-
육종민 교수팀, 살아있는 세포의 전자현미경 관찰 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다.
이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다.
신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils)
전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다.
수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다.
그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다.
최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다.
육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다.
육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다.
한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.06.29
조회수 20818
-
동맥경화증을 효과적으로 치료할 수 있는 혈관 내 플라크 제거 나노기술 개발
국내 연구진이 만성 혈관염증 질환인 죽상 동맥경화증을 나노 기술을 이용해 기존 치료법보다 효과적으로 치료할 수 있는 기술개발에 성공해 전 세계 사망원인 1위로 꼽히는 심혈관질환을 정복하는데 한 걸음 더 성큼 다가섰다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 나노 기술을 이용해 죽상 동맥경화증(atherosclerosis) 치료를 위한 체내 약물전달 기술을 개발했다.
죽상 동맥경화증이란 오래된 수도관이 녹슬고 각종 이물질이 가라앉아 들러붙으면 좁아지듯이, 혈관 안쪽에 콜레스테롤과 같은 지방질로 이뤄진 퇴적물인 `플라크(plaque)'가 쌓여 혈류 장애를 일으키는 만성 혈관염증 질환이다. 플라크가 혈관을 막게 되면 심근경색, 뇌졸중 등 심각한 병을 유발한다.
KAIST 바이오및뇌공학과 졸업생 김희곤 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `제어 방출 저널 (Journal of Controlled Release)' 3월 10일 字 및 `ACS 나노 (ACS Nano)' 4월 28일 字 온라인판에 각각 게재됐다. (논문명: Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity / Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy)
일반적으로 약물치료의 경우 대표적 고지혈증 약물인 스타틴(statin)을 경구투여한다. 이 방법은 혈액 내 콜레스테롤 농도를 낮춰 콜레스테롤이 플라크에 쌓이는 것을 억제하기엔 효과적이나 이미 형성된 플라크를 제거하는 데에는 한계가 있다. 따라서 환자들은 평생 스타틴을 복용해야 하며 플라크라는 잠재적인 위험요소를 안고 살아가야 한다.
연구팀은 문제 해결을 위해 콜레스테롤과 결합하면 이를 녹일 수 있어 제거하기가 쉽다고 알려진 일종의 당 화합물인 `사이클로덱스트린(cyclodextrin)'을 연구에 사용했다.
박지호 교수 연구팀은 사이클로덱스트린을 약 10 nm(나노미터) 크기의 폴리머(polymer, 중합체) 나노입자 형태로 제조, 정맥 주입을 하면 기존 사이클로덱스트린보다 약 14배 효과적으로 플라크에 축적되어 보다 효과적으로 플라크를 제거할 수 있다는 결과를 얻었다고 학술지 `제어 방출 저널'에 게재했다. 연구팀은 또 사이클로덱스트린은 귀 내이의 유모세포(hair cell)를 손상시켜 청력손실을 일으킨다고 알려졌으나 이를 폴리머 나노입자 형태로 제조하면 체내분포양상을 변화시켜 귀 내이에 잘 축적되지 않기 때문에 청력손실을 방지할 수 있다는 사실을 알아냈다.
이와 함께 사이클로덱스트린과 스타틴을 자기조립(self-assembly)을 통해 약 100nm(나노미터) 크기의 나노입자 형태로 제조, 정맥 주입하자 사이클로덱스트린은 플라크 내에서 콜레스테롤을 제거하며 스타틴은 혈관을 좁게 만들었던 주요 원인인 염증성 대식거품세포(macrophage foam cell)를 줄이는 현상을 찾아냈다. 연구팀은 이같이 사이클로덱스트린과 스타틴의 동시 전달은 각각의 약물을 따로 전달했을 때보다 월등하게 효과적이기 때문에 시너지 효과를 가질 수 있는 약물들을 이용한 복합치료(combination therapy)의 필요성을 `ACS 나노 저널'을 통해 제시했다.
박지호 교수는 "이번 연구 결과를 계기로 평생 약물을 복용해야 하는 환자들의 삶의 질을 크게 개선할 수 있을 것으로 기대가 된다ˮ며 "종양 치료를 위해서 주로 개발되었던 약물전달 나노 기술이 전 세계 사망원인 1위인 심혈관질환을 효과적으로 치료하는 데도 기여할 수 있음을 보여준 연구”라고 의미를 부여했다.
한편, 이번 연구는 한국연구재단과 KAIST의 지원을 받아 수행됐다.
2020.05.29
조회수 14062
-
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다.
우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다.
전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces)
해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다.
최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다.
에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다.
