-
모바일하버, 바다로 나가다
- 파도치는 해상에서 컨테이너 상․하역 시연 성공 -
해상물류의 새로운 장을 펼칠 일명 ‘움직이는 항구’인 모바일하버가 본격적으로 개발을 착수한 지 2년 만에 바다에서 모습을 드러냈다.
우리 학교 모바일하버 사업단은 파도치는 상황에서 선박 간 안전한 도킹 후 컨테이너를 상․하역하는 모바일하버 신기술을 29일 오후 3시 부산 부경대학교 부두 앞 해상에서 성공적으로 선보였다.
모바일하버(Mobile Harbor)는 지난 2009년 ‘대형 화물선이 부두에 접안하지 못하는 경우 하역기능을 가진 선박이 다가가서 화물을 처리하자’라는 역발상에서 시작됐다.
KAIST는 그해 안정화 크레인 기술, 로봇암 자동도킹기술 등 원천기술을 개발하기 시작했고, 12월에는 교내 해양수조에서 축소 모델을 통해 기술의 실현 가능성을 선보였다. 또한, 지난 4월에는 파도치는 바다에서 선박 간 충돌을 방지하면서 두 선박을 신속하고 안정적으로 연결하는 ‘로봇암 자동도킹 시연회’를 성공적으로 마쳤다.
이날 실시된 모바일하버의 성공적인 시연으로 KAIST가 지난 2009년부터 미래성장동력사업으로 야심차게 추진해 온 모바일하버의 상용화 가능성과 안정성·신뢰성이 확보됐다.
아울러 원천기술을 대형 기계시스템으로 구현했다는 점에서 높은 평가를 받았다. 이와 함께 개발된 기술의 상용화에 탄력이 붙을 것으로 기대된다.
곽병만 모바일하버사업단장은 “항만을 신설하거나 증설하지 않고 컨테이너를 수송할 수 있는 국내 독자 기술인 모바일하버에 국내외에서 많은 관심을 갖고 지켜보고 있는 것으로 알고 있다”며 “기대에 부응해 모바일하버가 여러 분야에 파급될 수 있도록 지속적인 노력을 하겠다”고 말했다.
한편, 이날 공개시연회에는 국내외 대학 및 연구기관 전문가, 조선․해양 민간기업 관계자뿐만 아니라 사업 협력이 추진되고 있는 해외 인사들이 대거 참관해 모바일하버 기술에 큰 관심을 나타내기도 했다.
대덕넷 기사 : 모두가 "안된다" 했던 "움직이는 항구" 끝내 바다에 뜨다
2011.06.29
조회수 12813
-
난소암환자의 보다 정확한 생존기간 예측 가능해져
- “개인 맞춤형 의약품 개발에 핵심 기술이 될 것” -
난소암환자의 생존기간 예측이 한층 더 정확해진다!
우리 학교 바이오 및 뇌공학과 이도헌 교수 연구팀이 난소암환자의 선천적 유전특징과 후천적 유전자 발현특성이 복합적으로 영향을 미친다는 결과를 이용해 암환자의 생존기간을 보다 정확하게 예측하는 기술을 개발했다.
이번 연구 결과는 개인맞춤형 의약품개발에 핵심기술이 될 전망이다.
기존의 난소암환자 생존기간 예측을 위해 특이 유전자형과 유전자 발현 특성을 각각 찾는 데 초점을 맞추고 있었다. 그러나 암과 같이 개인의 유전적 특성과 후천적 요인에 따른 유전자 발현 패턴이 복합적으로 작용하는 복합질환의 치료효과와 생존기간을 예측하기에는 역부족이었다.
연구팀은 생물정보학(Bioinformatics) 기술 중 하나인 상호연관 네트워크 모델링을 이용해 개인별 유전자의 특징과 발현특성을 분석했다. 이를 생존기간의 인자로 사용해 난소암환자 생존기간 예측의 정확도를 13% 이상 높일 수 있었다.
또한, 항암치료 후 결과의 개인차를 유발하는 유전적 특성과 유전자 발현패턴의 상호작용모델을 제시함으로써 개인차에 의한 항암 치료 생존기간의 예측이 가능해졌다.
이도헌 교수는 “최근 전 세계적으로 차세대 유전자 연구와 개인 맞춤형 치료제 개발이 본격화되고 있는 시기”라며 “이번 연구 결과는 난소암 환자의 생존기간 예측 및 개인별 특성에 따른 맞춤형 치료의 기반이 될 것이다”라고 말했다.
