-
김필한 교수 교원창업기업, 3차원 생체현미경 IVM-CM 출시
〈김필한 교수, 아이빔테크놀로지 김인선 CEO〉
우리 대학 나노과학기술대학원/의과학대학원 김필한 교수 연구팀이 소속된 교원창업기업 아이빔테크놀로지(IVIM Technology, Inc)가 3차원 올인원 생체 현미경 ‘IVM-CM’과 ‘IVM-C’를 개발했다.
이는 김필한 교수 연구팀의 혁신적 생체현미경(IntraVital Microscopy, IVM) 원천기술을 토대로 개발한 것으로 미래 글로벌 바이오헬스 시장에 활용될 예정이다.
세계적 현미경 제조사들의 기술을 넘어 혁신적 원천 기술을 기반으로 개발된 ‘IVM-C’와 ‘IVM-CM’은 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다.
생체현미경은 바이오제약 분야에서 크게 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다.
인체는 수없이 많은 세포들이 복잡한 상호작용을 통해 동작한다. 그러나 현재 신약개발 전임상 단계에서는 시험관 내(in-vitro)와 생체 외(ex-vivo) 실험처럼 상호작용이 일어나지 않는 방식의 연구가 주로 수행되고 있다.
이러한 실험 결과들로만 얻은 결과로 임상시험에 진입한다면 오류와 실패의 가능성이 높아진다. 따라서 신약개발을 위한 임상시험 전 마지막 단계에서 반드시 살아있는 동물에서의 생체 내(in-vivo) 실험으로 효능 분석이 진행돼야 한다.
생체현미경 기술은 바로 이 과정에서 살아있는 동물 내부의 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 고해상도 영상으로 직접 관찰할 수 있어 시험 결과의 오류, 시간, 비용을 현저히 줄일 수 있다.
기존 현미경 기술을 살아있는 생체에 적용하려면 영상획득 과정 동안 생체를 유지하기 위한 여러 추가적인 장비가 필요하다. 또한 영상 속도와 해상도의 한계로 인해 생체 내부의 세포를 직접 관찰하기 어려웠다.
아이빔테크놀로지의 ‘IVM-C’와 ‘IVM-CM’모델은 최초의 올인원 3차원 생체현미경 제품으로 살아있는 생체 내부조직을 구성하는 세포들을 고해상도로 직접 관찰할 수 있다.
기존 MRI나 CT 등으로 불가능했던 신체의 다양한 장기 내부에서 움직이는 세포들을 하나하나 구별해 관찰하는 것이 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다.
특히 ‘IVM-C’와 ‘IVM-CM’모델은 독보적인 초고속 레이저스캐닝 기술을 이용해 기존 기술수준을 크게 뛰어넘는 고해상도와 정밀도로 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화하는 것이 가능하다.
‘IVM-C’모델은 살아있는 생체 내부의 고해상도 공초점 영상을 총 4가지 색으로 동시에 획득할 수 있으며, ‘IVM-CM’모델은 공초점 영상과 더불어 고속펄스레이저를 이용한 다중광자 영상까지 획득할 수 있다.
최고기술책임자(CTO) 김필한 교수는 “‘IVM-C’와 ‘IVM-CM’은 세포치료제, 면역치료제, 신약 및 선도물질 효능 분석 시 다양한 세포들이 존재하는 생체 내 환경에서 단일 세포 단위의 정밀한 효능 분석이 가능한 유일한 장비로 생명 현상을 보다 정밀하게 종합 분석하기 위한 혁신적 원천 기술로 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술 발전을 가속화할 핵심 기술이 될 것이다”고 말했다.
아이빔테크놀로지는 시장성과 성장 가능성을 높게 평가받아 창업 후 3개월 만인 작년 9월 30억 원의 투자 유치를 달성한 바 있다.
대표이사는 김인선 전 제넥신 경영지원본부장, 최고기술책임자는 김필한 교수, 영업 및 마케팅 총괄은 독일 광학 기업인 칼자이스에서 14년간 경험을 쌓은 박수진 이사가 맡고 있다.
또한 우리 대학 박사 출신들로 구성된 기술개발팀과 연구서비스팀이 차세대 후속 장비 개발과 글로벌 바이오헬스 시장 활성화를 위해 노력하고 있다.
