-
은(銀)으로 덮은 종이 크로마토그래피 개발
〈 정 기 훈 교수 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속나노입자를 증착시켜 저렴하면서도 정교한 결과를 내는 크로마토그래피용 종이를 개발했다.
이번 연구는 광학분야의 국제 학술지 ‘빛: 과학과 응용(Light: Science and Applications)’지 1월 15일자 온라인 판에 게재됐다.
크로마토그래피는 특정 용매를 이용해 혼합물을 분리하는 기술이다. 가장 전통적인 종이 크로마토그래피를 비롯해 박막, 가스 등 다양한 방법을 이용한 크로마토그래피가 존재한다.
그 중 종이 크로마토그래피는 종이를 용매에 살짝 담근 후 종이 내 혼합 물질의 성분과 종이의 인력 차이에 의해 물질이 나아가는 정도가 달라지는 것을 이용한 혼합물 분리 방법이다.
종이 크로마토그래피는 저렴하고 다수의 성분을 동시에 검출할 수 있어 광합성 산물 및 다양한 생체 혼합물의 분리, 검출에 응용된다.
크로마티그래피 기술로 혼합물을 분리하고 나면 다음 단계로 물질의 성분을 파악하기 위해 물질에 빛을 조사한다.
분자는 각자 다른 성질을 갖고 있어 빛을 받은 후 분출하는 파장이 모두 다르다. 파장의 차이를 분석하면 혼합물에 어떤 분자가 포함됐는지 파악이 가능하다. 사람의 지문과 같은 역할을 하는 것이다.
그러나 이 과정에서 문제가 발생한다. 현존하는 종이 크로마토그래피 기술은 가격이 저렴한 대신 혼합물 분리의 정교성이 떨어지고, 혼합물 내 분자의 농도가 낮을 경우 빛을 조사해도 성분 검출이 잘 되지 않는 등의 한계가 있다.
분자를 검출하기 위해 형광 표지(label)을 붙여 빛을 조사하는 방법도 있지만 형광 표지로 인해 분자의 본래 특성이 변하게 되는 문제가 발생한다.
연구팀은 문제 해결을 위해 나노플라즈모닉스 특성을 갖는 은 나노섬을 종이 표면에 균일하게 증착했다. 나노플라즈모닉스 기술은 금속 나노구조 표면에 빛을 집광시키는 기술로 신경전달물질, 유전물질, 생체 물질 검출 등 다양하게 응용 가능하다.
은과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 가져, 연구팀은 종이의 특성을 유지하면서 기판 표면에서의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀은 개발한 종이에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목해 별도의 표지 없이 혼합물을 분리하고 피코몰(10-12M) 수준의 극 저농도 물질도 측정하는 데 성공했다.
이 기술은 검출가능한계를 최고 수준으로 향상시켜 진단의학, 약물 검사 등 특정 성분의 분리 검출이 요구되는 다양한 분야에 응용 가능할 것으로 예상된다.
연구팀은 “진공증착, 저온 열처리 등 일반적인 반도체공정을 이용해 정밀하고 대면적 양산이 가능한 금속나노구조를 제작했다”며 “기존 기술의 단점인 비싼 가격, 셀룰로스의 특성 변화 등의 문제를 해결할 수 있을 것이다”고 밝혔다.
정 교수는 “이번 결과를 바탕으로 향후 저비용 무표지 초고감도 생체 분자 혼합물의 분리 및 분석이 가능해질 것이다”며 “또한 신약 개발용 약물 스크리닝, 환경 지표 검사, 생리학적 기능 연구 등에 크게 기여할 것이다”고 말했다.
□ 그림 설명
그림1. 크로마토그래피용 금속나노입자를 갖는 종이의 단면 주사전자현미경 사진
그림2. 크로마토그래피용 금속나노입자를 갖는 종이의 주사전자현미경 사진
그림3. 각종 크로마토그래피용 종이 광학사진
그림4. 비타민 혼합물의 분리 및 무표지 검출
2016.02.02
조회수 13575
-
빛을 이용한 실리카 구조체 가공 기술 개발
우리 대학 생명화학공학과 김희탁 교수, 박정기 교수 공동 연구팀이 단순한 빛 조사만으로 실리카(유리)와 같은 단단한 세라믹 구조체의 모양을 정교하게 제어할 수 있는 기술을 개발했다.
이번 연구 성과는 재료과학분야의 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 9월 21일자 온라인판에 게재됐다.
실리카 구조체는 유기물 구조체에 비해 고온, 고압 및 바이오 물질과의 안정성이 좋고 내화학성, 투명성 등이 높아 미세 유체칩 내부 채널, 태양전지 기판 등에 폭넓게 이용되고 있다.
