〈 이정용 교수, 이상훈 박사과정 〉
우리 대학 EEWS 대학원 이정용 교수 연구팀이 산소와 수분에 저항성을 갖는 박막을 이용해 고성능, 고안정성의 양자점 태양전지 제작 기술을 개발했다.
백세웅 박사, 이상훈 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘에너지&인바이러멘탈 사이언스’ 5월 10일자 온라인 판에 게재됐다. (논문명 : A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells)
콜로이달 양자점 태양전지는 매우 가볍고 유연하며 근적외선 영역까지 흡수하는 특성 때문에 차세대 전자소자의 에너지 소재로 주목받고 있다. 최근 변환효율이 향상되면서 다양한 상업적 응용 가능성이 높아지고 있지만 아직까지 효율과 안정성, 비용 측면에서 기존의 상업화된 태양전지에 비해 경쟁력이 부족했다.
연구팀은 비정질의 단분자 박막이 산소 및 수분에 높은 저항성을 갖는 것에 주목해 이를 양자점 태양전지의 외부 전극 쪽 정공선택층으로 활용하는 기술을 개발했다.
산소 및 수분에 저항성이 높은 막을 외부 전극 쪽에 활용하면 공기 중에 노출됐을 때 산소나 수분의 침투를 효과적으로 막아 양자점 태양전지소자의 안정성을 크게 향상시킬 수 있다.
특히 이 단분자 박막은 유기 반도체 증착을 통해 전기전도도를 크게 향상시킬 수 있어 단순한 배리어 층이 아닌 태양전지에서 생성된 정공(正孔)을 효과적으로 전달하는 역할도 수행할 수 있다.
연구팀의 기술은 다양한 장점을 갖는다. 우선 진공증착 방식을 이용하기 때문에 소자 종류와 상관없이 어떠한 박막소자에도 응용 가능하다. 또한 두께를 자유롭게 조절할 수 있어 박막이 갖는 산소 및 수분의 차단 특성을 극대화할 수 있다.
또한 양자점 층에서 생성된 정공을 전극까지 효과적으로 전달할 수 있고 비싼 금 전극을 성능 감소 없이 저렴한 은 전극으로 대체할 수 있기 때문에 소자의 생산비용을 크게 낮출 수 있다.
연구팀은 이 기술로 고성능 및 고안정성 양자점 태양전지를 제작하는데 성공했다. 이는 기존의 금 전극을 사용해 제작한 고효율 양자점 태양전지와 비슷한 효율을 가진다.
연구팀은 단분자 박막을 이용한 양자점 태양전지를 제작해 약 11.7%의 최고효율을 달성했고, 산소 및 수분 저항성을 확보해 소자를 공기 중에서 보관할 시 약 1년이 지나도 초기 효율의 90% 이상을 유지함을 확인했다.
이 교수는 “양자점 태양전지 뿐 아니라 양자점 발광소자, 유기 전자소자, 페로브스카이트 소자 등 다양한 분야에 적용이 가능한 기술이다”며 “저렴한 가격에 고효율의 양자점 태양전지를 제작해 상용화를 앞당길 수 있는 원천기술이 될 것으로 기대한다”고 말했다.
이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 비정질 단분자 박막을 3D 이미지로 묘사한 개념도
그림2. 개발한 기술에 대한 개념도와 제작된 양자점 태양전지 성능 그래프
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다
2024-10-31웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다. 우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다. 유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만,
2023-12-26디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다. 그러나 InP 양자점은 외부 환경에
2023-09-26우리 대학 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수 공동 연구팀이 암 관련 마이크로RNA를 다중 검출할 수 있는 다색 양자점(퀀텀닷) 어레이를 개발했다고 20일 밝혔다. 신소재공학과 남태원 박사와 생명화학공학과 박연경 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회(American Chemical Society)가 발행하는 국제 학술지 `ACS 나노(ACS Nano)'에 2022년도 6월 15일 字 온라인판에 게재됐다. (논문명: Polychromatic quantum dot array to compose a community signal ensemble for multiplexed miRNA detection) 마이크로RNA는 18~25개의 염기서열로 이루어진 짧은 RNA로, 유전자 발현을 조절함으로써 세포 성장 및 분화와 같은 다양한 세포 활동을 제어한다. 마이크로RNA의 비정상적인 발현은 암을 포함한 다양한 질병과 밀접하게 연관돼있어, 여러 가지
2022-07-20우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다. ☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다. 이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다. 생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cu
2022-06-16