김필한 교수 연구팀은 창업원 엔드-런(End-Run) 사업화도약과제에 참여했으며, 아이빔테크놀로지는 창업원의 지원을 받아 설립됐다.
□ 사진 설명
사진1. IVM-CM 장비사진
사진2. IVM-CM 생체영상결과 사진
사진3. IVM-CM 생체 내부 세포 추적 사진
2018.09.05
조회수 14024
-
조광현 교수, 섬유아세포 과활성 유발 분자피드백 회로 규명
〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 삼성병원 김석형 교수 연구팀과 공동연구를 통해 섬유증 및 암 악성화의 원인이 되는 섬유아세포 과활성을 유발하는 분자피드백 회로를 최초로 규명했다.
신동관 박사와 안수균 학생 등이 함께 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 1일자 온라인 판에 게재됐다.
( https://www.nature.com/articles/s41467-018-05274-6 )
인간의 섬유아세포는 대부분의 정상조직에 비활성화된 상태로 존재하다가 상처회복을 위해 필요할 때 급진적으로 활성화된다. 하지만 이러한 급진적 활성화가 유발되는 원리는 아직 밝혀지지 않았다.
조광현 교수 연구팀은 삼성병원 김석형 교수팀과 공동연구를 통해 Twist1, Prrx1, TNC 분자들이 연쇄적으로 활성을 유발하는 양성피드백회로를 구성함으로서 그와 같은 급진적인 섬유아세포의 활성을 유발한다는 것을 분자생물학실험과 수학모델링, 컴퓨터시뮬레이션 분석, 그리고 동물실험과 임상데이터 분석을 통해 밝혔다.
활성화된 섬유아세포는 상처가 치유된 뒤 다시 비활성화된 상태로 전환돼야 하는데 이 때 피드백회로가 계속 작동하면 섬유증의 발생이나 암 악성화의 원인이 된다.
따라서 이번에 밝혀낸 Twist1-Prrx1-TNC 분자피드백회로는 섬유증과 암의 새로운 치료 타겟으로 활용될 수 있을 것으로 기대된다.
□ 그림 설명
그림1. 섬유아세포의 급진적 활성화를 유발하는 Twist1-Prrx1-TNC 분자피드백회로 규명 과정
그림2. 정상적인 섬유아세포의 활성화 조절과 피드백회로의 비가역적 활성화에 따른 비정상적인 섬유아세포 활성화 조절과정의 비교
2018.08.10
조회수 12035
-
이정호 교수, 이주호 박사, 악성 뇌종양의 근본적 원인 밝혀
〈 이 주 호 박사 〉
악성 뇌종양인 교모세포종은 미디어에서 주요 소재로 나올 만큼 인간에게 치명적인 질병으로 일반 대중에게 낯설지 않은 질병이다. 실제로 악성 뇌종양으로 인한 미국 암 관련 사망률은 4위에 달하며 미국의 에드워드 케네디, 존 매케인 상원의원 등이 이 질병으로 사망했거나 투병 중이다.
우리 대학 의과학대학원 이정호 교수 연구팀이 세브란스병원 신경외과 강석구 교수와의 공동 연구를 통해 악성 뇌종양인 교모세포종 돌연변이 발생이 암 부위가 아닌 암에서 멀리 떨어진 뇌실하영역에서 발생한다는 사실을 규명했다.
이는 교모세포종 발병의 원인이 암 발생 부위일 것이라는 기존의 학설을 뒤집는 연구 결과로, 악성도가 가장 높은 종양인 교모세포종의 치료법 개발에 새로운 방향을 제시할 것으로 기대된다.
또한 그동안 암 조직만을 대상으로 이뤄진 암 연구가 암의 기원이 되는 조직에 대한 연구로 발전하면서 교모세포종 뿐 아니라 다른 암에 대해서도 치료의 실마리를 찾을 수 있는 기반이 될 것으로 보인다.
의과학대학원 졸업생 이주호 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 8월 1일자 온라인 판에 게재됐다.