연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다.
광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다.
전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 20767
-
70년 만에 준-페르미 준위 분리 현상 제1 원리적으로 규명
국내 연구진이 70년 난제로 꼽히던 준-페르미 준위 분리 현상의 원자 수준 규명에 성공했다.
우리 대학 전기및전자공학부 김용훈 교수 연구팀이 반도체 소자 동작의 기원인 준-페르미 준위(quasi-Fermi level) 분리 현상을 제1 원리적으로 기술하는 데 최초로 성공했다고 27일 밝혔다.
제1 원리적인 방법이란 실험적 데이터나 경험적 모델을 사용하지 않고 슈뢰딩거 방정식을 직접 푸는 양자역학적 물질 시뮬레이션 방법이다.
김용훈 교수 연구팀의 연구 결과는 특히 비평형 상태의 나노 소자 내에서 발생하는 복잡한 전압 강하의 기원을 새로운 이론 체계와 슈퍼컴퓨터를 통해 규명함으로써, 다양한 첨단 반도체 소자의 분석 및 차세대 나노 소자 개발을 위한 이론적 틀을 제공할 것으로 기대되고 있다.
이주호 박사과정 학생이 제1 저자로 참여한 이번 연구 성과는 국제학술지 미국‘국립과학원회보(Proceedings of the National Academy of Sciences)’ 4월 23일 字 온라인판에 게재됐다. (논문명: Quasi-Fermi level splitting in nanoscale junctions from ab initio)
반도체 관련 교과서에도 소개되고 있는 준-페르미 준위 개념은 반도체 소자 내 전압인가 상황을 기술하는 표준적인 이론 도구로서 그동안 트랜지스터, 태양전지, 발광다이오드(LED) 등 다양한 반도체 소자들의 구동 원리를 이해하거나 성능을 결정하는데 경험적으로 사용돼왔다.
하지만 준-페르미 준위 분포 현상은 1956년 노벨 물리학상 수상자 윌리엄 쇼클리(William B. Shockley)가 제시한 지 70년이 지난 현재에도 전압 인가 상황의 반도체 소자 채널 내에서 측정을 하거나 계산을 해야 하는 어려움 때문에 원자 수준에서는 이해되지 못한 상황이 계속돼왔다.
연구팀은 차세대 반도체 소자의 후보군으로 주목을 받는 단일분자 소자에서, 나노미터 길이에서 발생하는 복잡한 전압 강하 현상을 최초로 규명해냈다. 특히 전도성이 강한 특정 나노 전자소자에 대해 비 선형적 전압 강하 현상이 일어나는 원인이 준-페르미 준위 분리 현상임을 밝혔다.
이러한 연구 성과는 김 교수 연구팀이 다년간에 걸쳐 새로운 반도체 소자 제1 원리 계산 이론을 확립하고 이를 소프트웨어적으로 구현했기에 가능했다. 이는 외산 소프트웨어에만 의존하던 반도체 설계 분야에서 세계적으로 경쟁력 있는 차세대 나노소자 전산 설계 원천기술을 확보했다는 점에서 큰 의미를 부여할 수 있다.
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
2020.04.27
조회수 16515
-
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다.
김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets)
기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다.
이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다.
연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다.
이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 17714
-
섬유 위에 기능성 나노구조체 구현
기계공학과 박인규 교수와 한국기계연구원 정준호 박사 공동 연구팀이 섬유 위에 다양한 기능성 나노 구조체를 구현하는 생체적합성 공정을 개발했다.
연구팀은 개발한 공정을 통해 다양한 재료의 나노 구조체를 섬유 위에 자유롭게 구현하는 데 성공했다. 섬유 위에 직접 나노 구조체를 전사할 수 있어 추가적인 기판이나 접착층 없이도 기능성 기기를 손쉽게 제작할 수 있다. 연구팀은 전기적·광학적 특성을 이용해 환경 및 신체 움직임 모니터링, 나노 구조색을 이용한 보안패턴, 광촉매를 이용한 자가 세정 기능 등을 섬유에 부여할 수 있으며, 스마트 섬유로 활용 가능할 것으로 전망했다.
