-
한순규 교수, 마약중독치료제 및 항암제 후보물질 합성 기술 개발
〈 왼쪽부터 임형근 연구원, 한순규 교수, 성시광 연구원 〉
우리 대학 화학과 한순규 교수 연구팀이 마약중독 치료제, 항암제 후보물질로 쓰일 수 있는 천연물을 인공적으로 합성하는 데 성공했다.
연구팀은 시중에서 구할 수 있는 카타란틴(catharanthine)을 원료로 해 산화와 재배열을 통해 7종의 이보가 및 포스트이보가 천연물을 합성해냈다. 이번 연구결과는 마약중독 치료제, 항암제 후보물질 생산의 원천기술이 될 것으로 기대된다.
성시광, 임형근 석박사통합과정이 공동 1 저자로 참여한 연구는 화학 분야 국제 학술지이자 셀(Cell) 자매지인 ‘켐(Chem)’ 11월 15일 자에 게재됐다. (논문명 : Biosynthetically Inspired Transformation of Iboga to Monomeric Post-Iboga Alkaloids, 생합성 가설에 기반한 이보가 알칼로이드의 단위체 포스트이보가 알칼로이드로의 변환)
이보가 알칼로이드가 학계의 관심을 끈 이유는 이들의 천연물군이 마약중독 치료제로써 가능성을 보였기 때문이다. 또한 이보가 알칼로이드가 생 합성적으로 변형된 천연물 중 빈블라스틴(vinblastine)은 현재 항암제로 쓰이고 있다. 최근에는 이보가 알칼로이드로부터 자연적으로 파생된 다양한 형태의 천연물군이 대거 발견되며 학계와 산업계의 관심도 커지고 있다.
천연물 전합성(全合成)은 간단한 시작물질로부터 다단계의 화학반응을 통해 원하는 천연물을 합성하는 학문 분야이다. 그러나 이 다단계 화학반응을 거치는 과정에서 합성효율이 낮아지는 한계가 있다.
한 교수 연구팀은 이보가 알칼로이드 천연물인 카타란틴이 미 식품의약국(FDA) 승인 항암제인 나벨빈(Navelbine®)의 공업원료로 쓰여 시중에서 쉽게 구할 수 있다는 점에 착안했다. 산화와 재배열을 통해 카타란틴의 구조를 변형시켜 고부가가치의 포스트이보가 천연물을 효율적으로 합성했다.
연구팀은 이번 연구에서 이보가 알칼로이드에서 자연적으로 파생되면서 분자적 재배열을 이룬 천연물군을 ‘포스트이보가’ 알칼로이드라고 이름 지었다. 그리고 다양한 효소의 작용을 통해 식물 내에서 이뤄지는 이보가 골격의 분자적 재배열을 화학적으로 구현하는 데 성공했다.
한 교수팀이 합성에 성공한 포스트이보가 알칼로이드는 타버틴진(tabertinggine), 보아틴진(voatinggine), 디피닌(dippinine) B로 이 중 보아틴진과 디피닌 B는 최초의 합성이다.
특히 디피닌 천연물군은 30년 이상 학계의 관심을 받아왔음에도 정복하지 못한 난공불락의 천연물로 여겨졌는데 한 교수 연구팀이 이번에 최초로 합성에 성공했다.
한 교수는 “이번 연구는 포스트이보가 알칼로이드 합성에 새로운 패러다임을 부여한 연구이다”며 “본 연구를 통해 다양한 항암제 및 마약중독 치료제 후보물질을 합성할 수 있는 원천기술을 확보했다는 데 의의가 있다”라고 말했다.
이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포스트이보가 알칼로이드의 합성전략 모식도
그림2. 디피닌 B의 합성 경로
2018.11.15
조회수 11062
-
이봉재, 이승섭 교수, 금속-유전체 간 근접장 복사열전달량 제어 기술 개발
〈 왼쪽 위부터 시계방향으로 이승섭 교수, 이봉재 교수, 임미경 박사, 송재만 박사과정 〉
우리 대학 기계공학과 이봉재 교수와 이승섭 교수 연구팀이 금속-유전체 다층구조 사이의 근접장 복사열전달량을 측정하고 제어하는 데 성공했다.
연구팀의 복사열전달 제어 기술은 차세대 반도체 패키징과 열광전지, 열관리 시스템 등에 적용 가능하고 폐열의 재사용을 통한 에너지 절감, 사물인터넷 센서의 지속적 전력 공급원 등에 응용 가능할 것으로 기대된다.
임미경 박사와 송재만 박사과정이 주도한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 16일자 온라인 판에 게재됐다. (논문명 : Tailoring Near-Field Thermal Radiation between Metallo-Dielectric Multilayers using Coupled Surface Plasmon Polaritons, 표면 플라즈몬 폴라리톤 커플링을 이용한 금속-유전체 다층구조 사이의 근접장 복사열전달 제어)
두 물체 사이의 거리가 나노미터 단위일 때 물체 사이의 복사열전달은 거리가 가까워질수록 매우 크게 증가한다. 그 값은 복사열전달량의 이론적인 최댓값이라 여겨졌던 흑체 복사열전달량보다 1천 배에서 1만 배 이상 커질 수 있다. 이 현상을 근접장 복사열전달이라고 한다.
최근 나노기술의 발전으로 다양한 물질 사이의 근접장 복사열전달을 규명하는 연구가 활발히 진행되고 있다. 특히 나노구조에서 발생하는 표면 폴라리톤 커플링을 이용하면 두 물체 사이의 근접장 복사열전달량을 크게 향상시킬 수 있을 뿐 아니라 파장에 따른 복사열전달 제어가 가능해진다.
이런 이유로 박막, 다층나노구조, 나노와이어 등 나노구조를 도입한 근접장 복사열전달 적용 장치에 대한 이론 연구가 계속 진행되고 있다. 그러나 현재까지 대부분의 연구는 등방성(等方性) 물질 사이의 근접장 복사열전달만을 측정하는 데 초점이 맞춰졌다.
