본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%B0%EA%B3%84%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
김정, 박인규 교수, 로봇의 피부 역할 할 수 있는 촉각센서 개발
우리 대학 기계공학과 김정, 박인규 교수 공동 연구팀이 실리콘과 탄소 소재를 활용한 로봇의 피부 역할을 할 수 있는 촉각 센서를 개발했다. 이 기술은 충격 흡수가 가능하면서 다양한 형태의 촉감을 구분할 수 있어 향후 로봇의 외피로 이용 가능할 것으로 기대된다. 이효상 박사과정이 1저자로 참여한 이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Report)’ 1월 25일자 온라인 판에 게재됐다. 피부는 인체에서 가장 많은 부분을 차지하는 기관이며 주요 장기를 외부 충격으로부터 보호하는 동시에 섬세한 촉각 정보를 측정 및 구분해 신경계에 전달하는 역할을 한다. 현재 로봇 감각 기술은 시각, 청각 부분에서는 인간의 능력에 근접하고 있으나 촉각의 경우는 환경의 변화를 온몸으로 감지하는 피부 능력에 비해 많이 부족한 것이 사실이다 인간과 비슷한 기능의 피부를 로봇에게 적용시키기 위해선 높은 신축성을 갖고 충격을 잘 흡수하는 피부 센서 기술의 개발이 필수이다. 전기 배선을 통해 몸 전체에 분포된 많은 센서를 연결하는 기술 또한 해결해야 할 문제이다. 연구팀은 문제 해결을 위해 실리콘과 탄소나노튜브(CNT)를 혼합해 복합재를 만들었고 이를 전기임피던스영상법(EIT)라는 의료 영상 기법과 결합했다. 이를 통해 넓은 영역에 가해지는 다양한 형태의 힘을 전기 배선 없이도 구분할 수 있는 기술을 개발했다. 이를 통해 개발된 로봇 피부는 망치로 내려치는 수준의 강한 충격도 견딜 수 있으며 센서의 일부가 파손돼도 파손 부위에 복합재를 채운 뒤 경화시키면 재사용이 가능하다. 또한 3D 프린터 등으로 만들어진 3차원 형상 틀에 실리콘-나노튜브 복합재를 채워 넣는 방식으로 제작할 수 있다. 기존 2차원 평판 뿐 아니라 다양한 3차원 곡면으로 제작이 가능해 새로운 형태의 컴퓨터 인터페이스도 개발할 수 있다. 이 기술은 다른 형태의 위치나 크기 등을 촉각적으로 구분할 수 있고 충격 흡수가 가능한 로봇의 피부, 3차원 컴퓨터 인터페이스, 촉각 센서 등에 적용 가능할 것으로 예상된다. 특히 이번 연구는 나노 구조체 및 센서 분야의 전문가인 박인규 교수와 바이오 로봇 분야 전문가인 김정 교수가 공동으로 진행해 실제 제품 적용 가능성이 높다. 김정 교수는 “신축성 촉각 센서는 인체에 바로 부착 가능할 뿐 아니라 다차원 변형상태에 대한 정보를 제공할 수 있다”며 “로봇 피부를 포함한 소프트 로봇 산업 및 착용형 의료기기 분야에 기여할 것이다”고 말했다. 박인규 교수는 “기능성 나노 복합소재와 컴퓨터단층법의 융합을 이용해 차세대 유저인터페이스를 구현한 것이다”고 말했다. 이번 연구는 1저자 이효상 박사과정 외 권동욱, 조지승 연구원과의 공동연구로 진행됐고, 미래창조과학부 이공분야 기초연구사업(중견연구자 지원사업)과 초정밀 광기계기술 연구센터(선도연구센터지원사업)의 지원으로 수행됐다. □ 그림 설명 그림1. 제작한 촉각 센서와 연결돼 저항에 반응하는 로봇 손 그림2. 실리콘 고무와 카본나노튜브를 이용한 압저항 복합재 제작 과정 그림3. 압저항 복합재를 활용한 컴퓨터 인터페이스
2017.02.02
조회수 18669
오일권 교수, 귀금속 촉매 대체할 친환경 물 분해 촉매 개발
우리 대학 기계공학과 오일권 교수 연구팀이 값비싼 백금 등의 귀금속 촉매를 대체할 수 있는 니켈-코발트 기반의 친환경 물 분해 기술을 개발했다. 물 분해 기술은 수소를 친환경적으로 생산할 수 있다. 연구팀이 개발한 원천기술을 통해 수소의 대량 생산 및 수소에너지 상용화에 기여할 것으로 기대된다. 배석후 박사과정이 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월호 표지논문에 게재됐다. 현재 가장 많이 사용되는 수소에너지의 발전 방식은 물을 전기 분해시켜 수소를 생산하는 방법이다. 이 방식은 공해 없이 순수한 수소를 생산할 수 있다. 하지만 비용이 많이 들어 상용화에 어려움이 있다. 특히 산소가 발생하는 플러스(+) 전극에는 이리듐 및 루테늄 산화물 기반의 귀금속 촉매가 필요하고, 수소가 발생하는 마이너스(-) 전극에는 백금이 필요하다. 