고지우 박사과정이 1 저자로 참여한 이번 연구는 나노분야의 권위 있는 국제 학술지인 ‘에이씨에스 나노(ACS Nano, IF: 13.903)’2월 25일 자 14권 2호 논문에 게재됐다. (논문명: Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate, 수용성 폴리머 나노템플릿을 이용한 섬유에의 나노패턴전사)
최근 웨어러블 디바이스에 대한 관심이 커짐에 따라 섬유를 기판으로 하는 스마트 섬유 연구가 활발히 진행되고 있다. 섬유에 초미세 패턴을 구현하기 위해 다양한 방법이 시도되지만, 섬유의 거친 표면 특성으로 인해 기존의 공정은 기기 소형화 및 성능 향상에 필수적인 정교한 패턴을 구현할 수 없다는 한계가 있다. 이번 연구에서는 이를 해결하기 위해 물에 잘 젖는 섬유의 특성을 이용해 수용성 고분자이며 생체적합성이 우수한 히알루론산의 나노 패턴을 사용했다.
연구팀은 히알루론산 기판에 나노 패턴의 템플릿을 제작한 후 다양한 기능성 소재의 박막을 진공증착을 통해 형성했다. 그 후 섬유에 흡수된 물을 이용해 히알루론산 템플릿을 녹여냄으로써 최소 선폭 50 나노미터인 나노 구조체를 섬유 위에 전사했다. 이 방법을 통해 금, 은, 팔라듐, 알루미늄, 이산화규소와 같은 금속과 비금속 소재의 나노 패턴 형성이 모두 가능하며 동시에 다양한 나노 구조체의 조합을 자유롭게 섬유 위에 제작할 수 있다.
연구팀은 개발한 공정을 통해 팔라듐 나노 구조체를 전사해 수소 감지 센서를 제작했고, 나노 구조체가 없는 센서와 비교해 센서의 감도가 향상됐음을 확인했다. 또한, 나노 구조체가 갖는 광학적 특성인 국소 표면 플라즈몬 공명 현상으로 인한 나노 구조색을 이용해 같은 금속 및 구조이지만 두께 및 형상 파라미터에 따라 서로 다른 고유한 색을 나타냄으로써 보안패턴에 적용할 수 있음을 입증했다.
박인규 교수는 “스마트 섬유를 구현할 수 있는 간편하면서도 범용성 있는 나노 패터닝 공정을 개발했다. 다양한 섬유에 센서, 배터리, 보안패턴, 자가 세정 등의 첨단 기능을 쉽게 구현할 수 있는 데 큰 의의가 있다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제 (올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 글로벌 프론티어 사업 (극한물성시스템 제조 플랫폼기술)의 지원을 통해 수행됐다.
2020.03.18
조회수 18090
-
이산화탄소 환원 나노구조 촉매 개발
신소재공학과 전석우 교수와 오지훈 교수 연구팀이 이산화탄소의 전기화학 환원 반응 시 발생하는 물질이동의 한계를 극복해 값 비싼 금 촉매의 사용을 효과적으로 줄일 수 있는 3차원 나노구조 촉매를 개발했다.
연구팀은 두 가지 크기의 기공 네트워크를 지닌 계층 다공성 나노 구조를 이용해 이산화탄소에서 일산화탄소로의 전환율을 기존 나노 구조 촉매 대비 최대 3.96 배 높일 수 있는 촉매 디자인을 제시했다.
현가예 박사과정과 송준태 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국 국립과학원회보(PNAS)’ 3월 4일 자 온라인판에 게재됐다. (논문명: Hierarchically Porous Au Nanostructures with Interconnected Channels for Efficient Mass Transport in Electrocatalytic CO2 Reduction)
최근 이산화탄소의 배출과 화석 연료 고갈이 심화됨에 따라 이산화탄소를 재활용해 유용한 화합물로 전기 화학적 전환하는 연구가 주목받고 있다. 이산화탄소 환원 반응은 유사한 산화환원 전위를 갖는 수소 생산 반응과 경쟁적으로 일어나는 문제점이 있어, 원하는 화합물로 선택도를 높이고 활성 부위를 극대화해 높은 전환율을 얻기 위한 금속 나노 구조 촉매 개발이 활발히 진행 중이다.
이산화탄소에서 일산화탄소로의 전환 반응 촉매 중 금은 가장 우수한 성능을 보이지만 값이 매우 비싸 실제 적용을 위해서는 나노 구조를 형성하는 등의 방법을 통해 적은 양의 금을 활용하는 것이 이상적이다.
하지만 기존 연구에서 보고된 나노 구조는 복잡하게 엉킨 촉매 구조로 인해 수계 반응을 통해 생성되는 일산화탄소 기포가 반응 도중 쉽게 구조를 막아 활성 부위를 차단하고, 전해질을 통한 반응물의 이동도 어렵게 해 촉매의 생산성을 떨어뜨린다.