이봉재, 이승섭 교수 공동 연구팀은 커스텀 MEMS 장치 통합 플랫픔과 3축 위치 나노제어 시스템을 이용해 금속-유전체 다층나노구조 사이의 진공 거리에 따른 근접장 복사열전달량을 최초로 측정하는 데 성공했다.
금속-유전체 다층나노구조는 일정한 두께를 갖는 금속과 유전체가 반복적으로 쌓인 구조를 말한다. 금속-유전체 단일 층 쌍을 단위 셀이라 부르며 단위 셀에서 금속 층이 차지하는 두께의 비율을 충전인자라 한다.
연구팀은 다층나노구조의 충전인자와 단위 셀 개수의 변화에 따른 근접장 복사열전달량 측정 결과를 통해 표면 플라즈몬 폴라리톤 커플링으로 근접장 복사열전달량을 크게 향상시켰으며, 나아가 열전달의 파장별 제어가 가능함을 증명했다.
연구를 주도한 이봉재 교수는 “그동안 실험적으로 규명된 등방성 물질은 근접장 복사열전달의 파장별 제어에 한계가 있었다”며 “이번에 밝혀낸 다층나노구조를 사용한 근접장 복사열전달 제어 기술은 열광전지, 다이오드, 복사냉각 등 다양한 근접장 복사열전달 적용 장치 개발에 첫걸음이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 근접장 복사열전달 측정 3차원 개념도와 개발한 장치
그림2. 금속-유전체 다층나노구조의 충전 인자에 따른 복사 열전달량 분석 결과
2018.11.14
조회수 12501
-
조광현 교수, 뇌파 생성, 변조 담당하는 신경회로 원리 규명
〈 조광현 교수 연구팀 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌파의 생성 및 변조를 담당하는 핵심 신경회로를 규명하는 데 성공했다.
이를 통해 뇌의 동작원리를 밝힐 뿐 아니라 향후 여러 뇌질환 환자에게서 발생하는 비정상적 뇌파활동을 신경세포 네트워크 수준에서 규명하는 데 활용 가능할 것으로 기대된다. 이번 연구는 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학 연구로 규명했다는 의미를 갖는다.
이병욱 박사과정, 신동관 박사, 스티븐 그로스 박사가 함께 참여한 이번 연구는 국제 학술지 ‘셀 리포트(Cell Reports)’ 11월 6일자 온라인 판에 게재됐다.
뇌의 다양한 기능은 신경세포(뉴런) 사이의 복잡한 상호작용을 통해 이뤄진다. 특히 뉴런들의 동시다발적인 발화에 의해 형성되는 뇌파는 뇌의 활동 상태를 측정하는 가장 중요한 지표이며, 특정 기능을 수행하기 위해 영역 간 선택적 통신의 매개체 역할을 하는 것으로 알려져 있다.
또한 뇌파의 비정상적인 생성 및 변조 현상은 다양한 뇌질환과 밀접한 관계를 갖는 것으로 밝혀지고 있다. 이에 따라 전 세계 신경생물학 연구자들은 뇌파의 생성 및 변조 원리를 파악하기 위해 노력해 왔다.
그러나 뇌파의 생성 및 변조는 수많은 뉴런 사이의 복잡한 상호작용을 통해 발생하는 예측할 수 없는 창발적 특성(emergent property)을 갖기 때문에 기존의 신경 생물학 실험을 통해 그 원리를 규명하기에는 한계가 있었다.
조 교수 연구팀은 시스템생물학 기반의 연구방법을 통해 뇌파의 생성 및 변조 원리를 분석했다. 연구팀은 여러 뇌 영역 중 특히 감각 피질(sensory cortex)에 주목했다. 감각 피질은 외부 감각 정보를 처리하고 통합, 조절하는 핵심 영역으로 여러 주파수 대역의 뇌파와 변조를 관측할 수 있다.
연구팀은 최근 커넥토믹스 (connectomics) 연구를 통해 밝혀진 쥐의 감각피질 내 뉴런의 종류 및 뉴런 간 연결성 정보를 이용해 감각피질을 구성하는 뉴런들과 이들을 연결하는 시냅스를 수학 모델을 통해 표현하고 이로부터 신경회로를 구축해 뇌파의 생성 및 변조 과정을 분석했다.
연구팀은 대규모 컴퓨터 시뮬레이션 분석을 통해 흥분성 뉴런과 억제성 뉴런으로 구성된 양성피드백과 음성피드백의 중첩된 구조(interlinked positive and negative feedback)가 뇌파의 생성 및 주파수 변조 현상의 핵심회로임을 최초로 규명했다.
특히 연구팀은 기존의 전기생리학 실험을 통해 측정된 뉴런 간 시냅스의 특정 연결강도가 신경회로의 뇌파 생성 및 변조 기능을 극대화시킬 수 있는 최적의 조합임을 밝혀냈다.
이번에 개발한 수학모형을 활용하면 전통적 생물학 실험을 통해 파악이 어려웠던 뉴런들 간의 다양한 상호작용을 이해하고 신경회로의 복잡한 설계원리를 파악할 수 있을 것으로 기대된다.
또한 여러 뇌질환 환자의 뇌에서 관측되는 비정상적인 뇌파 활동을 신경네트워크 차원에서 분석하고 규명할 수 있을 것으로 예상된다.
시스템생물학 접근을 통한 신경회로의 구조 및 기능 분석은 인공지능의 발전에도 기여할 것으로 기대된다. 두뇌 신경회로의 작동원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 자폐증이나 집중력 조절장애 등과 관련된 신경회로 규명, 두뇌 치료 기술 개발 등의 원천 의료기술 개발에도 혁신으로 이어질 수 있다.