따라서 이를 대체할 수 있는 값싼 재료의 촉매를 개발하는 것이 상용화를 앞당길 수 있는 길이다. 연구팀은 문제 해결을 위해 플러스 전극에 사용되는 이리듐 및 루테늄 산화물 기반의 촉매를 대체할 수 있는 니켈-코발트 금속 기반의 화합물 촉매를 제작하는 데 성공했다. 니켈-코발트 금속 화합물 촉매는 가격이 저렴하지만 이리듐 및 루테늄 산화물 촉매에 비해 높은 전압을 필요로 하는 등 상대적으로 낮은 성능으로 인해 사용되지 못했다. 연구팀은 문제 해결을 위해 수열합성을 이용했다. 수열합성은 고온, 고압 상태에서 물 혹은 수용액에 금속 등을 녹여 물질을 합성하는 기술이다. 연구팀은 니켈-코발트 전구체가 녹아 있는 용액을 바탕으로 수열합성을 진행했다. 이를 통해 니켈-코발트 촉매의 낮은 성능 문제를 해결하는 동시에 촉매의 표면적을 넓히는 데 성공했다. 또한 추가적인 수열합성을 통해 촉매 외부층을 전도성이 높은 탄소층으로 둘러싸면서 전극과 나노선 복합체 사이의 전하 전달 능력을 극대화시킨 이중 나노선 형태의 촉매를 제작했다. 외부층을 전도성이 높은 탄소층으로 구성했기 때문에 탄소 직물로 만들어진 전극 기판과 상승효과(Synergy)를 내면서 단일 니켈-코발트계 금속 촉매에 비해 30% 낮은 전압과 2.7배 높은 단위 면적당 촉매 활성도를 보였다. 기존의 나노선은 원뿔 모양으로 종횡비가 커 나노선 전체로 전달되는 전압이 일정하지 않았다. 이 때문에 나노선 전체가 촉매 반응에 참여하지 못하는 현상이 발생했으나, 연구팀의 촉매는 탄소층으로 둘러싸여 있기 때문에 전자의 활발한 이동이 가능했고 이는 일정한 전압 전달로 이어졌다. 연구팀은 “연이은 수열합성을 통해 비교적 간단한 공정으로 이상적인 이중 구조의 나노선 촉매를 제작하는 데 성공했다”며 “기존의 값비싼 귀금속 촉매에 비해 훨씬 저렴하면서도 성능은 거의 차이가 없다”고 말했다. 오 교수는 “생산 과정이 간단하고 대량 생산이 가능하며 성능 또한 기존 귀금속 촉매에 뒤지지 않는다 ”며 “이번 연구를 통해 물을 수소같은 화학에너지로 변환하는 기술의 상용화에 기여할 수 있을 것이다”고 말했다. 이번 연구는 기계기술연구소 김지은 박사, EEWS 대학원 박정영 교수가 참여했고, 미래창조과학부 리더연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 선정된 표지논문(front cover) 이미지 그림2. 탄소층이 코팅된 니켈-코발트 이중 나노선 촉매 입자의 미세구조 사진 그림3. 이중 나노선 구조의 전기화학적 촉매로써의 작용 모습 그림4. 이중 나노선 형상의 촉매 제작 과정을 나타낸 모식도
2017.01.19
조회수 16002
오일권, 유승화 교수, 전기로 물의 움직임을 자유롭게 제어하는 기술 개발
우리 대학 기계공학과 오일원, 유승화 교수 공동 연구팀이 그래핀이 코팅된 미세 금속 그물망을 이용해 물의 움직임과 흐름을 전기로 자유롭게 제어하는 기술을 개발했다. 연구팀은 그래핀이 코팅된 마이크로미터(100만분의 1미터) 단위 틈의 금속 그물망에 갇힌 물을 전기장을 가해 투과시키거나, 표면에 놓인 물방울의 모양을 바꾸는 등 ‘전기습윤현상(전기장이 젖음성을 바꾸는 현상)’을 이용해 물의 움직임과 흐름을 전기로 제어하는 방식의 기술을 개발해 수(水)처리 장치에서의 다양한 활용 가능성을 제시했다. 이번 연구결과는 네이처 자매지 네이처 커뮤니케이션즈 10월 31일자에 게재됐다.(논문명 : Graphene-coated meshes for electro-active flow control devices utilizing two antagonistic functions of repellency and permeability) 표면청소, 방수표면, 제습공조, 부식방지, 저항감소 등 다양한 수처리에 적용 가능한 액체 거동 제어 장치의 개발이 요구되고 있다. 그러나 기존의 표면 젖음성 조절과 부식 방지 연구들은 표면의 굴곡이나 화학적인 코팅에 의존하였기 때문에 표면의 젖음성을 제어할 수 없었다. 전기습윤현상을 이용하면 액체의 움직임과 흐름을 조작할 수 있게 돼 발수성 소재의 표면을 젖게 하거나 흡수성 소재의 표면에 물이 스며들지 않게 제어가 가능하다. 연구팀은 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 전기습윤현상에 기반한 액체거동기술을 개발했다. 