KAIST 바이오 및 뇌공학과 이도헌 교수, 백효정 박사과정 학생, 김준호 박사과정 학생, 하버드대 이은정 박사, 삼성SDS 박인호 박사가 공동으로 실시한 이번 연구는 세계적 학술지인 ‘지노믹스(Genomics)’지 6월호 표지 논문으로 선정됐다.
2011.06.28
조회수 16234
-
가상 암세포 실험을 통한 암 전이 핵심회로 규명
- 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시 -
우리학교는 바이오 및 뇌 공학과 조광현교수 연구팀이 IT와 BT의 융합연구인 시스템생물학 연구에 기반을 둔 ‘가상 암세포’ 실험을 통해 암 전이를 유발하는 핵심 분자회로를 규명했다고 14일 밝혔다.
이번 연구를 통해 알킵(RKIP)이 매개가 되는 암 전이 조절과정과 핵심회로가 규명됐다. 이로써 향후 이를 표적으로 하는 항암제 개발 등 IT를 이용한 생명과학 응용연구의 중요한 발판을 마련하게 됐다.
특히, 융합연구를 통해 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시하게 됐다.
상피세포가 중간엽세포로 변화하는 과정은 종양세포의 전이단계에서 일어나는 매우 중요한 과정이다. 이 과정의 주요 특징 가운데 하나는 세포 간 결합을 조절하는 단백질인 이카드헤린(E-cadherin)의 양이 급격히 줄어드는 것이다.
이카드헤린의 발현량은 어크(ERK)와 윈트(Wnt)가 포함된 다양한 신호전달경로에 의해 조절되는 것으로 알려져 있다. 하지만, 이들 신호전달경로는 다중결합 피드백회로에 의해 서로 복잡하게 얽혀 있어 실험적인 방법으로는 이들의 동역학 특성과 숨겨진 조절 메커니즘을 분석하는 것이 매우 어려운 것으로 여겨져 왔다.
조광현 교수 연구팀은 이에 대한 수학모형을 개발하고 대규모 컴퓨터시뮬레이션 분석을 통해 이들 결합 피드백회로의 복잡한 상호작용으로 인해 일어날 수 있는 다양한 생명현상을 규명했다.
또한, 어크에 의한 알킵(RKIP) 인산화와 스네일(Snail)에 의한 알킵 전사억제 과정으로 구성된 결합 양성피드백 회로가 임계점 이상의 자극세기에서만 이카드헤린이 급격하게 발현되도록 조절함으로써 외부 노이즈에 강건한 스위칭 동작을 유발한다는 것을 규명했다.
아울러 알킵이 스네일과 슬러그(Slug)의 발현을 억제함으로써 이카드헤린의 발현이 증가되고, 이 때문에 전이과정이 억제될 수 있음을 보였다.
지금까지 전이를 일으키는 종양세포에서 알킵의 발현이 현저하게 감소되었다는 많은 임상적 보고가 있었지만, 그 근본적인 메커니즘은 알려져 있지 않았다.
한편, 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구사업과 기초연구실육성사업으로 수행됐으며, 연구결과는 순수 컴퓨터시뮬레이션 결과임에도 이례적으로 동물 또는 임상실험의 결과가 주로 게재되는 암 전문 학술지 ‘캔서 리서치(Cancer Research)’지 9월 1일자에 게재됐다.
<그림설명>암 전이과정을 조절하는 세포내 분자들 간의 다중결합 피드백 회로의 동역학 특성 및 조절메커니즘의 분석결과. 이 그림은 암 전이 조절회로에 대한 개념도와 시뮬레이션 분석에 사용된 방법 및 결과를 설명한 것이다.
A. 암 전이과정을 조절하는 세포내 주요 신호전달 네트워크의 예시.
B. 전자공학적 논리회로 분석기법을 이용해 암전이 조절회로를 정량적으로 모사하고 핵심 메커니즘을 분석하는 과정.C. 대규모 컴퓨터시뮬레이션 분석을 통해 알킵에 의해 매개되는 결합양성 피드백 회로가 노이즈가 주어지더라도 강건하게 이카드헤린의 스위칭 동작을 유발함을 보이는 예시.
