-
조은애 교수, 사용량 90% 줄이고 수명 2배 늘린 백금촉매 개발
〈 조 은 애 교수 〉
우리 대학 신소재공학과 조은애 교수 연구팀이 백금 사용량을 90% 줄이면서 동시에 수명은 2배 향상시킨 연료전지 촉매를 개발했다.
임정훈 연구원이 1저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 4월호(4월 11일자)에 게재됐다.
연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 기존 발전 설비를 대체할 수 있다. 연료전지를 주원료로 이용하는 수소 전기차 한 대는 성인 70명이 호흡하는 공기로부터 미세먼지와 초미세먼지를 98% 이상 정화할 수 있는 달리는 공기청정기로 불린다.
하지만 이 연료전지에 전극촉매로 사용되는 백금의 비싼 가격은 상용화를 가로막는 큰 장벽이다. 또한 현재 개발된 탄소 담지 백금 나노촉매는 상용화 기준에 못 미치는 산소환원반응 활성과 내구성을 보여 한계로 남아있다.
연구팀은 기존 백금 기반 촉매들의 산소환원반응 활성 및 내구성을 증진하는 것을 목표했다. 우선 백금과 니켈 합금 촉매를 합성한 뒤 성능 증진을 위해 여러 금속 원소를 도입한 결과 갈륨이 가장 효과적임을 발견했다.
연구팀은 백금-니켈 합금 촉매를 팔면체 형태의 나노입자로 만들고 나노입자의 표면에 갈륨을 첨가해 기존 백금 촉매에 비해 성능을 12배 향상시켰다.
특히 기존 연료전지 촉매들이 대부분 실제 시스템에 적용하는 데는 실패한 반면 조 교수 연구팀은 개발한 촉매를 이용해 연료전지를 제작해 가격을 30% 줄이고 수명도 2배 이상 향상시켜 실제 적용이 가능함을 증명했다.
1저자인 임정훈 연구원은 “기존 합성 방법으로 제조 가능한 백금 니켈 합금 촉매 표면에 갈륨을 첨가해 가열만 하면 촉매가 합성되기 때문에 기존 공정에 쉽게 도입이 가능하고 대량 생산이 용이해 실용화 가능성이 높다.”고 말했다.
조은애 교수는 “연료전지의 가격저감과 내구성 향상을 동시에 달성한 연구 성과로 수소 전기차, 발전용 연료전지의 시장경쟁력 제고가 기대된다”고 말했다.
이번 연구는 에너지기술평가원, 한국연구재단 기후변화대응사업과 국방과학연구소의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 내구성 평가 후의 촉매 입자 형상 변화
2018.04.17
조회수 16701
-
박병국, 김갑진 교수, 고효율 스핀 신소재 개발
〈 박 병 국 교수, 김 갑 진 교수 〉
우리 대학 신소재공학과 박병국 교수와 물리학과 김갑진 교수 연구팀이 자성메모리(Magnetic Random Access Memory, MRAM) 구동의 핵심인 스핀전류를 효율적으로 생성하는 새로운 소재를 개발했다.
이번 연구는 ‘네이처 머티리얼즈(Nature Materials)’ 3월 19일자 온라인 판에 게재됐다.
이 연구는 고려대 이경진 교수, 미국국립표준연구소(NIST)의 Mark Stiles 박사 연구팀 등과 공동으로 수행됐다.
자성메모리는 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있고 집적도가 높으며 고속 동작이 가능해 차세대 메모리로 주목받고 있다.
자성메모리의 동작은 스핀전류를 자성소재에 주입해 발생하는 스핀토크로 이뤄지기 때문에 스핀전류의 생성 효율이 자성메모리의 소모 전력을 결정하는 핵심 기술이다.
이번 연구에서는 강자성-전이금속 이중층이라는 새로운 소재 구조에서 스핀전류를 효과적으로 생성할 수 있음을 이론 및 실험을 통해 규명했다. 특히 이 구조는 기존 기술과 달리 생성된 스핀전류의 스핀 방향을 임의로 제어할 수 있다.
이 소재를 차세대 메모리로 주목받는 스핀궤도토크 기반 자성메모리에 적용하면 스핀토크 효율이 높아지고 외부자기장 없이 동작이 가능해 스핀궤도토크 자성메모리의 실용화를 앞당길 수 있을 것으로 기대된다.