그러나 실리카 특유의 높은 경도 때문에 실리카 구조체의 모양과 크기를 변화시키기 어려웠다. 특히 나노 스케일 구조 가공은 매우 어려운 것으로 여겨졌다.
연구팀은 문제 해결을 위해 아조 분자(질소 원자 두 개가 이중 결합된 아조기 양 끝에 벤젠링이 결합된 형태의 분자)를 이용했다. 아조 분자는 빛을 받았을 때 빛의 방향과 나란히 배열돼 편광 방향과 동일한 방향으로 움직이는 특성을 갖는다. 이를 응용하면 아조 분자와 결합된 실리카 전구체 분자가 빛의 방향에 따라 움직이는 특성을 갖게 된다.
연구팀은 이 아조 분자와 결합된 실리카 전구체를 용액-마이크로 임프린팅 기법의 잉크로 사용해 도장처럼 찍혀 나오듯 정해진 패턴의 형태로 제작했다.
이후 제작된 물질을 빛으로 가공한 뒤 열처리 하면 아조 분자가 포함된 유기물이 열분해돼 사라지게 된다. 결과적으로 무기물 전구체들만 남아 반응해 유리 구조체가 완성되는 것이다.
이 방법을 통해 30나노미터 이하 크기의 나노 구조를 갖는 대 면적 실리카 구조체를 제작했다. 또한 원형의 홀에 빛을 조사해 타원형의 홀 및 기둥 구조를 구현했다.
연구팀은 개발된 기술이 초소수성 기판, 미세유체칩 내의 미세채널 등 물리적 및 화학적 내구성이 요구되는 소자에 광범위하게 응용될 수 있을 것이라고 밝혔다.
김 교수는 “기존에 없었던 새로운 방식의 실리카 구조체 가공 방법을 개발했다”며 “세라믹을 나노 영역에서 다양한 형태로 구조 가공이 가능한 최초의 방식이다”고 말했다.
강홍석 박사 후 연구원이 1저자로 참여한 이번 연구는 한국연구재단의 일반연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 빛 조사 및 열처리를 통해 원형형태의 구조체로부터 타원형태의 실리카 구조체 제작
그림 2. 광학 사진 이미지. 전자현미경 사진을 통해 실리카 전구제 구조 변형 및 실리카 구조체 제작 확인
그림 3. 빛을 이용해 실리카 전구체 구조 가공 및 열처리를 통한 실리카 구조체 제작과정
2015.10.06
조회수 12589
-
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수
우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다.
연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다.
키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다.
다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다.
연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다.
그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다.
이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다.
뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다.
김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다.
연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다.
한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다.
□ 그림 설명
그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진
그림2. 전체 실험과정 모식도
2015.04.30
조회수 11489
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 15492
-
신개념 DNA 나노구조 형성법 개발
우리 학교 물리학과 윤태영 교수 연구팀이 자기집게를 이용해 DNA 나노구조의 형성을 실시간으로 관측 및 유도하며 새로운 DNA 나노구조를 형성하는 방법을 개발했다.
이 기술은 열처리를 사용하는 기존의 방법과는 전혀 다른 역학적 방법을 이용해 DNA 나노구조 형성을 10분 이내로 빠르게 끝낼 수 있는 게 큰 특징이다.
2006년 개발된 DNA 오리가미 기술은 하나의 긴 뼈대 DNA를 여러 개의 짧은 ‘스테이플러’ DNA들을 이용해 종이접기 하듯 접어서 임의의 형태를 가지는 DNA 기반의 나노구조를 만들어 낼 수 있는 방법으로 DNA 나노기술에서 중요한 위치를 차지하는 기법이었다.
하지만 현재까지 사용되는 열처리 과정을 통한 DNA 나노구조 형성 방법에서는 DNA들 사이의 모든 상호작용들이 동시에 일어나기 때문에 DNA의 상태를 도중에 제어하기가 매우 어려웠다. 따라서 일반적으로 수십 시간이 걸리는 열처리 과정을 여러 번 반복해 최적의 조건을 찾아야 했다.
윤 교수 연구팀은 DNA 분자 하나에 역학적 힘을 가하면서 동시에 DNA의 상태도 측정할 수 있는 단분자 자기집게 기술을 이용해 DNA 나노구조의 형성과정을 유도하는 동시에 관측했다.
기존 열처리 과정의 첫 단계인 고온 열처리에서는 긴 뼈대 DNA의 내부구조가 풀리게 되는데 연구팀은 이 상태를 유도하기 위해 긴 뼈대 DNA의 한쪽을 유리 표면에 부착하고 다른 쪽에 자성체를 부착한 뒤 자기력을 이용해 잡아당겨 뼈대 DNA의 내부구조를 풀어냈다.