조 교수는 “지금껏 뇌파의 생성 및 변조를 담당하는 핵심 신경회로가 밝혀진 바가 없었다”며 “이번 연구에서는 최근 커넥토믹스 (connectomcis) 연구를 통해 점차 밝혀지고 있는 뉴런간의 복잡한 연결성에 숨겨진 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작원리를 파악할 수 있는 새로운 가능성을 제시했다”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, 그리고 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 뉴런 간 연결 강도에 내제된 기능적 설계원리 파악
그림2. 뇌파의 생성 및 변조를 담당하는 핵심 신경회로
2018.11.14
조회수 18375
-
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다.
전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다.
이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch)
심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다.
심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다.
이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다.
그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다.
연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다.
이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다.
이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다.
유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 연구팀이 개발한 센서
2018.11.12
조회수 13423
-
김상율 교수, 투명 유연 디스플레이 기판용 소재 개발
〈 김상율 교수 연구팀. 왼쪽부터 김태형, 김성종 박사과정, 김상율 교수, 이동휘, 윤영록 석사과정〉
우리 대학 화학과 김상율 교수 연구팀이 투명 유연 디스플레이를 제작할 수 있게 해주는 고분자를 합성하는 데 성공했다.
연구팀이 개발한 고분자는 유리와 같은 투명성과 열팽창계수를 갖는 고성능의 무정형 고분자로 유기소재의 열팽창 제어에 응용 가능할 것으로 기대된다.
김선달, 이병용 연구원이 주도한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 10월 26일자 온라인 판에 게재됐다.(논문명 : Poly(amide-imide) materials for transparent and flexible displays )
차세대 디스플레이로 유망한 투명하면서도 유연한 디스플레이를 제조하기 위해서는 유리와 같은 수준의 투명성과 열팽창계수를 가지면서도 휘어지고 접을 수 있는 기판소재가 필요하다. 그러나 고분자 소재 중 이러한 조건을 갖는 유연 고분자 소재는 알려진 바 없었다.
모든 물체는 열을 받으면 팽창하고 차가워지면 수축하는 성질을 갖는다. 세라믹이나 금속 소재에 비해 유기물질로 이뤄진 고분자 소재는 열에 의한 팽창이 상대적으로 매우 크다.
얇고 가벼운 평판디스플레이에 사용되는 반도체소자는 세라믹과 비슷한 열팽창계수를 갖고 있어 열팽창계수의 차이가 큰 고분자 필름 위에 반도체소자를 만들게 되면 작동 시 발생하는 열에 의한 팽창과 수축의 차이로 소자가 파괴되는 문제가 발생한다.
따라서 반도체소자와 기판의 열팽창계수를 일치시키는 것은 성공적인 디스플레이를 제조하는데 매우 중요한 일이다.
무정형인 투명한 고분자 물질의 열팽창계수를 줄이는 방법으로 고분자 사슬들을 연결시켜 망상구조(특정 다각형이 이어진 그물 모양의 구조)를 형성시키는 방법이 알려져 있다. 하지만 망상 구조를 갖는 고분자 물질은 유연성을 잃어버리고 필름으로 제조해도 유연하지 않게 된다.
김 교수 연구팀은 문제 해결을 위해 고분자 사슬 간 거리를 조절하는 방식을 이용했다. 고분자 물질을 합성할 때 고분자 사슬 간에 상호작용하는 힘을 도입하고 힘의 방향이 수직으로 교차하게 만들며 사슬 간 거리를 적절히 조절하면 온도에 따른 팽창 및 수축을 억제할 수 있다. 연구팀은 이러한 화학구조를 투명한 고분자 물질에서 구현하는데 성공했다.
김상율 교수팀이 합성에 성공한 새로운 고성능 고분자 물질인 투명한 폴리아마이드이미드 필름은 열팽창정도가 유리 수준으로 낮으면서도(열팽창계수: 4ppm/oC) 유연하며 아몰레드(AMOLED) 디스플레이 제조공정에 적용할 수 있는 내열성을 갖고 있다(>400oC).
연구팀은 새로 합성된 투명 폴리아마이드이미드 필름 위에 이그조 박막 트랜지스터(IGZO TFT)소자를 제작해 필름을 반경 1mm까지 접어도 소자가 정상적으로 작동되는 것을 확인했다.
김 교수는 “이번 연구 결과는 그간 난제로 여겨졌던 무정형 고분자의 열팽창을 화학적 가교결합 없이 조절해 유리 정도 수준으로 낮추면서도 유연성을 확보하고 동시에 투명하게 만드는 방법을 제시한 흥미로운 연구결과이다”며 “다양한 유기소재의 열팽창을 제어하는 데 응용 가능할 것으로 기대된다”고 말했다.
화학과와 전기및전자공학과, 나노과학기술대학원이 공동으로 참여한 이번 연구는 한국연구재단 중견연구자지원사업과 삼성미래기술센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 투명 폴리아마이드이미드 필름 위에 제조된 투명하고 유연한 IGZO TFT의 구조
그림2. 투명한 폴리아마이드이미드 고분자의 화학구조
2018.11.08
조회수 12239
-
민범기 교수, 광학적 시공간 경계 통한 빛 제어 기술 개발
〈 민범기 교수, 손재현 박사과정, 이강희 박사 〉
우리 대학 기계공학과 민범기 교수 연구팀이 광학적인 시공간 경계(spatiotemporal boundary)를 이용해 빛의 색과 위상을 동시에 제어하는 기술을 개발했다.
기계공학과 전원주 교수, 물리학과 이상민 교수와의 공동 연구로 진행된 이번 연구는 특수 미세 금속 구조를 반도체 표면 위에 제작해 기존 연구결과에 비해 훨씬 높은 자유도를 갖는 시공간 경계를 구현했다. 이 시공간 경계는 빛의 주파수를 변환할 수 있는 초박막형 광학 소자에 응용 가능할 것으로 기대된다.