교모세포종은 가장 예후가 좋지 않은 종양이다. 암 발생의 근본적인 원인에 대한 이해가 부족해 수술을 하더라도 재발 가능성이 매우 높기 때문이다. 수술만으로 치료가 불가능해 항암치료, 방사선치료, 표적항암제 등을 병행하지만 아직도 그 치료법이 명확하지 않다.
이정호 교수 연구팀은 암 발생 부위가 아닌 종양과 떨어져 있는 뇌실하영역이라는 곳에 주목했다. 교모세포종이 수술 이후에도 재발률이 높다는 점에서 원인이 다른 곳에 있을 것이라고 판단한 것이다.
이 교수는“교모세포종은 종양을 떼어내도 1~2년 후에 재발률이 높다. 암은 돌연변이인데 돌연변이가 발생하는 곳이 종양이 아닌 다른 부위라고 생각했고 그곳이 바로 뇌실하영역(subventricular zone : SVZ)이라는 사실을 밝혀냈다”고 말했다.
연구팀은 2013년부터 2017년 사이에 수술을 한 뇌종양 환자 28명을 대상으로 종양조직 외에 수술 중 제거되는 종양조직, 정상조직, 뇌실주변의 조직 3가지를 조합해 분석했다. 딥 시퀀싱, 단일세포시퀀싱 등을 통해 교모세포종의 시작이 뇌실하영역에서 발생한 낮은 빈도의 종양을 유발하는 돌연변이에 의한 것임을 밝혔다.
특히 유전자 편집 동물 모델을 통해 뇌실하영역에서 돌연변이가 생기면 이 돌연변이를 가진 세포가 뇌실하영역을 떠나 뇌의 다른 부위로 이동해 교모세포종이 되는 사실 또한 확인했다. 돌연변이 세포가 마치 불꽃놀이처럼 곳곳으로 퍼진 뒤 시간이 지나자 다른 부위에서 종양으로 진화한 것이다.
연구팀은 KAIST 교원창업(소바젠, 대표 김병태)을 통해 이번 연구결과를 바탕으로 뇌실하영역의 세포가 교모세포종으로 진화되는 과정을 막기 위한 치료약 개발에 나설 예정이다.
1저자인 이주호 박사는 “암 중 예후가 가장 좋지 않은 교모세포종에 대한 발암의 비밀을 국내 연구진이 풀어냈다는 것에 큰 의미가 있다”며 “악성 뇌종양의 연구와 치료의 획기적 전환점을 최초로 증명하고 제시한 것이다”고 말했다.
이정호 교수는 “암 중 가장 예후가 좋지 않은 교모세포종의 원인을 파악하고 동물 모델 제작까지 성공했다는 점에서 큰 의미가 있다. 환자에게서 찾은 것을 동물에 그대로 반영했기 때문에 여기서 치료를 할 수 있다면 임상까지 가능할 것이다.”고 말했다.
이정호 교수 연구팀은 후천성 뇌 돌연변이에 의한 난치성 뇌전증의 원리와 치료법을 최초로 규명한 바 있다. 이를 토대로 글로벌 제약회사와 함께 임상 2상이 진행될 정도로 난치성 뇌질환의 진단 및 치료법 개발을 세계적으로 리드하고 있다.
이 교수는 한국인으로서는 처음으로 난치성 뇌전증의 유전 병리학적 진단 기준을 세우는 세계 뇌전증학회 핵심 위원으로 참여해 국제 기준을 제정 중이다.
이번 연구는 서경배과학재단, 보건복지부 세계선도의과학자육성사업, 한국연구재단, 보건산업진흥원 사업을 통해 수행됐다.
□ 그림 설명
그림1. 교모세포종의 발암의 시작을 불꽃놀이에 비유한 그림
그림2. 동물 실험을 통해 뇌실하영역이 발암의 시발점임을 증명
2018.08.02
조회수 18364
-
박범순 교수, 유전체 편집의 글로벌 관측소 설립 제안
〈 박 범 순 교수 〉
우리 대학 과학기술정책대학원 박범순 교수 연구팀의 유전체 편집 관련 ‘글로벌 관측소(Global Observatory)’ 설립 제안 논문이 국제학술지 셀의 자매지인 ‘트렌드 인 바이오테크놀로지(Trends in Biotechnology)’ 6월자 온라인 판에 게재됐다.