이렇게 뼈대 DNA의 내부구조를 풀어내면 숨겨져 있던 반응부위들이 상온에서 드러나기 때문에 열처리 과정과는 달리 스테이플러 DNA들이 1분 안에 빠르게 붙을 수 있다.
스테이플러 DNA들이 모두 붙은 이후에 자기력을 제거하면 자가조립과정을 통해 하나의 스테이플러 DNA가 뼈대 DNA의 다른 여러 부분에 붙게 되면서 구조가 접히게 되는 것이다.
윤태영 교수는 “기존의 열처리 방법에서는 DNA들의 반응이 동시에 섞여서 일어나기 때문에 어떤 온도에서 어떤 반응이 일어나는지 구분할 수 없었다”며 “자기집게를 이용해 구조형성 과정을 일련의 잘 연구된 DNA 반응들로 분해하면서 동시에 구조형성에 걸리는 시간도 10분 정도로 단축할 수 있었다”고 말했다.
더불어 “이번에 개발한 나노구조 형성방법을 이용하면 더욱 고도로 프로그램된 DNA 나노구조의 형성이 가능할 것”이라고 덧붙였다.
한편, 물리학과 윤태영 교수 지도하에 배우리 박사가 주도한 이번 연구는 세계적인 과학저널 네이처가 발행하는 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 4일자 온라인판에 게재됐다.
그림1. 단분자 자기집게를 이용해 DNA 나노구조의 형성을 프로그램 하는 것에 대한 개념도
그림2. 단분자 자기집게를 이용하여 DNA 나노구조의 형성을 실시간으로 유도하고 관찰한 결과. 약 8분 만에 21 나노미터 크기의 DNA나노구조 형성이 완료 된 것을 볼 수 있다.
2015.01.02
조회수 12134
-
나선형 나노구조체 제조 원천기술 개발
우리 학교 나노과학기술대학원 윤동기 교수 연구팀은 자기조립(self-assembly) 현상을 이용해 매우 정밀한 나선형 나노구조체를 개발해 세계적 학술지인 미국립과학원회보(PNAS) 10월 7일자에 논문이 게재됐다.
이번에 개발된 기술로 3차원구조 중에서도 가장 구현하기 어렵다는 나선형 구조를 넓은 면적에 다양하게 변형해 만들 수 있다. 액정(액체와 결정의 중간상태)물질로 만든 이 구조는 20~200nm(나노미터) 크기의 제한된 공간에서 균일한 나선 형태를 유지했다. 또 나노구조체의 지름이 커짐에 따라 나선 패턴의 간격도 일정하게 늘어나는 특성을 보였다.
이 기술을 활용하면 전자기장에 민감하게 반응하는 액정 소재의 고유성질과 융합해 고효율의 광전자 소자 개발에 도움이 될 것으로 학계는 기대하고 있다.
나아가 현재 반도체 제조공정에서 사용 중인 2차원 광식각공정에서 벗어나 3차원 패터닝 기술로도 발전시킬 수 있다. 연구팀의 기술을 기반으로 3차원 반도체가 개발되면 지금보다 최소 수백배 많은 데이터를 저장할 수 있게 된다. 또 공정을 획기적으로 줄여 제조비용도 크게 절감할 수 있을 것으로 전망된다.
이번 연구의 핵심 기술인 ‘한정된 공간에서의 자기조립’이란, 아이들의 장난감인 레고블럭 놀이처럼 주위의 환경(온도, 농도, pH 등)에 따라 물리적으로 조립과 분리가 가능한 다양한 연성재료(고분자, 액정, 생체분자 등)를 수십 나노미터의 공간 속에서 복잡한 나노구조체를 제어하는 기술이다.
연구팀은 전기화학적 반응을 통해 만들 수 있는 다공성 양극산화알루미늄막을 이용해 수십 나노미터 수준의 한정된 공간을 만들었다. 이후 수 나노미터 수준에서 휘어져 있는 액정 분자가 형성하는 나선형 나노구조체를 그 공간 속에서 형성시켜 독립적으로 제어된 나선 나노구조체를 구현하는 데 성공했다.
윤동기 교수는 이번 연구에 대해 “액정물질이 형성하는 나선 나노구조체 제어의 물리·화학적 원리 규명에 세계최초로 성공했다”며 “이번 기술로 다양한 유기분자가 이루는 복잡한 나노구조체들을 기판의 표면 개질 및 한정된 공간을 이용해 제어할 수 있어 향후 유기분자 기반 나노구조체 연구에 커다란 기여를 할 것”이라고 연구 의의를 설명했다.
