〈 우경철 박사과정, 김상규 교수, 강도형 박사과정 〉
우리 대학 화학과 김상규 교수 연구팀이 분자의 결합이 떨어지는 화학반응의 교차점에서 발생하는 두 가지 반응 경로를 실시간으로 관찰해 정확한 속도를 측정하는 데 성공했다.
김 교수는 지난 2010년 실험을 통해 두 반응의 위치에너지의 곡면이 만나는 화학반응의 핵심인 ‘원뿔형 교차점’의 존재와 분자구조를 규명한 바 있다.
이어서 이번 연구를 통해 화학반응의 교차점에서 발생하는 두 반응의 속도를 정확하게 측정함으로써 관련 연구의 이론적, 실험적 발전에 기여할 것으로 기대된다.
우경철, 강도형 박사과정이 1저자로 참여한 이번 연구는 ‘미국화학회지(JACS)’ 11월 7일자 온라인 판에 게재됐다.
빛을 받아 일어나는 화학반응은 전자적으로 들뜬 상태에서의 상호작용을 통해 발생한다. 일반적으로 전자상태 간의 상호작용은 한 개의 경로를 갖는 것이 보통이다. 하지만 양자상태에 따라 반응속도가 변하는 현상이 종종 발견되기도 한다.
이렇게 두 개 이상의 서로 다른 성격을 지닌 위치에너지곡면들이 교차하는 지점을 원뿔형 교차점(conical intersection)이라고 부른다. 이 구간은 화학반응에 대한 양자역학적 기술을 가능케 하는 ‘본-오펜하이머 가정(Born Oppenheimer approximation)’이 성립하지 않는 영역으로 알려져 있다.
김 교수는 2010년 분광학적 방법을 통해 이 원뿔형 교차점의 존재를 발견했고 이는 곧 에너지곡면 교차점의 양자상태 반응의 시작점임을 증명했다. 또한 여기서 출발한 반응은 매우 다른 반응속도를 가진 서로 다른 두 경로로 분리돼 진행된다는 것을 밝혔다.
그러나 일반적인 분광법을 통해서 교차점의 시작점은 알 수 있었지만 각 곡면이 갖는 속도를 측정하는 것은 불가능했다.
연구팀은 기존의 분광법이 아닌 피코초(10-12초) 시간분해능 분광법을 이용했다. 기존 기술은 나노초를(10-9초) 기반으로 한 실험을 이용한하기 때문에 에너지 부분에서는 정확하게 측정할 수 있지만 나노초로는 반응의 속도를 측정할 수 없다. 화학반응이 나노초 이내에서 이뤄지기 때문이다.
연구팀의 피코초 시간분해능 분광법은 에너지와 시간 모두 정확하게 측정할 수 있기 때문에 원하는 결과를 얻을 수 있었다.
연구팀은 본-오펜하이머 가정이 성립하는 단열 반응(adiabatic reaction)과 본-오펜하이머 가정이 성립하지 않는 비단열 반응(non-adiabatic reaction) 각각 두 개의 경로가 활성화되고 반응 속도 뿐 아니라 생성물의 에너지 분포 등이 큰 차이를 보임을 확인했다.
자유도의 수가 많은 복잡한 분자 반응에서 양자상태에 근거한 반응교차점에서의 비 단열성을 정량적으로 관찰하고 설명한 경우는 처음이다. 이를 통해 향후 있을 이론적, 실험적 연구의 촉진에 기여할 것으로 기대된다.
김 교수는 “기초과학 연구는 인류가 자연을 이해하고 지혜롭게 이용하는데 필수적이며 기초과학의 발전 없이 새로운 기술적 진보를 기대하기는 힘들다”며 “이번 연구를 통해 기초과학의 연구에 열정을 다할 수 있는 젊은 학문적 기대주들이 많이 성장할 수 있길 바란다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 반응교차점에서 시작된 반응 그래프, 단열반응경로 (빨간색)와 비단열반응경로 (파란색)로 나눠짐
그림2. 반응교차점 입체도
그림3. 반응교차점 메커니즘 개념도
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다. 유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다. 이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기
2022-10-04우리 대학 화학과(자연과학연구소장) 김상규 교수가 오는 4월 21일~23일 수원 컨벤션센터에서 온라인으로 개최하는 대한화학회 학술발표회에서 학술상(Excellence Academic Award)를 수상한다. 대한화학회는 매년 탁월한 논문을 발표하여 화학의 학문적 발전에 크게 기여한 1인을 선발해 학술상을 수여하고 있다. 김상규 교수는 실험물리화학분야 중 들뜬 상태 반응동역학 분야를 오랫동안 연구하여, 특히 비단열동역학(Nonadiabatic Dynamics) 중 일어나는 화학반응의 자세한 전모를 분자수준에서 기술한 점을 인정받았다. 수상 후 4월 23일 'Nonadiabatic Reaction Dynamics in the excited states of polyatomic Molecules"라는 주제로 기념 강연을 가질 예정이며, 온라인을 통해 학술발표회 참가자들에게 중계될 예정이다.