유전자가위 기술의 발전으로 인간 생식세포의 손쉬운 편집이 가능해지고 인류의 미래에 직접적인 영향을 줄 수 있다는 점에서 새로운 국제적 협치의 장에 대한 필요성이 커지고 있다.
이에 2015년 12월 영국 왕립학회, 중국 과학한림원, 미국 과학한림원의 공둥 주관으로 열린 ‘인간유전체 편집에 대한 국제 회의’에서 유전체 편집기술의 안전성과 효능의 검증, 기술의 적절성에 대한 폭넓은 사회적 합의 확보, 관련 규제 관리 마련 등에 대해 논의한 바 있다.
그러나 여전히 폭넓은 합의가 무엇을 의미하는지, 이를 어떻게 확보할 지에 대한 합의점은 명확하지 않았다.
박 교수 논문은 이 문제를 세 가지로 정리해 제시했다. ▲ 유전체 편집기술에 대한 국제적 논의에는 지정학적 의미에서 많은 국가의 관점이 적절히 고려돼야 하고 ▲ 기술의 적용이 사회를 지탱하는 규범과 법적 권리 및 의무와 깊이 연관돼 있기 때문에 기술의 미래에 대한 질문은 기술적, 윤리적 영역으로 쉽게 구분할 수 없고 ▲ 무엇이 중요한 이슈이고, 우선적으로 무엇을 다뤄야 하는가, 합의를 어떻게 이룰 것인가에 대한 논의가 이뤄져야 한다고 말했다.
이어 글로벌 관측소의 설립 목적과 목표가 소개됐다. 이 관측소는 인간 유전체편집기술에 대해 보다 포괄적이며 ‘코스모폴리탄 윤리’에 기반한 새로운 형태의 숙의의 장으로 제안됐다. 가장 주된 기능으로는 글로벌 인류 공동체 내의 다양한 관점들을 가시화하고 이를 통해 숙의과정에서 보다 확장된 질문들이 다루어질 수 있도록 하는 것이다.
글로벌 관측소는 ▲유전체편집에 대한 글로벌 수준의 윤리적, 정책적 반응들을 수집하고 가시화하는 작업 ▲‘합의’에 대한 개념적 발전, 긴장관계들, 그리고 합의가 필요한 영역들에 대한 실질적 분석을 제공하고 ▲기존의 논의에서 무시되었던 중요한 질문들, 목소리를 높일 수 없었던 행위자들에게 초점을 맞춰 주기적인 논의가 이루어지는 포럼으로서 역할을 수행하게 될 것이라고 설명했다.
박범순 교수는 “크리스퍼(CRISPR) 유전자 가위로 대표되는 유전체편집기술이 가져올 사회적, 법적, 윤리적, 종교적, 철학적 이슈를 각국의 경험을 바탕으로 논의하고 정보를 공유하기 위한 대화의 장을 마련하자는 취지에서 글로벌 관측소 설립을 제안했다”고 말했다.
2018.07.02
조회수 10962
-
이정호 교수, 박상민 연구원, 후천적 뇌 돌연변이로 인한 뇌발달 장애 원인 규명
〈 박 상 민 연구원 〉
우리 대학 의과학대학원 이정호 교수 연구팀이 후천적인 뇌 돌연변이로 인한 뇌전증(간질) 및 자폐증 환자에게 나타나는 신경 세포 이동 장애 증상이 발생하는 원리를 규명했다.
연구팀의 이번 연구 결과는 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 치료에 기여할 수 있을 것으로 기대된다.
박상민 석박사통합과정이 1저자로 참여한 이번 연구 결과는 신경생물학 분야 국제 학술지 ‘뉴런(Neuron)’ 6월 21자에 게재됐다. (논문명: ‘Brain somatic mutations in MTOR disrupt neuronal ciliogenesis, leading to focal cortical lamination’)
이정호 교수 연구팀은 후천적인 뇌 돌연변이가 뇌전증과 자폐증을 유발할 수 있고, 이 돌연변이로 인해 신경 세포 이동 장애 증상이 발생한다는 사실을 이전 연구에서 증명한 바 있다.