이와 함께 “개발된 원천기술을 바탕으로 NT(나노테크놀로지)와 IT(정보테크놀로지)가 접목될 수 있는 전기가 마련돼 LCD 등 액정관련 분야에서 차세대 신성장동력을 창출할 수 있을 것”이라고 말했다.
KAIST 나노과학기술대학원 윤동기 교수팀(제1저자: 김한임 박사과정, 이선희 박사과정)이 주도하고 포항가속기연구소 신태주박사, 미국 메릴랜드주립대학 이상복 교수와 콜로라도주립대학 노엘 클락(Noel Clark) 교수가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 일반연구자지원사업(우수신진), 나노소재원천기술개발사업, BK21 플러스사업의 지원으로 수행됐다.
그림1. 나선 나노구조체의 전자현미경 사진과 개념도
A. 다공성 양극알루미늄 나노채널 속에서 형성된 단일 나선 나노구조체(노란선 기준 아래)와 미처 나노 채널속에 들어가지 못해 형태 및 성장 방향이 불규칙하게 존재하는 나선 나노구조체(노란선 기준 위)
B. 나선 나노구조체가 양극산화물 속에 들어가는 현상을 보여주는 개념도. 양극산화물 나노채널의 지름은 20~200nm, 전체 막 두께는 5 um~ 수십 um로 조절이 가능C. B방법을 통해 형성된 나선 나노구조체는 나선 반주기(half-pitch)가 100~120nm 범위에서 1nm 간격으로 조절이 되며 지름이 20~80 nm까지 자유롭게 제어할 수 있음
그림2. 제조된 나선 나노구조체의 전자현미경 사진
30nm(A), 60nm(B), 80nm(C) 지름의 다공성 양극알루미늄 나노채널(왼쪽-위) 속에서 형성된 나선 나노구조체 단면의 주사전자현미경 사진(왼쪽-아래)과 나노채널이 제거된 나선 나노구조체의 투과전자현미경 사진(오른쪽) 나노채널의 지름이 증가할수록 아주 서서히 나선 나노구조체의 나선 반주기가 100nm(A)에서 117nm(C)까지 증가함을 관찰할 수 있었고, 꼬인 부분의 각도(Ψ)의 증가를 통해 나선 나노구조체의 크기를 1nm수준에서 미세하게 제어 가능함을 보였음
그림3. 대표 그림
2014.10.20
조회수 14418
-
박스형 대용량 고압 LNG 저장탱크 기술 개발
최근 북유럽 및 북미지역을 중심으로 해양 배기가스 배출규제지역(ECA, Emission Control Area)이 지정돼 2015년부터 이 지역에서는 기존의 벙커유의 선박용 연료 사용이 금지된다. 이에 따라 현재 대표적인 대체 연료인 디젤보다 약 50% 이상 저렴하고 친환경적인 LNG를 연료로 사용하는 선박의 도입이 급속도로 확대되고 있다.
우리 학교 해양시스템공학전공 폴 베르간 교수와 장대준 교수는 POSCO(회장 권오준)와 공동으로 격자구조를 활용해 기존보다 최대 20배 많은 LNG를 저장할 수 있는 직육면체형 대용량 고압탱크 개발에 세계 최초로 성공했다.
이번에 개발된 고압탱크는 같은 양의 LNG를 저장할 경우 기존 원통형 고압탱크 대비 약 40%의 공간만 필요하다. 초대형 컨테이너 수송선의 LNG 연료 탱크로 사용될 경우, 약 900개의 컨테이너를 추가로 적재할 수 있어 1척당 연간 90억 원의 운송이익이 발생할 것으로 전망된다.
산업에서 사용되는 대용량 고압탱크는 대부분 원통형이다. 저장량을 늘리기 위해서는 외벽을 두껍게 만들어야 하지만 두꺼워질수록 가공이나 용접이 어려워 부피는 대형버스 10대 크기인 1,000㎥(세제곱미터) 수준에 그쳤다.
또 원통형 구조의 특성상 필요 없는 공간을 많이 차지하기 때문에 유효부피가 작아 저장량이 줄어드는 것은 물론 여러 개의 고압탱크 설치로 인해 유지보수비용이 많이 드는 단점이 있었다.
연구팀은 대용량 직육면체가 압력을 견딜 수 없다는 기존 상식을 과감히 탈피해 내부에 격자구조를 채택, 직육면체 압력 용기를 개발했다. 약 3m 간격으로 설치된 바둑판 형태의 격자구조는 외벽에 전달되는 압력을 분산시켜 부피가 늘어나도 외벽이 두꺼울 필요가 없다.
개발한 기술을 활용해 대형버스 200대 부피인 20,000㎥(10기압)까지 설계 기술 개발을 마쳤다. 원천 기술인 격자구조를 활용하면 더욱 큰 고압탱크도 만들 수 있다고 연구팀은 전했다.
