장 규모가 2015년에는 480조로 예상되는데, 이 중 공동 개발된 3nm급 3차원 소자가 약 35% 정도를 차지할 것으로 기대된다. 이번 공동 연구개발을 통하여 얻은 차세대 나노 집적회로의 원천기술 및 응용기술은 앞으로도 우리나라가 세계 반도체 시장에서 유리한 입지를 확보하는데 기여할 것으로 평가된다. 이번 연구 성과는 오는 6월 13일 미국 하와이에서 개막되는 권위적인 국제 학술회의인 “초고집적회로 국제학회(Symposium on VLSI Technology)”에서 발표될 예정이다. 앞으로 한국과학기술원과 나노종합팹센터는 공동 프로젝트를 통하여 단위소자뿐만 아니라 3nm FinFET 제작 기술을 응용한 아날로그 및 디지털 RF 회로 등에 접목하는 양산성에 대한 추가적인 연구를 계속 진행할 예정이다. ※ 1테라 NAND 플래시는 엄지 손톱만한 크기의 칩 속에 12,500년분의 신문기사와 50만곡의 MP3 파일, 1,250편의 DVD 영화를 저장할 수 있고, 나노소자 칩을 가로, 세로에 각각 10개씩 배열하여 휴대하면 한 사람이 일생동안 보고 들은 것을 모두 저장할 수 있는 용량
2006.03.17
조회수 20868
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8