순수한 물 혹은 이온성 액체 방울을 그래핀 그물망 전극의 표면에 위치시키고 구리판을 또 다른 전극으로 사용해 전압을 인가 시 액체방울 모양이 가역적으로 변화함을 보였다. 이는 정전기력 (electrostatic force)이 물 분자의 정렬 혹은 이온의 이동을 유도하여 액체방울이 전기장 방향으로 늘어나 생긴 현상이다. 그래핀의 소수성(hydrophobicity)으로 인해 일반적으로는 그래핀이 코팅된 그물망에는 물이 투과되지 못한다. 하지만 전기장을 가할 때 물에 작용하는 정전기힘과 그물망 틈 사이에 작용하는 모세관힘의 상호작용에 기반한 젖음성 조절 메커니즘을 규명해 이를 바탕으로 그물망 바깥쪽에 높은 전기장을 인가하면 안쪽의 액체가 비가역적으로 그물망을 투과하여 이동함을 보여, 전기로 그물망의 발수성과 투수성을 능동적으로 제어가 가능함을 보였다. 이를 이용해 그래핀 그물망으로 가둔 물탱크의 물을 전기를 가해 내보내는 장치나 물방울을 층층이 위치한 그래핀 그물망들의 가장 위에서 아래로 전기를 이용해 이동시키는 장치 등을 개발했다. 실험결과 그래핀 코팅이 금속의 부식을 막아 수처리 환경에서도 장시간 사용이 가능했다. 이 연구는 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 액체의 모양과 흐름을 능동적으로 제어할 수 있는 기술을 개발한 것이다. 전기장을 가하여 자유롭게 젖음성을 조절할 수 있는 내부식성* 그물소재로 필요에 따라 물의 흐름을 막거나 통과시키는 제어장치를 제작하여 다양한 미세유체 장치, 방습 및 제습 장치, 차세대 수(水) 처리장치, 혹은 물에 대한 마찰저항 조절이 필요한 선박과 플랜트 등에 사용할 수 있다. 이들 분야에서 요구되는 액체의 정확한 거동제어와 소형화, 장시간 사용 등의 기능을 갖춘 소재/소자의 원천 기술로의 적용이 기대된다. 오일권 교수는 “이 연구는 기존 연구에서 나타났던 금속의 부식 현상 및 물이 젖는 정도를 조절할 수 없었던 문제를 그래핀이 코팅된 그물망 구조로 극복하면서 마이크로 수준에서 액체의 움직임과 젖음성을 제어할 수 있는 방법을 개발한 것이다. 방습 및 제습, 미세유체, 해수 담수화, 차세대 수(水) 처리 장치 등 다양한 분야에 적용될 수 있을 것이다.”고 말했다. □ 그림 설명 그림1. 그래핀 매쉬의 제조 방법 및 기능성 길항 액체 제어 기술의 도식도 그림2. 비가역적 액츄에이션 모드(irreversible actuation mode)와 기능성 길항 액체 제어장치(functionally antagonistic active flow devices)
2016.11.16
조회수 13977
민범기 교수, 찌그러진 형태의 광학 공진기 내부에 속삭임의 회랑 모드 구현
〈 민 범 기 교수 〉 우리 대학 기계공학과 민범기 교수와 경북대 최무한 교수 공동 연구팀이 변환광학을 이용해 찌그러진 형태의 광학 공진기 내부에 ‘속삭임의 회랑 모드’를 구현했다. 기계공학과 김유신 박사과정이 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘네이처 포토닉스(Nature Photonics)’ 9월 27일자 온라인 판에 게재됐다. 속삭임의 회랑 모드는 광 공진기에서 알려진 모드 중 가장 높은 품위 값을 갖는 것으로 알려진 모드로서 구형 대칭성이 있는 공진기에서 경계면을 따라 전반사에 의해서 빛이 오랫동안 갇히면서 발생하는 현상이다. 속삭임의 회랑 모드는 품위값이 매우 높아 초소형 레이저, 초고감도 바이오센서 등과 같은 광전 소자 개발에 유용하게 사용된다. 그러나 공진기 밖으로 빠져 나오는 빛의 방향이 모든 방향으로 균일해 소자의 성능이 저하되는 한계가 있었다. 기존 연구에서는 구형의 공진기 모양을 다른 모양으로 변형시켜 빛을 한쪽 방향으로 빠져 나오게 하는 방법들이 제시되어 왔으나, 이 방법에서는 속삭임의 회랑 모드가 훼손돼 광학 모드의 높은 품위값이 필연적으로 저하되는 문제가 발생한다. 문제 해결을 위해 연구팀은 투명망토 연구 분야의 기초이론인 변환광학을 사용해 세계 최초로 속삭임의 회랑 모드를 훼손하지 않으면서 매우 높은 품위값을 유지하는 새로운 개념의 공진기 설계 원리를 제시한 것이다. 변환광학이 적용된 공진기에 형성되는 속삭임의 회랑 모드는 기존의 속삭임의 회랑 모드에서는 얻을 수 없었던 방출되는 빛의 방향성도 갖게 된다. 이는 초소형 단방향 레이저 설계에 있어서 핵심적인 원천기술이 된다. 