이와 함께, POSCO가 자체 개발한 극저온용 고망간강으로 고압탱크를 제작하면 30%이상의 비용이 절감될 것으로 예상된다.
장대준 교수는 “이번에 개발한 격자형 고압탱크 기술로 에너지의 생산·수송·저장산업에 혁신을 가져올 것”이라며 “고압 공급 사슬 구축으로 LNG·LPG·CNG 공급 분야 전체에서 에너지 소모를 20% 이상 줄일 수 있게 될 것”이라고 전망했다.
초대형 고압탱크의 축소모델로 만든 시험 탱크(10기압, 80㎥)는 오는 21일 포항 강림중공업에서 학계와 산업계 관계자들을 대상으로 시연회를 개최하며, 24일부터 27일까지 일산 킨텍스(KINTEX) 열리는 세계 최대의 천연가스 학회인 ‘가스텍(Gastech) 2014’에서 일반에 공개된다.
시험 탱크는 지난 2월 15기압의 수압 시험에 성공, 미국기계학회 압력용기 인증(ASME U2 Stamp)을 이미 확보한 상태다.
그림1. 원통형 고압탱크가 적용된 기존 LNG선
그림2. 직육면체형 고압탱크가 적용된 LNG선. 파란색 영역의 부분(컨테이너 900개 적재)만큼 공간을 절약할 수 있다.
그림3. 직육면체형 고압탱크의 내부 구조
2014.03.18
조회수 16724
-
양자점 기반 단파장 초고속 양자 광원 개발
- 나노 오벨리스크 구조 위에 양자점을 형성해 고효율 단광자 광원 개발 -- 단파장 가시광선 대역에서 작동하는 초고속 반도체 양자 광원 연구 -
우리 학교 물리학과 조용훈 교수팀은 오벨리스크 모양의 나노 구조물을 만들고 꼭대기 부분에 높은 신뢰도를 갖는 반도체 단일 양자점을 형성해 초고속 고효율 단광자 방출을 구현하는데 성공했다.
연구결과는 네이처(Nature)가 발행하는 "사이언티픽 리포트(Scientific Reports)" 7월 5일자 온라인판에 게재됐다.
반도체 양자점은 전자를 수 나노미터 크기에 3차원적으로 구속해 불연속적인 에너지 준위를 갖는 원자와 유사한 특성을 나타낸다. 이 성질을 이용하면 차세대 양자정보 통신, 양자 암호의 핵심 구성 요소인 양자광원을 개발할 수 있다.
특히, 반도체 양자점의 경우 높은 구동 온도, 안정성, 빠른 광자 방출, 전류 구동 가능성과 같은 많은 장점을 가지고 있어 차세대 핵심 기술 중 하나로 꼽히고 있다.
그러나 기존의 자발 형성 양자점의 경우, 평면 구조 안에 양자점들이 높은 밀도로 묻혀 있어 단일 양자점 하나의 특성을 파악하기 어렵고 광자 방출 효율이 매우 제한돼 있는 한계가 있다. 또 구성하는 층 사이의 응력으로 인한 내부 전기장 효과 때문에 전자와 정공 사이의 재결합이 어려워 내부 양자 효율이 낮은 문제가 있었다.조 교수 연구팀은 단파장의 빛을 내는 넓은 띠구조를 갖는 질화물 반도체를 이용해 오벨리스크 형태(뾰족한 팁 모양)의 나노 구조를 제작했다. 그 위에 얇은 활성층 구조를 다시 성장해 나노 팁 끝에 단일 양자점을 위치시키는데 성공해 스펙트럼 폭이 매우 작은 에너지 준위에서 발생하는 초고속 단광자 특성을 확인했다.
이 같은 독특한 나노 구조를 활용하면, 패터닝 등의 공정 없이도 단일 양자구조를 얻기가 쉽고, 양자점에서 생성된 빛이 외부로 쉽게 빠져나올 수 있다는 장점이 있다.
이와 함께 연구팀은 박막 형태와는 달리 오벨리스크 형태의 나노구조의 경우 응력을 크게 감소시켜 내부 전기장 효과도 상쇄돼 내부 양자 효율이 크게 증가하는 현상을 밝혔다.
이번에 개발된 양자광원은 발광파장이 기존 장파장 적외선 대역이 아닌 단파장 가시광(400nm) 대역이기 때문에 자유 공간에서의 통신에 사용이 가능하고 광자 검출 효율이 높은 가시광 대역의 검출기를 사용할 수 있다.