<용어설명>
◯중간엽세포: 발생단계의 중배엽에서 기원된 결합조직세포로서 여러 다른 결합조직세포로 분화할 수 있는 능력이 있는 세포.
◯EMT: 상피세포가 중간엽세포로 변화하는 과정(Epithelial Mesenchymal Transition).
◯어크(ERK): 세포의 유사분열 신호를 전달하는 단백질의 한 종류.
◯윈트(Wnt): 세포의 유사분열 신호를 전달하는 단백질의 한 종류. 특히 배아의 발생단계에서 중요한 역할을 함.
◯이카드헤린(E-cadherin): 세포 접합에 중요한 역할을 하는 단백질의 한 종류.
◯알킵(RKIP): 유사분열 신호를 조절하는 단백질의 한 종류. 특히, 암의 전이과정에서 중요한 역할을 하는 것으로 알려져 있음.
◯스네일(Snail): 이카드헤린의 발현을 억제함으로써 암 전이 과정을 촉진시키는 역할을 하는 단백질.
◯분자회로: 세포내 유전자, 단백질 등의 분자간 상호작용을 나타낸 회로
◯상피세포: 동물의 몸 표면이나 내장기관의 내부 표면을 덮고 있는 세포
◯전이단계: 암이 다른 부위로 퍼지는 단계
◯다중결합 피드백회로: 피드백회로가 2개 이상 중첩된 구조
2010.09.14
조회수 17578
-
암 성장과 전이를 억제하는 혈관신생차단제 개발
-캔서 셀誌 표지논문 선정, “부작용 적고 효과 탁월한 신개념 항암치료제 개발 가능성 열어”-
국내 연구진이 암 성장과 전이에 필수적인 혈관신생*에 관여하는 새로운 인자를 발견하고 이를 효과적으로 차단하는 제재를 개발하여, 신개념 암 치료제 개발에 전기를 마련하였다. * 혈관신생(angiogenesis) : 몸속에 새로운 혈관이 만들어지는 현상으로, 악성 종양(암)의 성장과 전이에 매우 중요한 과정
우리학교 의과학대학원 고규영 교수와 삼성의료원 남도현 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업(도약연구)과 삼성의료원의 난치암정복연구사업의 지원을 받아 수행되었다.
이번 연구결과는 암 분야 최고 권위의 학술지인 ‘캔서 셀(Cancer Cell, IF=25.3)’ 표지 논문(8월 17일자)에 선정되었으며, 국내 연구진이 주도한 연구업적이 “캔서 셀”에 표지 논문으로 게재된 것은 이번이 처음이다.
고규영 교수팀은 기존의 혈관성장인자*(VEGF) 이외에 또 다른 성장인자(안지오포이에틴-2, Ang2)가 혈관신생을 촉진한다는 사실을 새롭게 발견하고, 두 인자를 효과적으로 차단하는 “이중혈관성장차단제”를 개발하는데 성공하였다. * 혈관성장인자 : 혈관신생을 촉진하는 인자로, 지금까지 VEGF가 대표적인 인자로 인식되었으나, 고 교수팀이 Ang2도 암의 혈관신생을 촉진한다는 사실을 새롭게 발견함.
지금까지 의학계에서는 VEGF가 혈관신생에 중추적인 역할을 수행하는 것으로 인식하여, 이를 억제하는 항암제인 아바스틴(Avastin)을 개발하여 암 환자들에게 투여해왔다. 그러나 항암 효과가 크지 않고 오히려 암을 촉진시키는(전체 환자 50%) 등 부작용이 적지 않아 치료에 어려움이 있었다.
고 교수팀은 VEGF 억제제를 투여하자 Ang2가 급격히 증가한다는 사실을 발견하고, VEGF과 Ang2을 동시에 차단하는 “이중혈관성장 차단제”를 제작하여 환자에게 투여한 결과, 기존의 VEGF만을 차단했던 제재보다 암 성장(2.1배)과 전이(6.5배)를 효과적으로 차단한다는 사실을 검증하였다.
고 교수는 “Ang2가 VEGF 못지않게 중요한 혈관신생인자라는 사실을 새롭게 확인하여, 두 인자를 동시에 효과적으로 차단하는 ‘이중 혈관성장차단제’ 개발에 성공함으로써, 효과는 탁월하지만 부작용은 적은 신개념 항암치료제 신약 개발에 새로운 가능성을 제시하였다”라고 연구의의를 밝혔다.