이번 연구는 기존의 초소형 단방향 레이저 공진기 연구 분야에 변환광학을 도입해 새로운 연구방향을 제시해 주는 것이다. 최근 활발히 연구되는 메타물질 분야와 초소형 광-공진기 연구 분야를 융합하는 최초의 시도이다. 이번 연구에서는 빛의 진행 경로 조절에 국한되어 있던 변환광학을 공진기 내부에 발생하는 광학모드의 설계에도 적용할 수 있음을 보였다. 이는 최근 활발히 연구되고 있는 고집적 광전자(photonic) 회로의 광원, 플라즈모닉스 광도파로의 광원뿐만 아니라 미래의 광-정보처리 소자 설계의 원천기술이 된다. 특히 이러한 변환광학 공진기의 맞춤형(tailored) 모드들은 고효율 초소형 레이저 개발 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다. 이번 연구는 전자기파, 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 목적에 맞게 설계할 수 있는 일반적인 방법론을 제시했다. 광학, 재료공학, 나노과학 등의 응용분야뿐만 아니라 기초 물리학 분야에서도 의미있는 영향을 미칠 것으로 기대된다. 연구팀은 “이번 연구는 차세대 광-정보처리 소자 설계의 원천기술로서 고효율 초소형 레이저 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다”며 “더 나아가 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 설계하는 방법론으로 확장되면 재료공학, 나노과학, 기초 과학 분야에도 영향을 줄 수 있을 것이다.”고 말했다. 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 중견연구자지원사업과 파동에너지 극한제어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 변환광학으로 구현한 속삭임의 회랑 모드 개념도 그림2. 균일한 굴절률을 갖는 원형 공진기 vs. 리마송 모양의 변환된 공진기
2016.09.27
조회수 11886
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉 우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다. AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다. 김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다. 김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다. 창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다. 김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다. 김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 12602
오왕열 교수, 영상왜곡 없는 3차원 관상동맥 내시현미경 시스템 개발
〈 오 왕 열 교수 〉 우리 대학 기계공학과 오왕열 교수 연구팀(KI 헬스사이언스 연구소)이 영상왜곡 없이 관상동맥 내부를 정확히 이미징할 수 있는 관상동맥 내시현미경 시스템을 개발했다. 이 시스템으로 생체 관상동맥 내부 3차원 미세구조를 단일 심박 내에서 초고속 및 고해상도로 촬영했고 단일 심박 내에서 고해상도로 이미징 하는데 성공했다. 연구팀은 이 시스템을 사용해 인간과 비슷한 돼지 심장의 관상동맥 이미징에 성공함으로써 급성 심근경색으로 대표되는 관상동맥 질환의 정확한 진단 및 치료에 새로운 방향을 제시할 것으로 기대된다. 연구 결과는 심혈관분야의 임상저널인 ‘미국심장학회 학술지(JACC Cardiovascular Imaging : Journal of American College of Cardiology Cardiovascular Imaging)’ 5월호에 게재됐다. 돌연사의 가장 큰 원인인 급성 심근경색은 심장표면에 존재하면서 심장근육에 혈액을 공급하는 관상동맥(coronary artery)이 좁아지고 막혀 심장박동이 중지돼 갑작스럽게 사망하는 질환이다. 따라서 급성 심근경색을 예측하는 것은 매우 중요하며 이를 위해서는 의료진이 정확하게 진단할 수 있는 자료가 필수적이다. 광단층영상기술(OCT, Optical Coherence Tomography) 기반의 혈관 내시경은 현재 가장 높은 해상도의 심혈관 내부 영상을 제공하고 있다. 