연구팀은 문제 해결을 위해 정렬된 3차원 나노 구조 제작에 효과적인 근접장 나노패터닝(PnP, Proximity-field nanopatterning)과 전기 도금 기술을 이용해, 약 10나노미터 크기의 나노 기공과 200~300나노미터 크기의 매크로 기공이 주기적으로 연결된 채널을 포함하는 3차원 계층 다공성 금 나노 구조를 대면적으로 제작했다.
그 결과, 계층 나노 구조 촉매는 나노 기공을 통해 높은 일산화탄소 생산 선택도를 달성함과 동시에 주기적으로 배열된 매크로 기공 채널을 통해 효율적인 물질이동을 유도함으로써, 높은 질량당 전환율을 달성해 값 비싼 금의 사용을 효과적으로 줄일 수 있는 해결 방안을 제시했다.
또한, 3차원 나노 구조 금 촉매의 기공 크기와 분포가 조절 된 서로 다른 세 가지 나노 구조 촉매를 통해 기공 네트워크와 반응물, 생성물의 확산에 미치는 영향을 구조적 관점에서 조사했다.
이 기술은 이산화탄소 환원 촉매 연구 뿐 아니라 유사 전기화학 분야에서 발생하는 물질이동 문제를 해결하고 효율적인 촉매활용을 위한 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과 나노소재원천기술개발사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.03.10
조회수 15993
-
OLED에 적용 가능한 새 스트레처블 기판 개발
전기및전자공학부 최경철 교수 연구팀이 높은 신축성을 갖는 유연한 기둥과 멤브레인 형태가 결합한 새로운 스트레처블 기판을 개발했다. 스트레처블 전자 소자의 핵심 부품 기술이 될 수 있는 이 기술을 활용해 연구팀은 스트레처블 OLED(유기발광다이오드)를 제작해 높은 유연성과 신축성을 갖는 새로운 스트레처블 디스플레이 기술을 개발했다.
임명섭 박사와 남민우 박사과정 주도한 이번 연구는 나노 분야 국제학술지 ‘나노 레터스(Nano Letters)’ 1월 28일 자 온라인판에 게재됐다. (논문명 : Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress-relief)
스트레처블 디스플레이 기술은 한 방향으로 구부리거나 접는 기존의 플렉서블 OLED 디스플레이의 기술을 뛰어넘어 두 방향 이상으로 변환할 수 있다. 이에 따라 웨어러블, 사물인터넷, 인공지능, 차량용 디스플레이에 적합한 차세대 디스플레이 기술로 주목받고 있다. 최근 자유롭게 늘어날 수 있도록 OLED 소자와 디스플레이에 신축성을 주는 방법이 연구돼왔다. 하지만 모든 재료를 신축성 있는 재료로 바꾸는 방식은 효율이 낮아 상용화가 어렵고 패턴을 형성하기 어렵다는 한계가 있다. 기판을 먼저 늘리고 난 뒤 다시 원래대로 복원해 얇은 주름을 형성하는 방식의 스트레처블 OLED는 효율이 높고 안정적이지만 주름의 형태가 일정하지 않고 신축에 따른 화면의 왜곡이 있다.
최 교수 연구팀은 높은 휘도와 신축성을 가지는 디스플레이 구현을 위해, 단단하게 패턴화된 기판과 신축 시 이 기판에 가해지는 힘이 최소화할 수 있는 기둥구조가 형성된 유연 기판의 결합을 통해 새로운 형태의 핵심 부품 기술인 스트레처블 기판을 개발했다. 연구팀은 개발된 스트레처블 구조 기판과 기존 공정을 그대로 활용해 신축성 있는 OLED 디스플레이를 구현했다. 기존 공정을 그대로 활용하더라도 새로운 스트레처블 기판 부품 기술을 활용하면 스트레처블 디스플레이를 구현할 수 있다는 것을 증명했다. 이는 기존의 스트레처블 디스플레이 기술이 기존 공정을 활용할 수 없다는 단점을 극복한 것이다.
개발된 신축성 OLED 디스플레이는 실제 소자에 걸리는 기계적 스트레스가 거의 없어, 화면의 왜곡이나 급격한 휘도 변화 없이 안정적인 소자 구동이 가능하다. 또한, 발광 빛의 각도 의존성이 없어 다양한 스트레처블 디스플레이 응용 분야에 적용이 가능할 것으로 기대된다. 남민우 연구원은 “새로운 물질의 개발이 아닌 상용화된 공정 및 물질을 사용해 새로운 스트레처블 기판 위에 OLED 디스플레이를 구현했다”라며 “기존의 스트레처블 디스플레이 연구가 가지는 단점들을 뛰어넘어, 상용화될 수 있는 스트레처블 부품 기술을 개발하고자 했다”라고 말했다.