2010.08.18
조회수 16208
-
박제균 교수, 개인 맞춤형 항암치료 원천기반기술 개발
- 극소량의 암 조직으로 다양한 암 판별 물질을 동시에 검사할 수 있는 기술 개발 -
유방암을 비롯한 현대인의 각종 암을 개인별 특성에 맞게 맞춤형 항암 치료할 수 있는 원천기반기술이 국내 연구진에 의해 개발되었다.
우리대학 바이오 및 뇌공학과 박제균 교수 연구팀과 고려대 안암병원 유방센터 이은숙 교수 연구팀이 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원 사업(도약연구), 바이오전자사업 및 고려대 학술연구비의 지원을 받아 수행되었고, 연구 결과는 국제적으로 저명한 온라인 오픈액세스 과학 전문지인 “플로스원(PLoS ONE)” 최신호(5월 3일자)에 게재되었다.
연구팀은 극소량의 암 조직만으로도 다양한 암 판별 물질(종양 표지자, 바이오마커)을 동시에 검사할 수 있는 기술(미세유체기술을 이용한 면역 조직화학법과 랩온어칩)을 개발하는데 성공하였다.
암 진단과 치료를 위한 필수검사는 암 조직을 떼어내 암 여부를 판별하는 물질인 표지자 4개를 모두 검사해야만 최종적으로 판단할 수 있는데,기존의 검사는 떼어낸 암 조직 하나에 1개의 표지자밖에 검출하지 못해, 많은 암 조직을 떼어내야 하기 때문에 불편하고, 검사가 하나씩 순차적으로 이루어지기 때문에 검사 시차가 달라, 정확한 검사가 어려워 검사비용과 시간이 늘어나 환자의 부담이 컸었다. 그러나 연구팀이 개발한 기술을 이용하면, 하나의 작은 암 조직만으로도 한 번에 최대 20여개의 표지자까지 동시에 검사할 수 있어, 비용을 1/200로 절감하고, 분석시간도 1/10로 단축하는 등 획기적인 기술로 평가된다.
특히 이번 연구결과는 동물이 아닌 인간의 암 조직을 직접 이용한 임상실험을 통해 증명한 최초의 사례로 그 의미가 크다.
연구팀은 유방암 환자 115명의 실제 암 조직을 가지고 복잡한 실험을 하나의 칩 위에서 간단히 구현할 수 있는 기술(랩온어칩 기술)을 이용해 임상 실험한 결과, 기존 검사결과와 최대 98%까지 일치하는 등 검사의 정확도를 입증하였다.
고려대 이은숙 교수는 “미세바늘로 추출한 소량의 조직만으로도 다양한 검사가 가능하고 객관적으로 판독할 수 있다”면서, “검사에 필요한 비용과 시간을 상당부분 줄일 수 있을 뿐만 아니라, 초기 정밀검진이 가능하여, 향후 개인 맞춤형 항암치료에 크게 기여할 것으로 기대된다” 라고 강조하였다.
또한 바이오공학, 병리학 및 종양학 등 공학과 의학이 융합된 학제적 연구성과로, 향후 사업화를 통한 경제적 부가가치도 클 것으로 기대된다.
현재 이 기술은 특허협력조약(Patent Cooperation Treaty, PCT)의 특허 1건을 포함해 국내 특허 6건을 출원하였고, 종양분석과 조직시료 검사에 활용되는 기반기술로, 개인 맞춤형 항암제 효력 테스트용 랩온어칩 등 사업화를 위한 후속연구가 활발히 진행되고 있다.
특히 조직병리, 암 진단, 질병의 경과예측 등 의학뿐만 아니라, 바이오 마커 개발 등 생명공학에도 응용될 것으로 기대하고 있다.
우리대학 박제균 교수는 “이번 연구성과로 지금까지 분석할 수 없었던 매우 작은 조직도 쉽고 빠르게 검사할 수 있게 되어 정확한 진단을 통한 치료가 가능하게 되었다”면서, “개인별 맞춤형 항암치료의 대중화를 통해 우리나라 보건의료의 선진화에 크게 기여할 것”이라고 연구 의의를 밝혔다.
한편, 제1저자인 우리대학 김민석 박사는 이번 연구성과로, 제16회 삼성 휴먼테크 논문 대상에서 금상을, 교육과학기술부가 후원하는 젊은 파스퇴르상에서 대상을 수상하는 영예를 안았다.