하지만 통상적으로 초당 100장 정도를 촬영하기 때문에 관상동맥 전체의 영상을 획득하는데 최소 3~5초가 소요된다. 이 사이 발생한 수차례의 심장 박동은 혈관의 반복적인 수축 및 팽창을 일으키고, 이는 정상적인 혈관도 마치 좁아진 것처럼 울퉁불퉁하게 보이는 영상왜곡으로 이어져 진단의 정확도가 떨어지게 된다. 연구팀이 개발한 단일 심박 주기 내 3차원 관상동맥 OCT 이미징 기술은 이러한 문제를 해결할 수 있는 핵심 기술이다. 초당 500장 촬영하는 고속 관상동맥 및 심박을 모니터링해 가장 움직임이 적은 영역을 자동적으로 포착 후 이미징을 수행하는 기술을 개발했다. 이를 통해 심장 박동으로 인한 영상 왜곡 없이 7센티미터 길이의 관상동맥을 0.7초 사이에 촬영해 내부 고해상도 영상을 확보할 수 있었다. 오 교수 연구팀은 고려대구로병원 김진원 교수 연구팀과의 협력을 통해 사람의 관상동맥과 비슷한 크기를 갖는 돼지 관상동맥의 단일 심박 내 초고속 3차원 이미징에 성공했다. 연구팀은 “이번 연구 결과를 통해 국내에서 개발한 세계 최고의 기술이 병원과의 긴밀한 협력을 통해 실제 임상에서의 한계를 극복하고 유용성을 인정받았다”고 밝혔다. 오 교수는 “심혈관 내 플라크 형태 분석과 스텐트(stent : 혈관 확장을 위해 혈관에 삽입하는 구조물) 삽입 등에 유용하게 사용 가능할 것으로 기대된다”며 “환자에 적용하기 위해 식약처 승인을 받기 위한 과정을 준비 중이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 단일심박 초고속 관상동맥 OCT로 획득한 돼지 관상동맥의 길이방향 영상 그림1. 관상동맥 OCT로 영상으로부터 얻은 관상동맥 3차원 구조 복원 영상
2016.08.04
조회수 14471
기억 및 논리 연산 가능한 메타물질 개발
〈 민 범 기 교수 〉 우리 대학 기계공학과 민범기 교수 연구팀이 메타물질의 광학적 특성을 기억할 수 있는 메모리 메타물질과 이를 응용한 논리연산 메타물질을 개발했다. 이번 연구결과는 과학전문지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 27일자 온라인 판에 게재됐다. (논문명 : Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operation) 메타물질은 자연에서 발견되지 않은 특이한 광학적 성질을 얻기 위해 인위적으로 설계된 물질이다. 이는 빛의 파장보다 훨씬 짧은 구조물로 구성됐으며 고해상도 렌즈 및 투명망토 등에 응용 가능해 활발한 연구가 이뤄지고 있다. 메타물질의 변조된 광학적 특성을 유지시키기 위해선 외부의 지속적 자극이 공급돼야 하는데 이는 많은 전력 소모의 원인이 된다. 이 단점을 극복하기 위해 외부 자극 제거 후에도 변조된 특성이 유지 가능한 메모리 메타물질이라는 개념이 대두됐다. 메모리 메타물질은 변화된 광학적 특성을 기억한다는 장점을 갖는다. 하지만 기존에 보고된 메모리 메타물질은 고온에서만 기억되거나 부피가 큰 광학적 장치에 의해서만 동작 가능해 현실적 응용에 한계를 보였다. 연구팀은 문제 해결을 위해 메타물질에 그래핀과 강유전체 고분자를 접목시켰다. 연구팀이 사용한 강유전체 고분자는 탄소를 중심으로 불소, 수소가 결합한 분자로 외부 전압의 극성에 따라 회전할 수 있다. 이 강유전체 고분자는 상온에서도 안정적으로 변화 상태를 유지할 수 있고, 그래핀과 접촉돼 메모리 성능을 개선하고 초박형으로 제작 가능하다. 또한 다중 상태의 기억이 가능하고 빛의 편광 상태도 기억할 수 있음을 증명했다. 연구팀은 메모리 메타물질의 원리를 응용해 논리 연산이 가능한 논리연산 메타물질 또한 개발했다. 이 논리연산 메타물질은 단일 입력에 의해서만 변조 가능했던 기존 메타물질의 단점을 해결했다. 그래핀을 두 개의 강유전체 층과 샌드위치 구조를 가진 메타물질을 제작해 두 전기적 입력의 논리 연산 결과가 광학적 특성으로 출력되게 만들었다. 이를 통해 다중 입력에 의한 조절이 가능해져 메타 물질의 특성을 다양하게 변화시키고 조절할 수 있는 방법론을 제시했다. 민 교수는 “메모리 메타물질을 통해 저전력으로 구동 가능한 초박형 광학 소자에 응용 가능할 것으로 전망한다”고 말했다. 기계공학과 김우영, 김튼튼 박사, 김현돈 박사과정이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자 지원사업, 국가그린나노기술개발사업, 미래유망융합기술 파이오니어사업, 세계적수준의 연구센터(WCI) 사업, 미래창조과학부 글로벌프론티어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메모리 메타물질의 구조도 그림2. 강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도 그림3. 투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성 (본 논문의 대표도)