그러나 이 신경 세포의 이동 장애가 발생하는 근본적인 원리에 대해서는 완벽하게 밝혀내지 못했다.
연구팀은 난치성 뇌전증 및 자폐증과 밀접하게 연관된 대뇌 피질 발달장애 환자의 뇌 조직에서 엠토르(mTOR) 유전자의 후천적인 뇌 돌연변이가 발생함을 확인했다. 이를 반영한 동물 및 세포 모델을 이용해 대뇌 피질 발달 이상의 원리를 연구했다.
그 결과 엠토르(mTOR) 돌연변이를 가진 신경 세포에서 세포 소기관인 일차 섬모의 생성 기능이 망가져 있음을 확인했고 이것이 환자에게서 발견되는 신경 세포 이동 장애의 원리임을 밝혔다.
엠토르(mTOR) 유전자가 OFD1이라는 단백질을 적절하게 제거하는 역할을 수행해야 하지만 엠토르(mTOR)에 돌연변이가 발생함으로써 OFD1 단백질이 과하게 축적됐고 그것이 신경 세포 이동의 장애 현상으로 이어진 것이다.
연구팀은 돌연변이를 가진 신경 세포에서 과하게 축적돼 일차 섬모 생성을 방해하는 역할인 OFD1 단백질의 발현을 억제시킴으로써 일차 섬모의 생성을 회복시켰다. 이를 통해 신경 세포의 이동을 정상 수준으로 되돌렸다.
1저자인 박상민 석박사통합과정은 “후천적 뇌 돌연 변이로 인한 뇌 발달 장애 환자에서 관찰되는 대표적 증상인 신경 세포 이동 결함이 그동안 주목받지 않았던 일차 섬모라는 세포소기관의 생성으로 설명할 수 있다는 점을 발견했다”고 말했다.
연구팀은 이번 연구 결과를 바탕으로 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 새로운 치료제 개발을 위한 후속 연구를 진행 중이다.
이번 연구는 서경배 과학재단, 보건복지부 세계선도 의생명과학자 육성 사업, 질병중심 중개 중점 연구 사업을 통해 수행됐다.
□ 그림 설명
그림1. 후천적 뇌 돌연 변이의 대뇌 피질 발달 장애 환자의 뇌 조직, 동물 모델에서 망가진 일차섬모 생성
그림2. 일차섬모 생성을 회복시킨 대뇌 피질 발달 장애 모델에서 신경 세포의 이동이 정상 수준으로 돌아옴
2018.06.25
조회수 11018
-
남윤기 교수, 뇌질환 치료용 나노입자 프린팅 기술 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 잉크젯 프린팅으로 마이크로미터 수준의 열 패턴을 마음대로 찍어내고, 이를 이용해 원격으로 신경세포의 전기적 활성을 제어할 수 있는 기술을 개발했다.
선택적 나노 광열 신경자극이라 할 수 있는 이 기술은 잉크젯 프린팅 기술과 나노입자 기술을 융합한 것으로 뇌전증 등의 뇌질환 환자들에게 맞춤형 정밀 광열 자극을 도입할 수 있는 기반기술이 될 것으로 기대된다.
강홍기 박사가 주도하고 이구행, 정현준, 이지웅 박사과정이 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2월 5일자에 게재됐다.
나노 광열자극 기술은 금속 나노 입자의 열-플라즈모닉 현상을 이용해 신경 세포의 활성을 조절한다. 연구팀은 지난 4년간 연구를 통해 나노 광열효과에 의한 신경세포 활성 억제 현상을 발견했고, 이를 이용해 뇌전증 등의 뇌질환에서 발생하는 신경세포의 비정상적 활동을 조절하기 위한 기술을 연구했다.
연구팀은 기존의 나노 광열자극 기술이 갖는 공간적인 선택성의 한계와 해상도의 제약을 극복하기 위해 잉크젯 프린팅 기술을 이용한 나노 입자의 미세 패턴 작업을 통해 나노 광열자극 기술을 선택적인 부분에만 가할 수 있는 기술을 개발했다.
정밀 잉크젯 프린팅과 고분자전해질 적층 코팅법을 결합해 고해상도의 선택적 광열 자극 기술을 구현했다. 이 기술은 정밀 잉크젯 프린팅 기술은 금속 나노 입자를 잉크로 사용해 수십 마이크로미터 크기의 나노입자 패턴을 만들 수 있다.