이강희 박사, 손재현 박사과정이 공동 1저자로 참여한 이번 연구는 광학분야 국제 학술지 ‘네이처 포토닉스(Nature Photonics)’ 10월 8일자 온라인 판에 게재됐다.
광 주파수 변환 소자는 광학적 비선형성으로 인해 빛의 색이 변화하는 현상을 주로 이용해 빛을 사용한 정밀 측정과 통신 기술에서 핵심 역할을 하고 있다.
일반적인 광학 현상에서는 빛의 중첩(superposition) 원리가 성립하기 때문에 여러 빛이 동시에 물질을 통과해도 서로에게 영향을 주지 않는다. 하지만 빛의 세기가 매우 강하면 빛의 전기장이 물질을 이루는 원자핵, 전자 상호작용에 영향을 줘 빛의 주파수를 배로 늘리거나 두 빛의 주파수를 합하거나 뺀 빛을 형성하는 등의 비선형 광학 현상을 관찰할 수 있다.
이럴 경우 대부분 비선형 형상 구현에 필요한 강한 빛을 얻기 위해 고출력 레이저를 사용하거나 아주 좁은 공간에 빛을 집속시키는 방법을 사용한다.
또한 빛이 통과하고 있는 물질을 빛 스스로가 아닌 다른 외부 자극을 이용해 변화시킬 때에도 주파수 변환 현상을 볼 수 있다. 이렇게 시간에 따라 동적으로 변화하는 물질, 시간 경계 등을 이용하면 약한 빛에서도 주파수 변환을 일으킬 수 있다. 이는 통신 분야에서 유용하게 활용 가능하다.
그러나 외부 자극을 이용한 물성의 변화는 개념적으로만 연구돼 왔고, 다양한 이론적 예측 결과들을 실제로 구현하는 데 어려움이 있었다.
연구팀은 문제 해결을 위해 원자 구조를 모사한 금속 미세구조를 배열해 인공적인 광학물질(메타물질)을 개발했고 이 인공 물질을 매우 빠르게 변화시켜 시공간 경계를 만들어내는 데 성공했다.
기존 연구들이 약간의 굴절률에만 변화를 주는 것에 그쳤다면 이번 연구는 물질의 분광학적 특성을 자유롭게 설계 및 변화시킬 수 있는 플랫폼을 제공했다. 이를 이용해 빛의 색을 큰 폭으로 변화시키면서 주파수 변화량 역시 제어할 수 있는 소자를 개발했다.
연구팀은 주로 개념적으로만 진행되던 시공간 경계에서의 주파수 변환에 관한 연구를 광학물질을 이용해 실현 및 응용할 수 있는 단계로 발전시켰다는데 의의가 있다고 밝혔다.
민 교수는 “주파수 스펙트럼의 변화를 자유롭게 설계하고 예측할 수 있어 폭넓은 활용이 가능하다”며 “광학 분야에서 동적인 매질에 연구에 새 방향을 제시하게 될 것이다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 미래유망융합기술파이오니어사업 및 글로벌프론티어사업 파동에너지극한제어연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 협대역의 테라헤르츠파를 입사시켰을 때 시간적 경계의 변화에 따른 주파수 변환 실험 결과
그림2. 기술 개념도
2018.11.05
조회수 13515
-
백경욱 교수, 극 미세피치용 이방성 전도필름 개발
〈윤달진 박사과정, 백경욱 교수〉
우리 대학 신소재공학과 백경욱 교수 연구팀이 차세대 고해상도 8K UHD 디스플레이에 적용할 수 있는 극 미세피치용 이방성 전도필름(Anchoring Polymer Layer Anisotropic Conductive Films, APL ACFs)을 개발했다.
이번에 개발한 새 이방성 전도필름은 기존의 이방성 전도필름이 갖는 극 미세피치의 적용에 대한 한계를 근본적으로 해결한 것으로 모바일 기기, OLED 기반 대형 패널 등에 다양하게 활용 가능할 것으로 기대된다.
윤달진 박사과정이 1저자로 참여한 이번 연구는 전자 패키징 분야 국제 학술지 ‘IEEE TCPMT(International Transactions on Components, Packaging, and Manufacturing Technology)’ 10월호에 게재됐다. (논문명 : Effects of the Nylon Anchoring Polymer Layer on the Conductive Particle Movements of Anisotropic Conductive Films for Ultrafine Pitch Chip-on-Glass Applications, 국문명 : 극 미세피치를 지닌 COG 어플리케이션을 위한 이방성 전도필름 내 도전입자 움직임에 나일론 APL이 미치는 영향)
통상적으로 디스플레이 산업계에서 사용하는 이방성 전도필름을 미세피치 디스플레이 제품에 적용하면 레진의 흐름 때문에 도전입자(Conductive particle, 패널과 칩, PCB 간에 통전 및 절연 기능을 가능하게 하는 재료로 이방성 전도 필름의 핵심 소재)가 응집하고 이로 인해 전극 간 전기적 단락 회로가 발생하는 문제가 있다.
연구팀은 특정 단일층으로 구성된 폴리머 필름이 도전입자를 단단히 고정시키는 형태의 이방성 전도필름을 개발해 도전입자의 유동을 억제시킴으로써 전극 간 전기 단락 문제를 근본적으로 해결했다.
연구팀은 일상에서 흔히 접할 수 있는 나일론을 활용해 도전입자가 잘 분포되고 고정된 단일층 나일론 필름을 제작했다. 나일론 필름은 높은 인장강도 값을 지녔기 때문에 도전입자의 움직임을 완벽하게 제어할 수 있었고, 접합 공정 후 도전입자의 포획률을 기존 이방성 전도 필름의 33%에서 최고 수준인 90%까지 끌어올리는 데 성공했다. 또한 이방성 전도필름의 가격에 가장 큰 영향을 미치는 도전입자의 함량을 3분의 1 이상 줄였다.