2016.02.24
조회수 13421
그래핀 이용한 인공근육형 작동장치(actuator) 개발
〈 오 일 권 교수〉 우리 대학 기계공학과 오일권(43) 교수 연구팀이 화학적 도핑된 그래핀을 이용해 고성능의 인공근육형 작동장치(actuator)를 개발했다. 이번에 개발된 인공근육 작동장치는 기존 기술보다 3배 이상의 굽힘 변형을 보이고, 5시간 이상 구동해도 성능을 유지할 수 있다. 이번 연구는 어드밴스드 머터리얼스(Advanced Materials) 12월 15일자 온라인 판에 게재됐다. 최근 플렉서블, 웨어러블 소자에 대한 연구가 활발해지며 인간과 기계 사이의 햅틱(촉각 효과) 기능을 위한 능동형 유연 작동기(soft actuator)가 핵심 부품으로 각광받고 있다. 특히 유연성이 떨어져 첨단 전자제품에 적용이 어려운 기존의 기계식 작동기를 대신해 인간의 근육을 모방한 전기에 반응하는 인공근육형 작동기가 관심을 받고 있다. 그러나 기존의 백금이나 금을 기반으로 제작한 인공근육형 작동기는 제작 기간이 일주일 가까이 소요되고 실용성이 떨어지는 한계를 갖는다. 연구팀은 문제 해결을 위해 그래핀과 화학물질, 전도성 고분자를 이용했다. 황과 질소를 그래핑에 도핑하고 전도성 고분자와 함께 섞어 부드럽고 전도성이 탁월한 유연 전극을 제작했다. 그리고 이를 바탕으로 고성능 인공근육형 작동기를 개발했다. 기존의 금속 기반 작동기가 일주일 이상의 제작 기간이 소요되는데 반해 연구팀이 개발한 그래핀-전도성 고분자 전극 적층 방식의 유연 작동기는 2시간 이내 제작할 수 있는 장점을 갖는다. 또한 황과 질소 등 화학물질을 도핑하는 작업으로 기존 그래핀에 비해 1.5~2배 이상 전기화학 성능이 향상됨을 삼전극 전기화학 테스트를 통해 확인했다. 연구팀은 이번에 개발한 작동기는 0.5V와 1V의 낮은 인가전압에서도 대 변형 구동이 가능하고, 기존 대비 3배 이상의 변형을 보이면서도 장시간 성능 지속이 가능하다고 밝혔다. 이 원천기술은 향후 ▲소프트 로보틱스(soft robotics)▲3D 프린팅 된 작동기▲부드러운 햅틱 디바이스▲웨어러블 전자소자▲유연 디스플레이전자소자▲생체 의료기기 등 각광받는 차세대 기전소자로 응용될 것으로 기대된다. 오 교수는 “고성능 인공근육형 작동기 기술은 향후 첨단 기전소자의 핵심 요소가 될 것이다”며 “특히 3D프린팅 기술과 함께 발전하면 차세대 웨어러블 소자로 상용화 가능성이 높을 것이다”고 말했다. 이번 연구는 미래창조과학부 리더연구자지원사업의 지원을 받아 KAIST 김재환 박사과정, Kotal 박사가 공동 1저자로 참여했고, 네바다 주립대학 라스베가스(UNLV) 기계공학과 김광진 교수팀과의 공동연구를 통해 진행됐다. □ 그림 설명 그림1. 도핑된 그래핀 기반 인공근육형 작동기의 단면 이미지 그림2. 인공근육형 작동기 구동 사진 그림3. 황과 질소가 동시에 도핑된 그래핀의 원소 매핑 이미지 그림4. (a) 도핑된 그래핀의 굽힘 성능 및 (b) 성능 지속성 평가
2016.01.07
조회수 11901
광섬유로 300조분의 1초 오차의 클럭 개발
〈김 정 원 교수〉 우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술로 수백조분의 1초 오차를 가지는 클럭(clock) 원천기술을 개발했다. 이는 클럭 발진기(oscillator)의 성능을 획기적으로 향상시킬 수 있는 원천 기술로 성과를 인정받아 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 11월 4일자 온라인 판에 게재됐다. 클럭 발진기는 일정한 시간 간격의 주기적 신호를 발생시켜 전자시스템이 신호에 맞춰 정확하게 동작하도록 만드는 장치이다. 음악 연주에서 메트로놈과 같은 역할을 한다. 