조용훈 교수는 “기존의 양자점 성장 방식과는 달리 비교적 쉽게 단일 양자점을 형성하여 제어할 수 있고, 이를 통해 매우 빠른 단일 광자 생성이 가능해 실용적인 양자광원 개발에 기여할 수 있을 것으로 기대된다”며 “오벨리스크 형태 나노구조의 특성 상 손쉽게 분리 및 다른 기판과의 결합이 가능해 단일 칩 양자 광소자 제작에도 활용될 수 있다”고 말했다.
KAIST 물리학과 조용훈 교수 지도아래 김제형(제1저자), 고영호(제2저자) 박사과정 학생이 주도적으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업 및 WCU 사업의 지원으로 수행됐다.
그림1. (왼쪽) 프랑스 파리에 위치한 오벨리스크 사진. (오른쪽) 제작된 오벨리스크형 나노 구조의 전자현미경 이미지.
그림2. (왼쪽) 오벨리스크형 나노구조와 기존 평면 박막 구조에 내재된 양자점을 비교한 개념도. (오른쪽) 오벨리스크 나노구조 끝에 형성된 단일 양자점에서 방출되는 좁은 선폭의 스펙트럼과 광원의 양자화 정도와 빠른 단광자 방출 속도를 나타내는 2차 광자 상관 관계 그래프.
2013.07.22
조회수 18123
-
그래핀 반도체 개발 난제 풀었다!
- 톱니모양 게이트 전극 이용해 그래핀 트랜지스터 스위칭 효율 극대화 -- 그래핀의 높은 전하 이동도 기반한 매우 빠른 논리 소자 구현 가능 -
그래핀을 이용해 속도가 매우 빠른 반도체 만들 수 있는 가능성이 높아졌다.
우리 학교 EEWS대학원 김형준 교수와 윌리엄 고다드 교수가 공동으로 그래핀을 이용한 트랜지스터의 온오프 스위칭 효율을 극대화 할 수 있는 방법을 제시했다.
연구 결과는 자연과학분야의 권위 있는 학술지 ‘미국립과학원회보(PNAS)’ 5월 13일자 온라인판으로 게재됐다.
그래핀은 전자 이동속도가 실리콘에 비해 100배 높기 때문에 반도체 소자로 응용했을 경우 컴퓨터의 속도가 매우 빨라질 수 있다. 이러한 장점 덕분에 그래핀은 기존의 실리콘을 대체할 차세대 반도체 소재로써 각광을 받고 있다.
그러나 그래핀의 원자구조 특성으로 인해 온오프 스위칭 효율이 매우 낮아 반도체 소재로 적용이 불가능했다.
최근 그래핀의 스위칭 특성을 높이기 위해 원자 구조를 변형시켜 밴드갭을 확보하는 방법이 제시됐지만 동시에 그래핀의 가장 큰 장점인 높은 전자 이동 속도가 급격히 낮아지는 문제점이 발생한다.
연구팀은 그래핀의 전자 이동 메커니즘이 빛의 전파 과정과 유사함에 착안했다.
김 교수 연구팀은 빛을 반사시키는 원리를 그래핀 전자에 적용, 게이트 전극을 톱니 모양으로 디자인했다. 이를 이용해 트랜지스터를 제작할 경우 스위칭 효율을 최대 100배 정도 높일 수 있음을 이론적으로 입증했다.
이 기술은 그래핀의 원자 구조를 변형시키지 않기 때문에 그래핀의 높은 전자이동 특성을 그대로 사용할 수 있다는 게 큰 특징이다.
이와 함께 기존 실리콘 기반 반도체와 유사한 구조를 갖고 있기 때문에 현재의 반도체 제작 공정을 그대로 응용할 수 있을 것으로 학계는 예상하고 있다.
김형준 교수는 이번 연구에 대해 “이론적으로 제안된 메커니즘을 실현한다면 그래핀을 활용한 연산 속도가 매우 빠른 차세대 컴퓨터 개발에 커다란 기여를 할 수 있을 것”이라고 말했다.
한편, 이번 연구는 KAIST EEWS 대학원 김형준 교수 및 윌리엄 고다드 교수와 고등과학원(KIAS) 손영우 교수, 그리고 미국 캘리포니아 공과대학(Caltech) 장민석 박사, 해리 애트워터 교수가 공동으로 연구를 수행했다.
그림1. 이번 연구에서 제안된 톱니 모양 게이트 구조를 가진 그래핀 트랜지스터 구조.
2013.05.22
조회수 17974
-
세포 내 단백질분해 복합체 조립과정 규명
- 바이오 투과전자현미경을 사용한 고해상도 3차원 구조분석 성공 -
- “신규 항암제 개발에 커다란 도움 될 것” -- 네이처(Nature) 5월 5일자 게재 -
단백질분자도 전자현미경을 이용해 관찰하고, 고해상도 3차원 구조를 분석하는 것이 가능해졌다.