연구팀은 20마이크론 수준의 극 미세피치에서 전기적 단락이 없고 100% 절연 특성을 구현하면서 우수한 접속을 형성할 수 있는 도전입자를 확보해 안정적인 전기적 특성, 높은 신뢰성, 저렴한 가격의 이방성 전도필름을 제작했다.
백경욱 교수는 “이번에 개발한 이방성 전도필름은 극 미세피치를 가진 VR, 4K, 8K UHD 디스플레이 분야 뿐 아니라 OLED 기반 대형 패널, 모바일 기기에도 적용 가능하다”며 “극 미세피치 접속 핵심 소재의 국산화를 통해 세계 시장을 독점하고 있는 일본의 이방성 전도필름 제품을 대체해 경쟁력을 높이는 데 기여할 수 있다”고 말했다.
연구팀은 국내 이방성 전도필름 제작 회사인 ‘(주)에이치엔에스하이텍’과 연구개발특구진흥재단의 지원을 받아 대덕연구개발특구본부 기술이전사업화 사업 공동 개발을 통해 산업계에서 즉시 평가 가능한 시제품 제작을 완료했다.
□ 그림 설명
그림1. 통상적인 ACFs를 사용한 디스플레이 어플리케이션의 모식도 (a) 접합 공정 전, (b) 접합 공정 후
그림2. 극 미세피치 디스플레이 어플리케이션에 통상적인 ACFs를 사용한 모식도 (a) 접합 공정 전, (b) 접합 공정 후
그림3. APL의 제작 모식도
2018.10.31
조회수 9993
-
한동수, 신진우 교수, 느린 인터넷 환경에서도 고화질 영상 감상 기술 개발
〈 (왼쪽부터) 김재홍, 정영목 석사과정, 여현호 박사과정, 한동수, 신진우 교수 〉
우리 대학 전기및전자공학부 신진우, 한동수 교수 연구팀이 딥러닝 기술을 이용한 인터넷 비디오 전송 기술을 개발했다.
여현호, 정영목, 김재홍 학생이 주도한 이번 연구 결과는 격년으로 개최되는 컴퓨터 시스템 분야의 유명 학술회의인 ‘유즈닉스 OSDI(USENIX OSDI)’에서 10월 10일 발표됐고 현재 국제 특허 출원을 완료했다.
이 기술은 유튜브, 넷플릭스 등에서 비디오를 사용자에게 전송할 때 사용하는 적응형 스트리밍(HTTP adaptive streaming) 비디오 전송기술과 딥러닝 기술인 심층 콘볼루션 신경망(CNN) 기반의 초해상화를 접목한 새로운 방식이다.
이는 열악한 인터넷 환경에서도 고품질, 고화질(HD)의 비디오 시청이 가능할 뿐 아니라 4K, AV/VR 등을 시청할 수 있는 새로운 기반 기술이 될 것으로 기대된다.
기존의 적응형 스트리밍은 시시각각 변화하는 인터넷 대역폭에 맞춰 스트리밍 중인 비디오 화질을 실시간으로 조절한다. 이를 위해 다양한 알고리즘이 연구되고 있으나 네트워크 환경이 좋지 않을 때는 어느 알고리즘이라도 고화질의 비디오를 감상할 수 없다는 한계가 있다.
연구팀은 적응형 스트리밍에 초해상화를 접목해 인터넷 대역폭에 의존하는 기존 적응형 스트리밍의 한계를 극복했다. 기존 기술은 비디오를 시청 시 긴 영상을 짧은 시간의 여러 비디오 조각으로 나눠 다운받는다. 이를 위해 비디오를 제공하는 서버에서는 비디오를 미리 일정 시간 길이로 나눠 준비해놓는 방식이다.
연구팀이 새롭게 개발한 시스템은 추가로 신경망 조각을 비디오 조각과 같이 다운받게 했다. 이를 위해 비디오 서버에서는 각 비디오에 대해 학습이 된 신경망을 제공하며 또 사용자 컴퓨터의 사양을 고려해 다양한 크기의 신경망을 제공한다.
제일 큰 신경망의 크기는 총 2메가바이트(MB)이며 비디오에 비해 상당히 작은 크기이다. 신경망을 사용자 비디오 플레이어에서 다운받을 때는 여러 개의 조각으로 나눠 다운받으며 신경망의 일부만 다운받아도 조금 떨어지는 성능의 초해상화 기술을 이용할 수 있도록 설계했다.
사용자의 컴퓨터에서는 동영상 시청과 함께 병렬적으로 심층 콘볼루션 신경망(CNN) 기반의 초해상화 기술을 사용해 비디오 플레이어 버퍼에 저장된 저화질 비디오를 고화질로 바꾸게 된다. 모든 과정은 실시간으로 이뤄지며 이를 통해 사용자들이 고화질의 비디오를 시청할 수 있다.
연구팀이 개발한 시스템을 이용하면 최대 26.9%의 적은 인터넷 대역폭으로도 최신 적응형 스트리밍과 같은 체감 품질(QoE, Quality of Experience)을 제공할 수 있다. 또한 같은 인터넷 대역폭이 주어진 경우에는 최신 적응형 스트리밍보다 평균 40% 높은 체감 품질을 제공할 수 있다.
이 시스템은 딥러닝 방식을 이용해 기존의 비디오 압축 방식보다 더 많은 압축을 이뤄낸 것으로 볼 수 있다. 연구팀의 기술은 콘볼루션 신경망 기반의 초해상화를 인터넷 비디오에 적용한 차세대 인터넷 비디오 시스템으로 권위 잇는 학회로부터 효용성을 인정받았다.
한 교수는 “지금은 데스크톱에서만 구현했지만 향후 모바일 기기에서도 작동하도록 발전시킬 예정이다”며 “이 기술은 현재 유튜브, 넷플릭스 등 스트리밍 기업에서 사용하는 비디오 전송 시스템에 적용한 것으로 실용성에 큰 의의가 있다”고 말했다.