스핀궤도토크 자성메모리는 고속 동작 및 비휘발성 특성으로 S램(D램에 대응하는 반도체 기억소자로 전원만 공급하면 기억된 정보가 계속 소멸하지 않는 램) 대비 대기전력을 획기적으로 감소시켜 모바일, 웨어러블, 사물인터넷용 메모리로 활용 가능하다.
이번 연구성과는 과학기술정보통신부 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 강자성-전이금속 이중층에서 스핀전류 생성 개략도
2018.04.13
조회수 17845
-
김수빈 학생, 영국왕립화학회 학술지 표지논문 게재
〈 김 규 한 연구교수, 김 수 빈 학생 〉
우리 대학 학부 4학년 김수빈 학생의 이중 에멀젼(Double Emulsion) 형성 관련 논문이 국제 학술지의 표지논문에 선정됐다.
우리 대학의 학부생 연구지원 프로그램인 URP(Undergraduate Research Participation)를 통한 연구 참여가 활발해지면서 학부생이 1저자로 참여한 논문이 국제 학술지에 등재되는 경우가 많아지고 있다. 김수빈 학생은 URP 프로그램을 통한 연구로 국제 학술지 게재를 넘어 표지논문에 선정되는 성과를 이뤘다.
김수빈 학생의 논문은 세계적으로 권위 있는 학술단체인 영국왕립화학회(Royal Society of Chemistry)가 발간하는 국제 학술지 ‘소프트 매터(Soft Matter)’2018년 2월 7호 표지논문에 게재됐다. (논문명: Controllable one-step double emulsion formation via phase inversion)
특히 김수빈 학생은 이번 표지 이미지를 자신의 상상과 관찰을 바탕으로 직접 디자인해 그 가치를 더 높였다.
김 군이 수행한 이번 연구는 이중 에멀젼(Double Emulsion)의 안정성 향상 관련 연구로 이중 에멀젼이란 에멀젼 방울 안에 또 다른 액체로 구성된 방울이 서로 섞이지 않고 캡슐화 된 상태로 구성된 형태를 뜻한다.
이중 에멀젼은 캡슐화를 통한 보유 능력이 탁월해 식품, 화장품, 약물 전달 등 다양하게 사용 가능하다. 그러나 이중 에멀젼을 대량 생산할 수 있는 기존 기술은 내부의 액체 방울을 만든 뒤 이를 캡슐화 하는 두 단계의 공정에서 액체 방울이 쉽게 파괴되고 개발 이후 이중 에멀젼의 안정성이 보장되지 않는 한계가 있다.
또한 이런 과정에서 이중 에멀젼의 크기와 내부 액체 방울의 비율을 조절하는 데 어려움을 겪고 있다.
김 군은 분자들의 화학 반응처럼 물방울들이 충돌해 일어나는 상 반전(Phase Inversion)의 과정에서 단서를 얻었다. 상 반전이 일어나는 과정에서 이중 에멀젼이 일시적으로 형성됨을 발견했고 이를 바탕으로 이중 에멀젼의 안정성을 높일 수 있는 기준을 제시했다.
이후 지속된 연구에서 폴리메틸 메타아크릴레이트(PMMA)와 소수성 실리카 입자가 이 조건을 만족하는 것을 찾아내 한 번의 공정으로 안정적인 이중 에멀젼을 만들 수 있음을 증명했다. 추가적으로 PMMA와 나노입자의 양을 조절해 이중 에멀젼 내부 물방울의 개수와 부피를 조절하는데 성공했다.
2014년 총장장학생(KPF : KAIST Presidential Fellowship)이자 대통령과학장학생으로 입학한 김 군은 화학과 생명화학공학을 배우고 연구하며 직접 관찰하기 어려운 현상을 머릿속으로 상상하며 이를 바탕으로 가설을 세우고 연구해왔다.
김 군이 일찍부터 연구에 몰두할 수 있었던 것은 학부생 연구지원(URP) 프로그램에 두 차례 참여했던 경험 덕분이다. 학부 2학년 때에는 물리적 힘을 이용해 식품, 화장품에 널리 쓰이는 고내부상 에멀젼을 만드는 방법을 연구했고 1년 후엔 콜로이드 입자를 이용해 기저귀의 원료가 되는 다공성 고 흡수성 수지를 만드는 연구를 수행했다.
김 군은 두 번의 URP 프로그램에서 우수상을 수상했고 이 연구 결과 중 일부를 저명 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 2저자로 게재하기도 했다.
김수빈 학생은 “평소에 복수전공을 통해 생명화학공학과에서 에멀젼의 기초가 되는 유체역학, 계면 물리학 등을 배우고 화학과에서 분자 구조를 배워 왔던 것을 융합함으로서 좋은 결과가 나온 것 같다”고 말했다.