이 클럭 발진기는 오늘날 각종 정보통신 시스템 뿐 아니라 입자가속기나 천체관측장치 같은 거대 과학시설, 초정밀 계측 장비, 레이더, GPS 및 위성항법 시스템 등 전 분야에 걸쳐 핵심적 역할을 하고 있다. 따라서 클럭 발진기에서 발생하는 주기적 신호의 시간 오차를 줄인다면 각종 시스템들의 획기적인 성능 향상과 이전에는 불가능했던 기술 개발도 가능해진다. 기존에는 특수 제작된 공진 회로를 이용한 라디오파 혹은 마이크로파 발진기를 사용하거나 광공진기의 주파수 나눔을 이용한 방식의 기술을 사용했으나, 이 방식은 크기가 클 뿐 아니라 기계적 안정도가 떨어지고 수억 원 이상의 고가였기 때문에 실험실 밖에서의 응용 등에 한계가 있었다. 연구팀은 문제 해결을 위해 신뢰성이 높고 가격경쟁력이 확보된 광통신용 광섬유 부품을 활용한 새로운 방식의 클럭 발진기를 개발했다. 기술의 핵심은 초고속 광섬유 레이저에서 발생하는 넓은 스펙트럼 내의 두 광주파수(optical frequency) 차이를 이용한 것이다. 기존 전자 발진기는 기가헤르츠(GHz, 1초에 109회 진동) 영역에서 동작하지만, 이 기술은 이보다 테라헤르츠(THz, 1초에 1012회 진동) 주파수를 이용하기 때문에 약 1000배 민감한 시간 차 측정이 가능하다. 또한 광섬유 케이블에서 빛이 전파되는 시간이 매우 일정하게 유지되기 때문에 테라헤르츠 주파수를 이용해 높은 분해능으로 측정된 시간차를 광섬유 케이블 내에서의 빛의 전파 시간에 정확하게 맞췄다. 그 결과 국제전기통신연합(ITU)에서 정의한 클럭 신호원의 성능을 나타내는 0.1초 동안의 시간오차인 타이밍 지터(timing jitter)가 3펨토초(333조분의 1초)로 측정됐으며, 이는 환산하면 100만년 동안 1초의 오차를 갖는 성능에 해당한다. 이를 통해 별도의 특수 제작된 고가 소자 없이도 세계적 수준의 클럭 발진기 성능을 얻을 수 있고, 상용화 시 제작비용을 기존 최고 성능 발진기의 10분의 1 이하 수준으로 낮출 것으로 기대된다. 연구팀은 이 기술의 성능과 안정성이 아날로그-디지털 변환기나 고성능 신호 분석기와 같은 ICT 시스템, 레이더, 원격 탐사, 위성항법 등 국방, 우주, 환경 기술 분야에서도 폭넓게 활용될 수 있을 것이라고 밝혔다. 김 교수는 “이 기술은 군용 레이더, 보안 분야와의 연관성 때문에 주요 장비들의 수출이 금지된 경우가 많아 순수 국내 기술로 자체 개발한 것은 그 의의가 크다.”며 “향후 유리기판 위에 시스템을 구현해 칩 스케일의 고성능 클럭으로 발전시킬 계획이다”고 말했다. KAIST 기계공학과 정광연 박사과정(1저자)의 참여로 이루어진 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수백조분의 1초 오차의 광섬유 클럭 발진기 개념도
2015.11.12
조회수 11225
모델링 기반 거미줄 모사 인공 생체섬유 개발
유 승 화 교수 우리 대학 기계공학과 유승화(32) 교수 연구팀이 컴퓨터 모델링을 이용해 거미줄을 모사한 인공 생체섬유 개발에 성공했다. 이 연구를 기반으로 자연에서 생성되는 다양한 생체섬유의 합성과정에 대한 이해가 가능해지고, 실제 거미줄에 버금가는 인공 생체섬유의 설계, 제작을 앞당길 것으로 기대된다. 미국 매사추세스 공대, 플로리다 주립대, 터프츠 대학과 공동으로 진행한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 28일자 온라인 판에 게재됐다. 거미줄은 강도가 강철에 버금가고 인성(끊어질 때까지 흡수하는 에너지 양)이 케블라 섬유와 버금가는 장점이 있다. 그러나 거미는 누에처럼 고치를 만들지도 않고 서로 영역을 침범하며 싸우기 때문에 사육이 어려워 대량 생산에 한계가 있었다. 그런 이유로 기존에는 박테리아 유전자에 거미줄 단백질을 삽입해 생체 섬유를 만들려는 시도가 많았으나 시행착오에 의존해 진행된 실험이 대부분이었다. 유 교수의 연구는 예측 가능한 모델링을 기반으로 다양한 단백질을 선제적으로 탐색하고, 인공 거미줄 설계 및 제작과정에 반영했다는 의의를 갖는다. 거미줄은 물속에서 안정성을 갖는 친수성과 반대로 물과 쉽게 결합되지 않는 소수성을 가진 영역이 교차로 존재하는 단백질(펩타이드)들이 가교를 이루며 결합한 구조이다. 거미줄은 거미의 실 분비 기관인 실샘에 존재하는 단백질 용액이 실관을 통과하며 전단유동을 통해 고체화돼 형성된다. 연구팀은 새롭게 개발된 컴퓨터 모델을 이용해 다양한 종류의 단백질 용액의 전단유동 하에서의 변화를 조사했다. 