[그림. 암 조직 시료 상부에 올려지게 되는 투명한 플라스틱으로 이루어진 랩온어칩의 구조]
2010.05.10
조회수 18170
-
조광현 교수, 컴퓨터시뮬레이션 통해 세포 조절회로의 숨겨진 메커니즘 규명
바이오및뇌공학과 조광현(曺光鉉, 38) 교수 연구팀이 컴퓨터시뮬레이션을 통해 세포의 증식과 분화 조절회로에 숨겨진 동역학 메커니즘을 규명하였다. 연구결과는 세포생물학계의 권위지인 저널오브셀사이언스(Journal of Cell Science)지 21일자 온라인판에 표지논문(Cover Paper)으로 선정, 출판되었다.
이번 연구는 특히 수학 모델과 컴퓨터 시뮬레이션을 이용해 세포내 복잡한 메커니즘을 해석해 내고 이를 생화학실험을 통해 재차 검증함으로서 완성되었다. 이는 IT를 BT에 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합 연구사례로 평가된다.
세포내 어크(ERK) 신호전달경로는 세포의 증식과 분화를 조절하는 주요 회로로 알려져 왔으며, 최종단의 인산화된 어크 단백질의 시간에 따른 농도변화 프로화일은 세포의 운명을 결정하는 핵심인자로 여겨져 왔다. 그러나 이 회로의 복잡한 동역학적 특성으로 인해 조절메커니즘은 아직껏 잘 밝혀지지 않았다. 曺 교수 연구팀은 어크 신호전달경로 가운데 라프(Raf) 단백질의 신호를 선택적으로 차단하는 알킵(RKIP) 단백질이 매개하여 형성하는 양성피드백과 어크에서 에스오에스(SOS)로 이어지는 신호에 의해 형성되는 음성피드백이 최종 어크 단백질의 동역학 패턴을 결정짓는 주요 조절회로임을 규명해 냈다. 특히 양성피드백은 이 신호전달과정이 외부노이즈에 둔감하도록 스위칭동작을 유발하고 음성피드백은 어크 프로파일의 진동현상을 유발함으로써 다이나믹한 동역학 특성이 결정됨을 밝혀냈다. 이러한 컴퓨터 시뮬레이션 분석결과는 공동연구팀인 영국 글라스고우 암연구소에서 생화학실험을 통해 증명되었다.
이번 연구는 인간의 주요 질환과 관련된 세포내의 근원적인 조절메커니즘을 규명함으로써 차후 생명과학 응용연구의 중요한 발판을 마련하였으며, 또한 BIT 융합연구로서 시스템생물학의 새로운 가능성을 제시하게 됐다. 이번 연구는 교육과학기술부지원 연구사업의 일환으로 수행되었다.
<2009년 1월 21일자 온라인판, 인터넷주소>
http://jcs.biologists.org/content/vol122/issue3/cover.shtml
2009.01.29
조회수 20712
-
KAIST-연세의대, 유니버설(범용) 암 진단시스템 개발
KAIST 이상엽, 연세 의대 유내춘, 금기창, 유원민 교수팀, 신규 범용 암 진단 마커인“네오노보” 개발
연세의대 임상 진행 중, 암 진단 시스템 상용화 박차
■ 위암, 간암, 유방암, 췌장암, 신장암, 전립선암, 대장암 등 대부분의 암을 진단할 수 있는 인체 내 싸이토카인 변이체 네오노보(NeoNovo) 발견
■ 네오노보 RNA와 DNA를 이용하여 암을 신속하게 동정할 수 있는 진단 기술과 유니버설(범용) 암 진단 DNA 칩 개발
■ 네오노보 단백질을 대장균을 이용, 고효율로 생산하는 시스템 개발
■ 개발된 네오노보 진단 시스템은 특정 암에만 한정되어 있지 않고, 다양한 종류의 암을 진단할 수 있는 세계에서 유일한 마커(marker)로서 향후 암 진단 및 예후에 있어 획기적인 기술로 평가