이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) 방송통신연구개발 사업의 지원을 받아 수행됐다.
비디오 자료 링크 주소 1.
https://www.dropbox.com/sh/z2hvw1iv1459698/AADk3NB5EBgDhv3J4aiZo9nta?dl=0&lst =
□ 그림 설명
그림1. 기술이 적용되기 전 화질(좌)과 적용된 후 화질 비교(우)
그림2. 기술 개념도
그림3. 비디오 서버로부터 비디오가 전송된 후 저화질의 비디오가 고화질의 비디오로 변환되는 과정
2018.10.30
조회수 12785
-
강승균 교수, 신경치료 후 몸에서 자연 분해되는 전자약 개발
〈 강 승 균 교수 〉
우리 대학 바이오및뇌공학과 강승균 교수 연구팀이 美 노스웨스턴 대학 구자현 박사와의 공동 연구를 통해 절단된 말초신경을 전기치료하고 역할이 끝나면 몸에서 스스로 분해돼 사라지는 전자약을 개발했다.
몸에 녹는 수술용 실이 대중화된 것처럼 생분해성 무선 전자약을 통해 앞으로는 병원을 찾지 않고도 집에서 물리치료를 받듯 전기치료를 받는 시대를 맞이할 수 있을 것으로 기대된다.
이번 연구결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 10월 8일자 온라인 판에 게재됐다. (논문명 : 비약리학적 신경재생 치료를 위한 생분해성 무선전자 시스템, Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy)
말초신경 손상은 국내에서 연간 1만 건 이상 발생할 정도로 빈도가 높은 외상 중 하나이다. 신경의 재생 속도가 얼마나 신속하게 이뤄지느냐가 근육 회복율 및 후유증을 결정하는 중요 요소이며 재생속도가 현저히 저하되면 슈반세포의 소멸로 신경재생이 불가능해지거나 탈 신경 지연에 의한 영구 근육장애를 유발한다.
따라서 신경재생을 가속하기 위한 노력이 지속돼 왔고 전기적 자극을 통해 신경재생을 촉진시키는 전자약의 효능이 주목을 받고 있다.
전자약이란 전기 신호를 통해 체내의 장기, 조직, 신경 등을 자극해 세포의 활성도를 높여 재생속도 향상과 생체반응이 활발히 이뤄지도록 치료하는 기술이다. 전자약을 통해 손상된 신경을 전기자극하면 신경 세포가 활성화되며 축색돌기의 분화가 가속돼 신경재생이 빨라져 치료효과를 극대화할 수 있다.
이러한 전자약의 효과적인 성능에도 불구하고 치료 수술의 복잡성과 이로 인한 2차 손상의 위험성이 커 신경 치료에 직접적으로 활용하지 못했다.
전기 신호를 전달하기 위해서는 전선으로 머리카락 두께의 신경을 감싸야 하는데 치료 후에 신경을 감쌌던 전선을 다시 제거하는 과정이 매우 어렵고 자칫하면 제거 과정에서 2차 신경손상으로 이어질 수 있다. 또한 장기적인 전기 치료가 필요한 경우에는 매번 수술을 반복해야하는 한계가 있었다.
연구팀은 문제 해결을 위해 초박막형 실리콘과 유연성을 갖춘 생분해성 고분자를 이용해 300마이크로 수준 두께의 매우 얇고 유연성을 갖추고 있을 뿐 아니라 체내에서 수개월 내에 분해되는 전자약을 개발했다.
개발한 전자약은 체내에서 무선으로 작동되고 사용이 종료된 후 몸속에서 녹아 흡수되기 때문에 별도의 제거수술이 필요하지 않다. 따라서 추가 수술 없이도 반복적인 전기치료를 할 수 있으며 제거를 위한 수술도 필요하지 않아 2차 위험성과 번거로움을 근본적으로 해결할 수 있는 기술이다.
연구팀은 생분해성 무선 전자약 기술이 말초신경의 치료와 더불어 외상성 뇌손상 및 척추손상 등 중추신경의 재활과 부정맥 치료 등을 위한 단기 심장 박동기에도 응용 가능할 것으로 예상했다.
강 교수는 “최초로 생분해성 뇌압측정기를 개발해 2016년 네이처 紙에 논문을 게재한 뒤 약 2년 만에 치료기술로서의 의료소자를 성공적으로 제시했다”며 “생분해성 전자소자의 시장에서 우리나라가 중추적인 역할을 수행할 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 생분해성 무선 전자소자의 생분해성 데모 예시
그림2. 다리신경 모델에 적용된 생분해성 무선 전자약의 삽입 모형도
그림3. 생분해성 전자약의 신경치료 시나리오 모식도
2018.10.22
조회수 11694
-
김신현 교수, 달걀 속 살충제 성분, 현장 즉시 검출 기술 개발
〈 김신현 교수, 김동재 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀과 재료연구소(소장 이정환) 김동호 박사 공동 연구팀이 생체 시료에 들어있는 미량의 분자를 직접 검출할 수 있는 센서를 개발했다.
연구팀은 개발한 센서를 통해 다양한 종류의 살충제 성분을 검출하는데 성공했다. 특히 국내 및 유럽에서 문제가 됐던 달걀 속 살충제 성분인 피프로닐 술폰(Fipronil sulfone)을 시료 전처리 없이 검출할 수 있음을 증명했다.
연구팀의 센서는 전하를 띠는 하이드로젤 미세입자 내부에 금 나노입자 응집체를 캡슐화한 형태로 생체 시료 내에 존재하는 분자를 직접 분석해야 하는 광범위한 분야에 적용 가능할 것으로 기대된다.