2021-04-01재단법인 3·1문화재단(이사장 김기영)은 제62회 3·1 문화상 수상자로 우리 대학 화학과 이효철 교수를 선정했다고 31일 밝혔다. 자연과학 부문 학술상을 받는 이효철 교수는 화학반응에서 분자 내 결합 형성의 근본적 원리 규명에 매진하면서 고정관념을 타파하는 혁신적인 연구 결과들을 발표하는 등 구조동역학 분야를 선도하는 세계적 석학으로서 대한민국의 화학 발전에 크게 기여했다. 3·1 문화상은 3·1운동 정신을 이어받아 조국의 문화 향상과 산업 발전의 기반을 제공하는 취지에서 1959년 제정돼 이듬해 3월 1일 첫 시상식을 열었다. 1966년 8월에 재단법인 3·1문화재단 설립으로 이어져, 현재 대한유화 주식회사(회장 이순규)에 의해서 운영되는 공익 포상 제도다. 우리 대학 이효철 교수 외에도 인문·사회과학 부문 학술상에 이성규 서울대 명예교수, 예술상에 윤후명 소설가, 기술·공학상에 안종
2021-02-01우리 대학 화학과 백무현 교수(기초과학연구원(IBS) 분자활성 촉매반응 부연구단장) 연구팀은 한상우 우리 대학 화학과 교수(나노텍토닉스 창의연구단장)팀과의 공동연구를 통해 전압을 가하는 것만으로 분자의 반응성을 조절할 수 있는 ‘만능 작용기’를 개발했다. 연구진은 분자의 전기적 성질을 결정하는 원자단인 작용기*를 전극이 대신할 수 있음을 증명하고, 전극을 활용해 다양한 화학반응을 제어하는데 성공했다. 여러 작용기의 역할을 대신할 수 있는 하나의 만능 작용기를 개발한 것이다. * 유기화합물의 전기적 성질을 결정짓는 원자단. 에탄올(C2H5OH)의 하이드록시기(-OH), 아세톤(CH3-CO-CH3)의 카보닐기(-CO-) 등이 작용기에 해당한다. 과학기술정보통신부(장관 최기영)는 이번 성과가 10월 9일 03시(한국시간) 세계 최고 권위의 학술지 사이언스(Science, IF 41.845)에 게재되었다고 밝혔다. 작용기는 전자를 끌어당기거나/밀어내는 효과를
2020-10-12(좌측부터) 고동연 교수, 정석영, 슈브로닐 센구프토, 홍지현, 이건호, 박규범, 조슈아 훌리오 아디드자자 학생 우리 대학 학부생으로 구성된 카이탈리스트(KAItalyst, 지도교수 생명화학공학과 고동연)팀이 지난 7월 20일(토) 대전 본원에서 열린 미국 화학공학회(AIChE) 케미카(Chem-E-Car) 한국 지역 예선 대회에서 우승을 차지했다. 케미카 대회는 화학반응으로 구동되는 모형 자동차를 제작하고 그 차량을 제어하는 기술 수준을 겨루는 대회다. 지난 1999년 미국 화학공학회에서 첫 대회를 개최한 이후 전 세계 대학생들이 참여하고 있다. 우리대학은 2014년 처음으로 대회에 출전해 2016년에는 최종 우승을 차지했으며, 2017년과 2018년에는 모스트 컨시스턴트 어워드(Most Consistent Award)를 연속으로 수상했다. 미국 화학공학회에는 대회에 기여한 KAIST의 공로와 역량을 인정해 올해는 공식 지역 예선을 유치할 것을 요청해왔다. 이에 생명화학
2019-07-31