■ 연세대 의대 세브란스병원은 임상연구심의위원회(IRB)를 개최, 2005년 12월 16일 네오노보 암 진단 임상연구 허가를 내렸으며, 현재 300건의 임상시험 실시 중
■ 현재 유니버설 암 진단 DNA 칩, 단백질 칩, 진단 키트, 암 치료제 및 암 예방제 등 다양한 형태의 제품으로 연구개발 중이며, 국내외 암 연구 전문가 그룹과의 공동연구도 추진 예정
■ 바이오벤처기업 메디제네스(주)의 지원으로 이루어진 이번 연구결과는 국내에 특허가 등록되었으며, 전 세계 특허 출원 중
1. 연구개발 과정 및 결과
? 전 세계적으로 생명공학에 대한 관심이 급증하고 있으며 이러한 관심으로부터 암을 생명공학적인 관점에서 보다 효율적으로 진단 및 치료하는 시스템을 개발하고자 하는 노력이 경주되고 있다. KAIST 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수) 교수가 연세대학교 의과대학 유내춘 교수(柳來春, 42), 금기창 교수(琴基昌, 42), 유원민 교수(柳元敏, 42)연구팀과 함께 위암, 간암, 유방암, 췌장암, 신장암, 전립선암, 대장암 등 10여종의 암을 효율적으로 진단 할 수 있는 새로운 마커(marker)인 싸이토카인(cytokine) 변이체 네오노보(NeoNovo)의 임상 시험 허가를 받아 진행 중이라고 밝혔다. 이 결과는 현재 세포학적 조직검사 등의 기존 검사법의 시간, 비용적인 단점을 해결할 수 있을 뿐만 아니라 이제까지 알려진 암 진단 마커들과는 달리 유일하게 10여종의 암을 모두 진단할 수 있는 우수성을 가지고 있는 것으로 향후 암 진단 시장을 획기적으로 바꾸어 놓을 수 있는 기술로 평가되고 있다.
? 현재 임상시험이 진행 중인 네오노보의 핵심기술은 이제까지 개발된 암 진단 마커들과는 달리 유니버설하게(범용으로) 암을 진단할 수 있는 인체 싸이토카인 변이체의 발견과 그 특허권 확보에 있다. KAIST와 연세의대 공동연구팀은 인체 싸이토카인의 변이체인 네오노보 RNA가 암 세포에서만 특이적으로 발현되는 것을 발견했다. 특히, 뇌암을 제외한 이제까지 시험한 모든 암 세포나 암 조직에서 네오노보가 발견됨으로써 이를 이용하여 진단 시스템을 개발하게 되었다. 연구팀은 네오노보가 인체내에 자연적으로 존재하는 싸이토카인이 선택적 스플라이싱(alternative splicing)과정을 통해 암세포에서만 특이적으로 나타남을 알아냈다. 바이오벤처기업 메디제네스의 지원으로 이루어진 본 연구는 현재 인체에 생기는 10여종의 암을 신속하게 동정할 수 있는 진단 특허권 확보에 주력한 결과 국내에는 변이체 단백질 네오노보의 원천특허가 등록되었으며, 해외 특허가 출원 중이다. 또한, 진단 제품 뿐 아니라 암 치료제 및 암 예방 및 억제제 등의 다양한 용도로 사용될 수 있을 것으로 보고 단백질의 응용에 관한 추가 특허가 출원 중이라고 KAIST 측은 밝혔다. 현재 암 진단시스템은 연세의대 금기창 교수의 주도로 임상시험이 진행 중이다.
? 연구진의 현재까지의 연구결과에 의하면, 네오노보는 암세포에서만 발견되고 정상세포에서는 발견되지 않았는데, 이는 기존의 암 마커가 정상세포나 정상인에도 있으나 암세포나 암환자에서 차이가 나는 것을 기반으로 하는 것과는 근본적으로 큰 차별성이 있다.