김동재 박사과정이 1저자로 참여한 이번 연구는 나노분야의 국제 학술지 ‘스몰(Small)’ 10월 4일자 내부표지 논문으로 게재됐다.(논문명 : SERS-Active Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples, 생체 시료의 분자 크기 및 전하 선택적 분석을 위한 표면증강라만산란용 마이크로젤)
분자가 레이저에 노출되면 ‘분자 지문’이라고 불리는 고유의 라만(Raman) 신호를 보인다. 하지만 일반적으로 라만 신호의 세기는 매우 낮아 실질적인 분자 감지에 사용이 어렵다.
연구팀은 금속 나노구조의 표면에서 발생하는 표면 플라즈몬 공명 현상이 강한 세기의 기장을 형성하는 점을 이용해 라만신호를 현저히 증가시켰다. 이를 표면증강라만산란 현상이라고 한다.
이 표면증강라만산란 현상에 의해 금속 나노구조 표면에 존재하는 분자의 라만신호는 크게 증가시킬 수 있지만 이를 일반적인 생체 시료에 직접 적용하는 것은 어렵다. 생체 시료에 존재하는 다양한 크기의 단백질들이 금속 표면에 비가역적으로 흡착해 실제 분석이 필요한 분자의 접근을 막기 때문이다.
일반적으로 사용되는 생체 시료 분석법은 대형 장비를 이용한 시료 전처리 과정이 필수이다. 하지만 이로 인해 시료의 신속한 현장 분석이 어려워 시간과 비용을 증가시킨다.
연구팀은 시료의 정제 과정 없이 분자를 직접 검출하기 위해 하이드로젤에 주목했다. 하이드로젤은 친수성(親水性) 나노 그물 구조를 이루고 있어 단백질처럼 크기가 큰 분자는 배제하고 작은 크기의 분자만을 내부로 확산시킨다. 또한 하이드로젤이 전하를 띠는 경우 반대 전하를 띠고 있는 분자를 선택적으로 흡착시켜 농축할 수 있다.
연구팀은 이러한 원리를 센서 구현에 적용시키기 위해 미세유체기술을 이용했다. 이를 통해 금 나노입자 응집체를 형성하는 동시에 전하를 띠는 하이드로젤 미세입자 안에 캡슐화 하는데 성공했다.
하이드로젤 미세 입자는 생체 시료에 도입돼 단백질로부터 금 나노입자 응집체를 보호하고, 동시에 반대 전하를 띠는 표적 분자를 응집체 표면에 선택적으로 농축시킨다. 이를 통해 표적 분자의 라만 신호는 단백질의 방해 없이 증대되며 시료의 전처리 과정 없이 빠르고 정확한 분자 검출이 가능해진다.
김신현 교수는 “새롭게 개발한 라만 센서는 식품 내 살충제 성분 검출 뿐 아니라 혈액과 소변, 땀 등 인체 속 시료에 들어있는 약물, 마약 성분 등 다양한 바이오마커의 직접 검출에도 사용 가능하다”고 말했다.
재료연구소 김동호 박사는 “시료 전처리가 필요없기 때문에 현장에서 시료의 직접 분석이 가능해 시간과 비용의 혁신적 절감이 가능해질 것이다”고 말했다.
이번 연구결과는 재료연구소의 기관 주요사업과 한국연구재단의 중견연구자지원사업 및 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. small 저널 내부표지
그림2. 시료 전처리 없이 분자 선택적 라만 분석이 가능한 하이드로젤 기반 라만 센서의 원리
그림3. 분자 전하 선택적 농축 및 배제를 보여주는 현미경 사진
2018.10.18
조회수 13594
-
김상욱 교수, 홍합접착제 이용해 성능 높인 그래핀 섬유 개발
〈 김인호 박사과정, 김상욱 교수〉
우리 대학 신소재공학과 김상욱 교수 연구팀이 흑연계 그래핀을 이용해 우수한 물성을 갖는 신개념의 탄소섬유를 개발했다.
연구팀이 개발한 탄소섬유는 홍합접착제로 잘 알려진 폴리도파민(poly-dopamine)을 이용해 그래핀 층간 접착력을 높여 고강도, 고전도도를 갖는다. 이 신소재는 직물형태의 다양한 웨어러블 장치용 원천소재로 활용 가능할 것으로 기대된다.
김인호 박사과정이 1저자로 참여한 이번 연구는 재료과학분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 10월 4일자 표지논문으로 선정됐다. (논문명 : Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity, 홍합접착제를 이용한 구조적 결함 제어를 통한 고강도/고전도도의 그래핀 액정 섬유 제조)
김상욱 교수 연구팀은 그래핀이 액체에 분산됐을 때 액정을 형성하는 새로운 현상을 최초로 밝히고 관련 원천특허를 보유하고 있다. 이후 그래핀 액정을 기반으로 하는 다양한 신소재 관련 후속연구를 통해 해당 분야를 선도하고 있다.
최근에는 그래핀 액정을 이용한 값싼 습식 섬유공정을 통해 기존 탄소섬유보다 훨씬 저렴한 탄소섬유의 제조가 가능한 것으로 규명됐다.
그러나 현재까지의 공정으로는 섬유 형성 과정에서 그래핀 층의 접힘 현상이 발생해 공극이 발생한다는 고질적인 문제점이 있다. 이러한 구조적 결함은 탄소섬유의 기계적 물성 뿐 아니라 전기전도성도 취약하게 만든다.
김 교수 연구팀은 문제 해결을 위해 자연계의 홍합에서 영감을 얻어 개발된 고분자인 도파민의 접착 성질에 주목했다. 다양한 분야에서 연구되는 이 도파민을 이용하면 그래핀 층간의 접착력을 증가시켜 구조적 결함을 방지하는 효과를 기대할 수 있다.
연구팀은 이를 통해 구조적 결함이 제어된 고강도의 탄소섬유 제작에 성공했다. 또한 폴리도파민의 탄화과정을 통해 전기전도도 역시 향상된 섬유를 제조하는 데 성공했다.