최경철 교수는 “제작된 스트레처블 기판을 활용하면 스트레처블 OLED, 마이크로LED, 센서 등이 구현 가능하며, 바이오 및 의료 분야와 결합한 다양한 치료 분야에 적용할 수 있다”라며 “스트레처블 및 웨어러블 전자 소자 및 전자약 기술 발전에 도움이 되기를 바란다”라고 말했다.
2020.02.25
조회수 16972
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 18405
-
적외선 세기·위상 제어 가능한 메타표면 개발
우리 대학 전기및전자공학부 장민석 교수와 미국 위스콘신 대학 브라(Victor Brar) 교수 연구팀이 적외선의 세기와 위상을 독립적으로 제어하는 동시에 전기 신호로 광학적 특성을 조절할 수 있는 그래핀 기반 메타 표면을 이론적으로 제안했다.
이번 연구를 통해 기존 능동 메타 표면 분야의 난제였던 빛의 세기와 위상의 독립적 제어 문제를 해결해 중적외선 파면을 더 정확히 고해상도로 변조할 수 있을 것으로 기대된다.
한상준 석사과정과 위스콘신 대학교 김세윤 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘ACS 나노(ACS Nano)’ 1월 28일 자 전면 표지논문으로 게재됐다. (논문명 : Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules)
광변조기술은 홀로그래피, 고해상도 이미징, 광통신 등 차세대 광학 소자 개발에 필수적인 기반 기술이다. 기존 광변조기술에는 액정을 이용한 방식과 미세전자기계시스템(MEMS)을 이용한 방식이 있다. 그러나 두 방식 모두 단위 픽셀의 크기가 회절 한계보다 크고, 구동 속도에 제한이 있다는 문제가 있었다.
메타표면은 이러한 문제들을 해결할 수 있기에 차세대 광변조기술의 강력한 후보이다. 메타표면은 자연계의 물질이 가질 수 없는 광학적 특성을 가지며, 회절 한계를 극복한 고해상도의 상을 맺는 등 전통적인 광학 시스템의 한계를 극복할 수 있다는 장점이 있다. 특히, 능동 메타표면은 전기 신호로 그 광학적 특성을 실시간 제어할 수 있어 적용 범위가 넓은 기술로 평가받고 있다.
그러나 기존에 연구되던 능동 메타표면은 빛의 세기 조절과 위상 조절 간의 불가피한 상관관계 문제가 있다. 기존 메타표면들은 개별 메타 원자가 하나의 공진 조건만을 가지도록 설계됐으나, 단일 공진 설계는 빛의 진폭과 위상을 독립적으로 제어하기에는 자유도가 부족하다는 한계점이 있다.
연구팀은 두 개의 독립적으로 제어 가능한 메타 원자를 조합해 단위체를 구성함으로써 기존 능동 메타표면의 제한적 변조 범위를 획기적으로 개선했다.
연구팀이 제안한 메타표면은 중적외선의 세기와 위상을 독립적으로 회절 한계 이하의 해상도로 조절할 수 있어 광 파면의 완전한 제어가 가능하다.
연구팀은 제안된 능동 메타표면의 성능과 이러한 설계 방식을 응용한 파면 제어의 가능성을 이론적으로 확인했다. 특히, 복잡한 전자기 시뮬레이션이 아닌 해석적 방법으로 메타표면의 광학적 특성을 예측할 수 있는 이론적 기법을 개발해 직관적, 포괄적으로 적용 가능한 메타표면의 설계 지침을 제시했다.
연구팀의 기술은 기존 파면 제어 기술 대비 월등히 높은 공간 해상도로 정확한 파면 제어가 가능할 것으로 기대된다. 이 기술을 기반으로 향후 적외선 홀로그래피, 라이다(LiDAR)에 적용 가능한 고속 빔 조향 장치, 초점 가변 적외선 렌즈 등의 능동 광학 시스템에 적용 가능할 것으로 보인다.
장민석 교수는 “이번 연구를 통해 기존 광변조기 기술의 난제인 빛의 세기와 위상의 독립제어가 가능함을 증명했다”라며 “앞으로 복소 파면 제어를 활용한 차세대 광학 소자 개발이 더욱 활발해질 것으로 예상된다”라고 말했다.
2020.02.18
조회수 15176
-
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다.
연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다.
김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma)
알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다.
연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다.
실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다.
연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다.
고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다.
박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다.
한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도
그림 2. 진단 센서 성능
2020.01.15
조회수 20195
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 19380