우리 학교 의과학대학원 김호민 교수가 바이오 투과전자현미경을 이용해 세포 내 단백질의 분해를 담당하는 프로테아좀(proteasome) 복합체의 고해상도 구조를 규명했다.
이번 연구는 세계 최고 권위 학술지 ‘네이처(Nature, IF= 36.28)’ 5월 5일자 온라인판에 게재됐다.
우리 몸은 단백질의 생성과 소멸을 통해 세포 내 여러 가지 작용을 조절하고, 항상성을 유지한다. 프로테아좀 복합체는 폐기물 처리시설처럼 세포 내부에 있는 필요 없는 단백질들을 적절한 시기에 없애주면서 생체 조절의 핵심기능을 맡고 있다.
그러나 프로테아좀 복합체에 돌연변이가 생기면 사람에게 발생하는 주요 질병인 암, 퇴행성 뇌질환, 면역질환 등으로 이어질 수 있다.
현재 혈액암의 일종인 다발성 골수종의 치료제로 사용되고 있는 벨케이드(Velcade)가 바로 이 프로테아좀의 기능을 억제해 암세포 분열을 억제하는 항암제인데, 보다 더 약효가 좋고 부작용이 적은 항암제 및 질병치료제 개발을 위해 프로테아좀 복합체 관련 연구가 20년 이상 꾸준히 진행되고 있다.
30여개의 단백질이 모여서 만들어진 프로테아좀 복합체의 경우 크기가 매우 크고 구조가 복잡하기 때문에 기능을 이해하기 위한 3차원 구조 분석에 많은 어려움을 겪어왔다.
연구팀은 기존에 널리 사용되던 단백질 구조분석기술인 단백질결정학 기술 대신, 바이오 투과전자현미경 안에 얼려진 단백질샘플을 넣고 수백 장의 사진을 찍은 후 여러 각도에서 찍힌 단백질 사진을 고성능 컴퓨터를 이용해 분석함으로써 프로테아좀 복합체의 3차원 구조를 규명하는데 성공했다.
이 기술은 단백질결정학을 이용한 방법 보다 적은 단백질 샘플로 분석이 가능하며, 크기가 아주 큰 복합체 분석에 용이하다는 장점이 있다.
김호민 교수는 이번 연구에 대해 “프로테아좀 복합체 조립과정 이해 및 3차원 구조 규명은 생체 내 단백질 소멸 조절 과정에 대한 이해를 높일 뿐 아니라 이를 활용한 신약 개발이 활발히 이루어 질 것”이라고 말했다.
또 “국내 처음으로 도입된 바이오 투과전자현미경을 이용한 고해상도 단백질 구조분석은 기존의 단백질 결정학 기술로 접근이 어려웠던 매우 큰 단백질 복합체의 구조 분석을 가능케 할 것”이라며 “단백질결정학 기술과 바이오 투과전자현미경기술을 상호보완적으로 사용한다면 향후 여러 단백질복합체 3차 구조 연구에 큰 시너지효과를 가져올 수 있을 것으로 기대된다”고 말했다.
이번 연구는 KAIST 김호민 교수가 미국 캘리포니아대학 샌프란시스코 캠퍼스에서 박사 후 연구원으로 있을 당시부터 수행해 온 연구로 이판 쳉(Yifan Cheng) 교수의 지도를 받았으며, 하버드대, 콜로라도대와 공동으로 수행됐다.
그림1. 바이오 투과전자현미경으로 찍은 얼려진 상태의 단백질 샘플(프로테아좀 복합체) 사진
그림2. 바이오 투과전자현미경 이미지 분석을 통한 단백질 3차 구조
2013.05.06
조회수 15346
-
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 -
우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다.
연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다.
단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다.
이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다.
핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다.
특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다.
연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다.
연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다.
이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다.
연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다.
김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다.
그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상
그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 16069
-
휘어지는 대용량 반도체 원천기술 개발
- KAIST 김상욱 교수, 세계 최고의‘분자조립’기술력 활용해 휘어지는 대용량 반도체 원천기술 확보 -
우리 학교 신소재공학과 김상욱 교수 연구팀이 원하는 형태로 분자가 스스로 배열하는 ‘분자조립’ 기술을 활용해 유연한 그래핀 기판 위에 양산중인 반도체 패턴의 최고 수준인 20nm(나노미터)급 초미세 패턴을 구현하는데 성공했다.
이번 기술 개발로 향후 유연하게 휘어지면서도 많은 양의 데이터를 저장할 수 있는 반도체를 구현할 수 있어 고성능 플렉시블 전자기기 개발에 도움이 될 것으로 학계는 기대하고 있다.