이어 “이번 연구 결과로 이중 에멀젼의 상용화에 기여할 수 있을 것으로 기대한다”며 “앞으로도 정확한 원리를 파악하고 이를 바탕으로 정교하게 컨트롤 할 수 있는 화학제품을 만들어 내고 싶다”고 말했다.
이번 연구는 URP 프로그램 및 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 김수빈 학생이 직접 디자인한 저널 표지논문
2018.04.12
조회수 19872
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 23998
-
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉
우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다.
기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다.
특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다.
이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다.
리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다.
하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다.
리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다.
전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다.
이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다.
변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다.
이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다.
□ 그림 설명
그림1. 리튬과산화물 도식 및 투과전자현미경 사진
그림2. 충전 속도 특성 비교
그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 18799
-
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다.
연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다.
윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다.
최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다.
리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다.
하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다.
이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다.
그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다.
연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다.
연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다.
이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다.
또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다.
1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다.
김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다.
이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다.
□ 그림 설명
그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성
그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도
그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 19085
-
최경철 교수 연구팀, 웨어러블 광 치료 패치 개발
우리대학 전기및전자공학부 최경철 교수와 전용민 연구원이 서울대 분당병원 박경찬 교수/최혜령 연구원과 OLED로 웨어러블 광 치료 패치를 개발하는데 성공했다. 광 치료는 빛을 쬐어 인체의 생화학 반응을 촉진시키는 치료법으로, 병원 등에 설치된 LED 또는 레이저 기기를 통해 상처를 치유하는 데 널리 사용되고 있다.
기존 기기는 유연하지 못하고 균일하게 빛을 조사하기 어려우며 열이 발생하는 문제가 있어서, 치료효과를 높이고 싶어도 인체에 밀착할 수 없는 한계가 있었다.
최경철 교수 연구팀이 개발한 광 치료 패치는 가볍고 유연해 피부에 부착한 채 일상생활을 하면서 고효율 치료를 지속할 수 있다. 구성요소인 OLED, 배터리, 과열방지 장치(히트싱크), 패치가 모두 얇은 막의 형태로 디자인됐고, 두께가 1㎜ 미만, 무게가 1g 미만이다. 300시간 이상 장시간 작동되며, 반경 20㎜ 이내로 휘어진 상태에서도 구동될 수 있으므로 다양한 인체 부위에 부착할 수 있다.
42℃ 이하에서 구동돼 저온화상의 위험도 없으며, 국제표준화기구(ISO) 기준의 안전성도 검증됐을 뿐만 아니라 세포증식이 58% 향상되고 세포이동이 46% 향상돼 상처 부위가 효과적으로 아물게 되는 뛰어난 치유효과를 보였다.
연구를 주도한 전용민 박사과정 연구원은 "웨어러블 광 치료 패치의 뛰어난 치료 효과와 편리함으로 인해 앞으로는 병원에 방문하지 않고 약국에서 구매해서 쉽게 광 치료를 받을 수 있을 것"이라며 "광 출력을 조절하면 피부미용/피부암/치매치료/우울증 치료 등 응용 범위를 넓힐 수 있다"라고 말했다.
최경철 교수는 "디스플레이로 응용되는 OLED의 장점을 광 치료와 융합한 기술로서, 휴대용, 고효율의 웨어러블 광 치료 상용화 길을 열 수 있을 것"이라고 말했다. 이번 연구는 과학기술정보통신부/한국연구재단 기초연구사업(선도연구센터)의 지원으로 수행됐으며, 국제학술지 어드밴스드 머티리얼스 테크놀로지 8일 게재됐다.
□ 그림 설명
그림1. 피부에 부착하는 웨어러블 OLED 패치의 구동 사진
그림2. 피부에 부착하는 웨어러블 OLED 패치의 상처치유 효과
2018.03.19
조회수 15505
-
김대수, 이필승 교수, 소유욕을 만드는 뇌 신경회로 발견
“시상하부의 특정 신경을 자극했더니 생쥐가 장난감에 엄청난 집착을 보였습니다. 물건을 가지려는 욕구를 만들어내는 신경으로서 유용한 자원을 탐색하고 소유하려는 욕구를 이해하는데 중요한 발견입니다 ”
사람과 동물은 다양한 사물을 탐색하고 획득하고자 하는 욕구가 있다. 생존을 위한 먹이나 유용한 물건 획득을 위해서다. 세계적으로 열풍이 불었던 포켓몬 고 같은 게임에서 아이템 획득하는데 몰입하는 것도 같은 원리이다. 인간에게 이러한 욕구는 경제활동을 비롯한 다양한 행동의 동기가 된다.