연구팀은 도파민에 열처리를 가하면 그래핀과 유사한 구조를 갖는다는 이론을 바탕으로 그래핀 액정 상에서 도파민의 고분자화 조건을 최적화시켰고, 이를 섬유화해 기존 그래핀 섬유의 본질적인 결함 제어 문제를 해결했다.
또한 도파민의 구조 변환을 통해 기존 고분자의 근본적 한계인 전도도 측면에서 손해를 보지 않으면서, 도파민 분자에 존재하는 질소의 영향으로 전기전도도 측면에서도 물성이 향상됨을 확인했다.
연구를 주도한 김상욱 교수는 “그래핀 액정을 이용한 탄소섬유는 기술적 잠재성에도 불구하고 구조적 한계를 극복해야 하는 한계가 있었다”며 “이번 기술은 추후 복합섬유 제조 및 다양한 웨어러블 직물기반 응용소자에 활용 가능할 것이다”고 말했다.
신소재공학과 박정영 교수, KIST 정현수 박사의 지원을 받아 수행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업(하이브리드인터페이스기반 미래소재연구단), 나노․소재원천기술개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 머티리얼즈 표지
그림2. (좌) 일반적인 그래핀 섬유의 단면과 (중), (우) 도파민을 이용하여 두단계로 결함 제어된 후의 그래핀 섬유의 단면의 전자현미경 이미지
2018.10.17
조회수 15922
-
김도현 교수, 2차원 나노소재 분산용액 양산 기술 개발
〈 김도현 교수 연구팀 〉
우리 대학 생명화학공학과 김도현 교수 연구팀이 수력 공정의 전단력(剪斷力)과 혼합특성을 이용해 2차원 나노소재 분산용액을 대량생산할 수 있는 기술을 개발했다.
2차원 나노소재 분산용액은 전자, 에너지 저장 및 전환 소자 개발에 사용되는 용액기반 공정에 직접 적용 가능해 소자의 다양화와 성능 개선을 실현시키는 데 기여할 것으로 기대된다.
동국대학교 한영규 교수(제일원리 계산), 강원대학교 최봉길 교수(용액 특성 평가), 한국화학연구원 황성연 박사(물질 특성 평가) 연구팀과 공동으로 진행하고 정재민 박사가 1저자로 참여한 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 8월 12일자에 온라인 게재됐고, 논문의 우수성을 인정받아 표지논문에 선정됐다. (논문명 : Hydraulic Power Manufacturing for Highly Scalable and Stable 2D Nanosheet Dispersions and Their Film Electrode Application)
2차원 소재는 나노사이즈의 두께로 박리됐을 때 새롭고 우수한 물리, 화학적 특성이 나타나는 장점이 있어, 다양한 2차원 나노소재의 대량생산연구가 진행되고 있다.
그러나 높은 물리적 힘이나 화학적 반응성만을 이용하는 기존 박리기술들은 용량이 증가함에 따라 2차원 소재에 균일한 에너지를 주는 것이 힘들고 고비용과 많은 시간이 소요된다는 한계가 있다.
또한 나노두께로 박리된 2차원 나노시트들은 표면에너지의 증가로 다시 원래 두께로 돌아가려는 성질이 있어 유기용매나 계면활성제 등의 사용이 필수 조건이기 때문에 농도 제어나 응용성에 한계가 있다.
연구팀은 최근 2년간의 연구를 통해 반응기 내 최적화된 전단력과 혼합효율이 2차원 소재의 박리에 가장 효율적임을 규명했다. 연구팀은 증가된 반응기 용량에서도 이를 균일하게 유지할 수 있는 유동 모델과 응용 분야에 유용한 분산제를 선택해 수용액의 물리적 박리를 통한 고농도 2차원 나노소재의 고속 대량 생산기술을 개발했다.
연구팀은 테일러-쿠에트 흐름 기반의 유동 반응기를 제작했다. 테일러-쿠에트 흐름은 반응기 용량의 증가에도 높은 전단응력과 효과적인 혼합 효과를 가져 균일한 사이즈로 2차원 나노소재가 박리될 수 있다는 장점을 갖는다.
연구팀은 2차원 나노소재를 소량으로도 수용액상 안정화 및 분산시킬 수 있는 이온성 액체를 동국대 한영규 교수팀의 제일원리 계산을 통해 분산제로 선정하여 박리효율과 분산농도를 극대화했다.
연구팀은 개발한 분산용액의 성능을 확인하기 위해 막 여과 공정 (membrane filtration process)과 잉크젯 프린터의 잉크에 용액을 적용했다.
막 여과 공정은 매우 빠르고 간단하게 다양한 두께의 필름을 형성할 수 있는 방법으로 최근 각광받는 제한된 공간 내 높은 용량을 갖는 부피 대비 고용량 전극의 제조방법으로 응용되고 있다.
연구팀은 고속생산 된 그래핀 분산용액을 막 여과 공정에 적용해 유연하고 높은 전도성의 마이크로 전극 필름을 만들었고, 슈퍼캐패시터 소자의 전극으로 적용했을 때 안정적이고 고성능 용량을 보임을 확인했다.
연구팀은 고속생산 된 그래핀(graphene), 이황화 몰리브덴(MoS2), 붕화 질소(BN) 나노소재 분산용액을 잉크로 사용해 A4용지에 수 마이크로 두께의 나노소재 패턴을 만들었다. 그 중 그래핀 나노소재 패턴은 인쇄 후에도 추가적인 열처리 없이 기존의 전기적 성질을 잃지 않아 패턴 기반의 전기회로 역할을 하는 것을 확인했다.
김 교수는 “연구팀의 수용액상 나노소재 고속, 대량 생산기술은 다양한 종류의 2차원 소재들도 쉽게 적용 가능하다”며 “전자, 바이오센서, 에너지 저장/전환 시스템의 고효율 및 저비용 생산 최적화가 가능할 것이다”고 말했다.
이번 연구는 한국연구재단과 한국화학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
2018.10.11
조회수 11883