이와 함께 연성소재의 특성을 이용해 초미세 패턴을 형성하기 어려운 3차원 굴곡진 기판에서도 자유롭게 구현하는데 성공, 다양한 응용소자에 활용할 수 있는 것은 물론 화학 반응으로 물질을 섞어주기만 하면 원하는 형태로 스스로 배열해 고가의 장비가 필요하지 않아 반도체 제작비용이 훨씬 저렴해질 것으로 전망된다.
이번 연구의 핵심 기술인 ‘분자조립’이란 플라스틱, 액정, 생체분자 등과 같이 딱딱하지 않고 유연한 연성소재의 고분자를 원하는 형태로 스스로 배열하게 해 기존에 만들기 어려웠던 작은 나노구조물을 효율적으로 만드는 기술이다. 마치 물과 기름이 서로 섞이지 않는 것과 같이 서로 다른 두 고분자가 상분리되어 섞이지 않는다는 점을 이용하는 것이다.
연구팀은 기계적 물성이 우수하고 원하는 기판에 쉽게 옮길 수 있는 그래핀 위에 ‘블록공중합체’라는 분자조립기술을 통해 초미세 패턴을 형성한 후, 이를 3차원 기판 혹은 PET(폴리에틸렌테레프탈레이트), PDMS(폴리디멜틸실론산) 등과 같은 플렉시블 기판에 옮겨 자유롭게 3차원 혹은 플렉시블 기판에 구조물을 구현했다.
김상욱 교수는 이번 연구에 대해 “지금까지 발표된 휘어지는 반도체는 온도에 취약한 플라스틱 기판을 사용해 극한 공정조건을 극복해낼 수 없어 상용화에 어려움이 많았다”며 “이번 기술은 기계적 물성이 우수한 그래핀을 회로 기판으로 적용하는 데 성공한 획기적인 연구성과”라고 말했다.
김 교수는 이어 “이번 연구에 대해 세계적으로 많은 관심을 받아 3월 20일 열리는 미국 물리학회에서 초청 강연을 할 예정”이라며 “이번에 개발한 원천기술을 바탕으로 후속 연구를 진행해 반도체 회로와 같이 복잡한 회로의 설계에 도전할 것”이라고 포부를 밝혔다.
한편, 교육과학기술부 글로벌프론티어사업 다차원 스마트 IT 융합시스템 연구단의 지원을 받아 수행된 이번 연구결과는 재료분야 세계적 학술지 ‘어드밴스드 머터리얼스(Advanced Materials)’ 3월 6일자에 실렸다.
그림1. 제작공정
1. 스핀 코딩이라는 도포법을 사용해 그래핀 박막을 형성
2. 그래핀 박막 위에 블록공중합체를 형성
3. 블록공중합체을 식각 또는 패턴 전사법을 통해 나노 구조를 형성4. 그래핀을 전사층으로 활용해 다양한 기판에 나노 구조를 형성
그림2. 블록공중합체 분자조립기술
블록공중합체 분자조립기술은 물과 기름이 서로 섞이지 않은 것과 같이 서로 다른 두 고분자가 섞이지 않는다는 점을 이용한 기술이다. 물과 기름의 경우, 서로 섞이려고 하지 않는 물질이기 때문에, 물과 기름은 혼합하게 되면, 물을 물끼리 어울려 덩어리 지고, 기름은 기름끼리 어물려 덩어리가 지게 된다. 하지만, 물과 기름이 서로 떨어질 수 없게끔 결합이 되어 있다고 가정하면, 다른 현상이 예상된다. 동일하게 물은 물끼리 있으려 하고 기름은 기름끼리 있으려고 하지만, 물 옆에는 결합된 기름이 있게 된다. 따라서 물과 기름의 거대한 두 덩이리가 형성되는 것이 아니라, 매우 미세하게 물과 기름이 번갈아가면서 형성되게 된다. 동일하게 블록공중합체에서는 화학적으로 서로 다른 고분자가 공유 결합이라는 쉽게 깨지지 않은 결합을 통해 연결되어 있다., 따라서, 결합된 물과 기름에서와 동일하게 미세한 크기의 상분리가 일어나게 된다. 이러한 구조의 크기는 대개 고분자의 크기에 의해 결정되면, 머리카락 크기의 1/10000 수준으로 매우 미세하며 주기적인 패턴을 형성하게 된다. 패턴의 형태는 서로 다른 고분자의 비율에 따라 구, 원통형, 판형 등으로 나타난다.
그림3. 플렉시블 기판 상에 옮겨진 금 나노 구조체
2013.03.12
조회수 17336