그러나 물건에 대한 욕구는 본능이기에 쉽게 조절할 수 없을뿐더러 잘못된 습관이나 질환으로 이어질 수 있다. 부족함이 없어 보이는 유명인들도 물건을 습관적으로 훔치다가 낭패를 보는 사례를 접하곤 한다. 또한 쓸모없는 물건을 집안에 모으고 버리지 못하는 수집 강박증이나 쇼핑 중독에 빠지는 경우도 있다. 물건에 대한 과도한 집착은 정신 질환의 일종으로 분류돼 있지만 그 원인에 대해서는 정확히 밝혀진 바가 없었다.
KAIST 생명과학과 김대수, 기계공학과 이필승 교수 연구팀은 전시각중추(MPA, Medial preoptic area)라 불리는 뇌의 시상하부 중 일부가 먹이를 획득 및 소유하려는 본능을 만들어낸다는 사실을 밝혔다. 또한 전시각중추 신경을 활용해 동물의 행동과 습관을 조절할 수 있는 기술을 개발했다.
연구팀은 한 쥐에게는 장난감을 갖고 놀게 하고 다른 쥐는 따로 물체를 주지 않은 뒤 뇌를 분석했다. 이 과정에서 MPA(전시각중추) 신경회로가 활성화됨을 발견했다. 그 후 광유전학을 이용해 빛으로 MPA를 자극하자 물체 획득을 위해 실험체가 집착하는 이상행동을 보이는 것을 확인했다.
연구팀은 MPA신경이 수도관주위 회색질(PAG, Periaqueductal gray)로 흥분성 신호를 보내 행동을 만들어낸다는 사실을 규명해 연구팀은 이것을 MPA-PAG 신경회로라 이름 지었다.
김대수 교수는 “쥐가 먹이가 아닌 쓸데없는 물체에 반응하는 놀이행동의 의미를 찾기가 쉽지 않았습니다. MPA-PAG 회로를 자극했을 때 귀뚜라미 등의 먹잇감에 대한 사냥행동이 증가하는 것을 발견했습니다. 이것은 물체를 갖고 노는 것이 먹이 등의 유용한 사물을 획득하는 행동과 동일한 신경회로를 통해 나타남을 의미합니다”고 설명했다. 어린동물이 물체를 가지고 노는 것이 사냥 등 생존에 유용한 기술을 획득하는 것과 깊은 관련이 있다는 발견이다.
연구팀은 MPA가 물건에 대한 집착과 소유욕과 밀접한 관련이 있음을 밝혀낸 뒤 이를 조절하는 기술 개발에 착수했다. 생쥐 머리위에 물체를 장착해 눈앞에서 좌우로 움직일 수 있도록 무선으로 조종하고 MPA-PAG 신경회로를 자극해 생쥐가 눈앞에 물체를 따라가도록 한 것이다. 이것은 고등동물인 포유류의 행동을 원하는 방향으로 조종한 기술로 연구팀은 미다스(MIDAS)라고 명명하였다.
이필승 교수는 “미다스 기술은 동물의 탐색본능을 활용하여 동물 스스로 장애물을 극복하며 움직이는 일종의 자율주행 시스템입니다. 뇌-컴퓨터 접속 기술의 중요한 혁신으로 생각합니다. 앞으로 국내에서도 이러한 연구들이 많이 시도될 수 있도록 지원이 있었으면 좋겠습니다.”고 말했다.
이번 연구는 신경과학과 시스템 공학이라는 접점이 부족해 보이는 두 분야가 만나 적극적인 논의를 통해 매우 모범적인 융합 연구의 사례라는 의미를 갖는다. 생명과학 전공 박세근 박사는 전시각중추가 물건에 집착하는 회로라는 것을 밝혔고, 기계공학 전공인 김대건 박사는 컴퓨터 프로그래밍과 동물 무선제어에 큰 기여를 했다.
공동연구의 중간역할을 한 정용철 박사과정은“서로 용어 조차 다른 신경 과학과 시스템 제어 공학이라는 전혀 다른 두 분야를 서로가 완벽히 이해해야만 했고, 이를 위해 팀원들과 함께 끊임없이 논의하고 연구했습니다. 그 시간이 가장 재미있는 과정이자 가장 큰 과제였습니다.