? 암이란 “통제할 수 없는 세포 성장”으로 특징지어지는 100개 이상의 관련 질환의 그룹을 기술하는데 사용되는 일반적인 용어이다. 이러한 비정상적인 세포 성장은 보통 종양(tumor)으로 알려진 세포 덩어리로 발전하고 주위의 조직으로 침투하고, 이어서 신체 다른 부위로 전이되어 생명을 위협하고 있는 질병중 하나로 4명중 1명 이상의 사람들은 그들의 생애 중에 어떤 형태로든 암을 가지게 된다고 알려져 있으며, 선진국에서 전체사망원인의 21%(사망원인 제 2 위)를 차지하고 있다. 일반적으로 말기상태의 암은 치료가 거의 불가능한 반면 초기 상태의 암은 치료율이 훨씬 높아서 초기에 정확하고 신속한 진단방법의 개발이 절실히 요구되고 있는 상황이다. 이제까지 여러 종류의 암 진단 마커가 발견되고 일부 사용되고 있지만, 1-3 종류의 암만을 진단할 수 있으며 그 정확도도 높지가 않은 편이다. 반면, 이번에 KAIST-연세의대 공동 연구팀이 개발한 네오노보 암 진단 시스템은 독자적으로 개발한 암 특이 단백질과 RNA 및 cDNA, 그리고 이들의 응용까지에 대한 포괄적인 원천 특허권을 확보한 상태에서 세계적으로 유일하게 간암, 위암, 유방암, 폐암 뿐만 아니라 기타 10종 이상의 암에서도 70%-100%의 높은 효율로 진단할 수 있는 마커라는 점에서 향후 세계 보건의료 및 생명공학 시장에 큰 파장을 불러올 것으로 예상된다.
? 또한, KAIST 이상엽 교수팀은 네오노보 재조합단백질을 봉입체 형태로 과량 생산하는 대장균 시스템을 이용하여 암 특이 단백질을 대량 생산하는데 성공하였다. 대량 생산된 네오노보 단백질을 이용하여 조직염색, 면역학적 기술에 접목시켜 보다 편리한 진단 시스템에 응용하는 연구를 진행 중이다. 한걸음 더 나아가, 생산된 암 특이 단백질의 세포 내의 기능에 대한 연구를 진행하고 있다.
2. 연구개발성과 및 향후계획
?휴먼 게놈 프로젝트가 완료된 것을 비롯하여, 최근 여러 생물 종에 대한 게놈 정보가 쏟아져 나오고 있다. 암에 대한 연구 또한 기존의 유전자 돌연변이에 대한 연구를 벗어나 암 특이 발현 유전자 및 단백질에 대한 연구가 많이 시도 되고 있다. 이번에 개발된 진단 시스템 또한 암에서만 특이 발현되는 단백질과 그 유전자를 기반으로 개발된 획기적인 시스템이다. 이 진단 시스템을 이용하면, 단 2가지의 유전정보 및 단백질 발현 형태만으로도 암의 여부를 일시에 검색할 수 있고, 정확도도 70% 이상이다. 체외 진단 시장은 연간 25조원 이상이며, 지속적으로 팽창하고 있다. 이중 특히 암 진단 시장은 고속으로 증가할 것으로 예측되고 있으므로 본 기술의 파급효과는 엄청날 것으로 기대 된다.
? 임상시험을 주도하고 있는 연세의대 방사선 종양학과 금기창 교수는 “이미 암 세포주를 이용한 기초 실험 결과는 놀라울 정도로 진단 효율과 성공률이 높게 나온 상황이고, 지금까지의 임상 시험도 잘 진행 중이므로, 최종 임상결과에 큰 기대를 가지고 있다”라고 말하고, “향후 메디제네스와 함께 범용 암 진단 시스템 개발은 물론, 관련 암 치료 및 암 예방 의약의 개발로도 연구를 할 예정이다”라고 밝혔다.
? KAIST 이상엽 교수는 “원천 특허권 확보가 이루어진 지금 유니버설 암 진단 시스템의 상용화의 추진은 물론, 국내외 암 전문 연구기관과 공동으로 연구를 추진하여 인류 건강의 가장 큰 위협 요인인 암을 예방, 치료하는데 기여하고 싶다”는 포부를 밝혔다.
네오노보의 RNA 발현 여부를 검색함으로써 암세포와 정상세포를 명확하게 구별해내는 네오노보 유니버설 암진단 DNA칩 실험 결과. 초록색 형광 점은 각각 특정 서열을 가지는 DNA 조각으로서 정상세포에서 나타나는 RNA와 암세포에서 나타나는 네오노보 RNA를 특이적으로 진단할 수 있도록 디자인된 것이다.
분자량 마커 생산된 네오노보 단백질
재조합 대장균을 이용하여 생산하고 정제된 네오노보 단백질. 네오노보 RNA로부터 DNA를 합성하여 대장균에 도입하고, 재조합대장균을 키워서 네오노보를 다량 생산한 뒤, 크로마토그래피 (chromatography)를 통해 순수하게 정제된 재조합 네오노보 단백질.
생물정보학 기법으로 예측한 네오노보 단백질의 구조
2006.03.28
조회수 19347