이를 통해 단백질의 아미노산 체인이 충분히 길고, 적절한 비율의 소수성과 친수성 영역을 가질 때만 단백질 간의 연결도가 급격히 증가해 높은 강성과 강도를 갖는 생체섬유 합성이 가능하다는 것을 밝혔다. 본 모델링을 통해 제시된 단백질을 박테리아의 유전자 조작을 통해 합성, 실관을 모사한 방적과정을 통해 인공 거미줄을 제작하였다. 연구팀은 강한 거미줄 생성 원리가 밝혀지기 시작했기 때문에 향후에는 실제 거미줄 강도에 버금가는 생체 섬유 제작이 가능할 것이라고 전망했다. 또한 생체 적합성을 갖기 때문에 인체 내에서도 부작용이 발생하지 않아 바이오메디컬용으로 사용이 가능할 것이라고 기대된다. 궁극적으로는 부작용이 없는 바이오메디컬에 특화된 생체 섬유 제작을 목표로 하고 있다. 유 교수는 “이번 연구로 체계적 설계를 통한 인공 생체섬유의 제작이 가능함을 증명했다”며 “향후 인공 생체섬유 합성의 새 가능성을 열었다”고 말했다. □ 그림 설명 그림1. 합성된 인공 거미줄의 확대 사진 그림2. 전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과
2015.06.01
조회수 10396
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수> 우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다. 연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다. 각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다. 하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다. 박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다. 대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다. 박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다. 이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다. 박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다. 이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다. 이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다. □ 그림설명 그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과 그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15579
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 - 우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다. 연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다. 이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다. 나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다. 연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다. 연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다. 이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다. 김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다. 또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다. KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다. <물 표면을 이용한 나노박막의 기계적 물성 평가 과정> <왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 16811
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10