김 교수는 신경 회로 기능의 중요성을 다시 한 번 실감했을 뿐 아니라 우리 사회에 큰 영향을 끼칠 수 있을 것이라고 의의를 밝혔다.
“수집 강박, 도벽, 게임중독 등을 치료할 수 있는 단서를 제공했다고 생각합니다. 이러한 지식을 통해 만들어진 뇌-컴퓨터 접속기술은 국방, 재난 구조 등에 활용될 것입니다.”
□ 그림 설명
그림1. 소유욕을 이용해 포유동물 행동을 조절하는 MIDAS 시스템 모식도
그림2. 전시각 중추 신경회로가 소유행동을 나타내는 모식도
2018.03.15
조회수 15869
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 18348
-
최민기 교수, 산화 내성 비약적으로 높인 CO2 흡착제 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 산화 내성을 크게 높인 아민 기반의 이산화탄소 흡착제 개발에 성공했다.
이번 연구에서 개발한 이산화탄소 흡착제는 기존 아민 기반 흡착제들의 문제점인 산화를 통한 비활성화 문제를 해결함으로써 실용화가 가능한 정도로 안정성을 끌어 올렸다는 의의를 갖는다.
이번 연구 성과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 20일자 온라인 판에 게재됐다.
지구온난화의 주범인 이산화탄소의 포집을 위해 이산화탄소 흡착제 연구가 활발히 진행되고 있다. 그 중 재생에 필요한 에너지 소요가 적고 무해한 고체 흡착제에 대한 관심이 커지고 있는데 그 중 기공이 발달한 고체 내부에 고분자 형태의 아민을 도입한 종류의 흡착제들이 주목받고 있다.
그러나 기존의 아민 기반 고체 흡착제는 뛰어난 이산화탄소 흡착 성능에도 불구하고 반복적인 사용에 따른 화력발전소의 배기가스 내 산소로 인한 아민의 산화 분해 현상이 발생해 성능이 떨어지는 심각한 안정성 문제가 있다.
연구팀은 상용 고분자 아민에 존재하는 극소량의 철, 구리와 같은 금속 불순물들이 아민의 산화 분해를 가속하는 촉매로 작용하는 것을 발견했다.
연구팀은 이 불순물의 활성을 억제할 수 있는 킬레이트제(chelator)라 불리는 소량의 촉매 독을 주입해 산화 안정성을 비약적으로 높였다. 개발된 흡착제는 92% 이상의 대부분의 흡착성능을 유지했으며 이는 기존 흡착제에 비해 약 50배 이상 증진된 산화 안정성이다.
연구팀은 우수한 이산화탄소 흡, 탈착 특성 뿐 아니라 기존 흡착제들의 고질적 문제점이었던 산화 안정성까지 모두 확보했기 때문에 현재까지 개발된 다른 고체 흡착제들보다 실용화에 가깝다고 밝혔다.
1저자인 최우성 박사과정은 “이번 연구는 고체 이산화탄소 흡착제의 산화 분해 문제점을 획기적으로 개선하여 상용화 수준까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다.
최민기 교수는 “연구팀이 개발하는 이산화탄소 흡착제는 상용화 초기 단계에 진입했고 이미 흡착제를 구성하고 있는 각 요소 기술이 세계를 리드하고 있다”며 “연구 역사가 짧은 만큼 앞으로도 개선할 부분이 많지만 흡착제를 더 발전시켜 세계 최고의 이산화탄소 포집용 흡착제를 개발하겠다”고 말했다.
이번 연구는 과학기술정보통신부의 Korea CCS 2020 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.흡착제 합성 모식도
그림2. 연구에서 개발한 신규 흡착제와 기존 흡착제의 성능 비교
2018.03.07
조회수 16408
-
박태형 박사과정, 권태혁 교수, 해저 점토질에서 불타는 얼음 생성원리 규명
우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다.
이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다.
박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다.
해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다.
점토질 퇴적토에서는 가스 하이드레이트 생성이 어렵다는 것이 일반적인 이론이다. 그러나 최근에는 전 세계적으로 해저 점토질 퇴적층에서 다량의 가스 하이드레이트가 발견되고 있어 기존 이론과 상반된 현상에 대한 원인을 규명하는 것이 과제로 남아 있다.
특히 점토광물 표면은 음전하를 띄고 있는데 이 전하들이 점토표면에 흡착된 물 분자에 상당한 전기적 힘을 가해 분극화시킨다. 또한 점토 표면의 음전하를 상쇄하기 위해 주변에 많은 양이온들이 존재한다.
따라서 보통 조건의 물 분자와 분극화된 조건의 물 분자들의 하이드레이트 결정 생성 양상을 비교하는 것이 연구의 핵심이다. 그러나 점토 주변에 자연적으로 존재하는 양이온들로 인해 실험 연구를 수행할 수 없었다.
연구팀은 기존 연구의 한계 극복을 위해 물에 전기장을 가해 점토 표면과 같이 물 분자들의 분극화를 구현한 뒤 물 분자들의 가스 하이드레이트 결정 생성 속도를 측정했다.
그 결과 점토 표면과 비슷한 크기의 전기장(10kV/m)을 물에 적용했을 때 가스 하이드레이트 결정핵 생성 속도가 약 6배 이상 빨라지는 것을 관찰했다. 이는 물 분자가 전기장에 의해 분극화되면 분자 간 수소 결합이 부분적으로 약해지고 내부에너지가 감소되기 때문인 것으로 밝혀졌다.
연구팀은 전기장이 하이드레이트 생성을 촉진함을 실험적으로 규명하는데 성공함으로써 점토광물의 존재가 하이드레이트 생성을 방해하는 것이 아니라 특정 조건에서는 오히려 하이드레이트 생성을 촉진함을 밝혔다.
권 교수는 “이번 연구를 통해 점토질 퇴적토에서 가스 하이드레이트가 많이 발견되는 이유에 대해 좀 더 이해할 수 있게 됐다”며 “멀지 않은 미래에 인류는 가스 하이드레이트를 에너지 자원으로 생산하고 소비할 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 물 분자의 가스 하이드레이트 결정 생성 실험과 촉진 모식도
그림2. 가스 하이드레이트 생성 촉진(좌)과 억제(우) 반응
2018.03.05
조회수 10996
-
성형진 교수, 미세유체 칩 내 액적 부피 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 고주파수의 음향방사현상을 이용해 미세유체 칩 내 액적의 부피를 정교하게 제어하는 기술을 개발했다.
초소형 미세유체 칩 내에서 극미량의 유체 샘플을 이용해 복잡한 반응 및 실험을 수행하기 위해서는 정교한 미세유체역학기술이 요구된다. 특히 서로 섞이지 않는 두 유체로 구성된 미세액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 액적의 부피를 정교하게 제어하기 위한 액적 분할 기술의 개발을 위해 많은 노력이 있었다.
하지만 지금까지 개발된 미세액적 분할 기술은 정교한 액적 부피 제어가 어렵고 복잡한 시스템이 요구되며 제한된 유체 샘플에만 적용 가능하고 병렬 조작이 어려운 한계를 지니고 있었다.
이번 연구에서 연구팀은 고주파수 음파를 이용해 미세유체 칩 내 움직이는 미세액적에 국소적으로 음향 방사력을 인가해 원하는 크기로 액적을 분할할 수 있음을 보였다.
개발된 음향방사현상 기반 액적 분할 기술은 액적 내 샘플에 물리적 손상을 가하지 않으면서도 비접촉식으로 표지 없이 액적을 정교하게 분할할 수 있다는 점에서 기존 기술 보다 진일보한 기술이라는 평가를 받았다.
아울러 기존의 액적 분할 기술들이 외력과 액적 이동 방향이 수직을 이루는 직교 배열을 차용하고 있는 것과 달리 두 방향이 나란한 평행 배열을 채택하여 병렬 조작이 가능하다.
또한 기존 기술과 달리 미세유체 칩과 외력 생성을 위한 기판의 비가역적 결합이 필요하지 않아 미세유체 칩을 손쉽게 교체할 수 있다는 특징을 지녀 기존 기술보다 상용화 유리한 기술이다.
박진수 박사과정이 제 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 국제학술지 랩온어칩(Lab on a Chip)지 2018년 3호의 표지논문으로 선정됐다.
박진수 박사과정은 “본 연구에서 개발된 기술을 통해 미세액적에 국소적으로 음향방사력을 가해 미세유체칩 내 움직이는 미세액적을 원하는 크기로 정교하게 분할할 수 있다”고 말했다.
성형진 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체역학을 활용한 제약, 생화학, 물질합성, 의학, 생명공학 연구 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다.
이번 연구는 KAIST-KUSTAR, 한국연구재단의 창의연구지원사업과 글로벌박사펠로우십, 극지연구소의 지원으로 수행됐다.
□ 그림 설명
그림1. 랩온어칩 표지논문
2018.03.02
조회수 15293