이 기술과 고분자전해질 적층 코팅법을 결합하면 원하는 모양을 보다 정밀하게 인쇄할 수 있고 안정성이 높아 다양한 기판에 적용할 수 있다. 또한 고분자전해질 코팅법은 세포 친화적이기 때문에 세포실험 및 생체 기술에 적용 가능하다.
연구팀은 이 기술을 통해 금 나노막대 입자를 수십 마이크로미터 해상도로 인쇄해 수 센티미터 이상의 정밀한 나노입자 패턴을 손쉽게 제작했다. 이 패턴에 빛을 조사하면 인쇄한 모양대로 정밀한 열 패턴을 형성할 수 있다.
또한 이 기술로 배양된 뇌신경세포의 활동을 선택적, 일시적으로 빛 조사를 통해 억제할 수 있음을 실험을 통해 확인했다.
이 열 패턴 기술을 이용하면 신경세포의 전기적 활성을 열 발생 부분에만 일시적으로 억제할 수 있어 선택적으로 광열 신경자극을 줄 수 있다. 이를 통해 원하는 세포 영역만 구분해 활동을 억제시켜 환자에게 맞춤형 광열 신경자극 치료를 제공할 수 있다.
연구팀의 기술은 얇고 유연한 기판에도 적용 가능해 체내 이식용 뇌질환 치료 장치나 웨어러블 의료 장치에 응용 가능할 것으로 기대된다.
남 교수는 “원하는 형태의 열 모양을 손쉽게 어디든지 인쇄할 수 있다는 점에서 공학적으로 폭넓게 활용 가능하다”며 “바이오공학 분야에서 생체기능 조절을 위해 빛과 열을 이용한 다양한 인터페이스 제작에 적용할 수 있고 새로운 위조 방지 기술 등에도 적용 가능할 것이다”고 말했다.
이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 기술을 통해 제작한 사례들
그림2. 잉크젯 프린팅을 이용한 광열 효과 패턴 방식 및 이를 이용한 뇌신경세포의 선택적 활동 조절 기술
2018.02.27
조회수 17575
-
신의철, 박수형 교수, 방관자 면역세포의 인체 손상 원리 발견
우리 대학 의과학대학원 신의철, 박수형 교수, 중앙대학교병원 김형준, 이현웅 교수 공동 연구팀이 바이러스 질환에서 방관자 면역세포에 의해 인체 조직이 손상되는 과정을 발견했다.
이번 연구를 통해 바이러스 질환, 면역 질환이 인체를 손상시키는 원리를 이해하고 이를 신약 개발에 적용할 수 있을 것으로 기대된다.
이번 연구 결과는 면역학 분야 국제 학술지 ‘이뮤니티(Immunity)’ 1월자 최신호에 게재됐다.
바이러스에 감염되면 바이러스 증식 자체로 인해 인체 세포가 파괴되지만, 바이러스가 증식해도 직접적으로 인체 세포를 파괴하지 않기도 한다.
하지만 이러한 경우에도 인체 조직은 손상돼 질병을 일으키게 되는데 그 원인이나 과정은 상세히 밝혀지지 않았다. 다만 간염 바이러스에 감염됐을 때 이와 같은 현상이 잘 발생한다는 사실만 알려져 있었다.
면역계의 가장 중요한 특성은 특이성(specificity)으로 바이러스에 감염되면 해당 바이러스에 특이적인 면역세포만 활성화돼 작동을 하고 다른 바이러스들에 특이적인 면역세포들은 활성화되지 않는 것이 일반적이다.
감염된 바이러스가 아닌 다른 바이러스와 관련된 면역세포들이 활성화되는 경우도 있다. 이런 현상은 흔히 ‘방관자 면역세포의 활성화’라는 이름으로 오래 전부터 알려진 현상이다. 하지만 이 현상의 의학적 의미는 불투명했다.
공동 연구팀은 A형 간염 바이러스에 감염된 환자를 분석했다. 연구팀은 해당 바이러스에 특이적인 면역세포뿐 아니라 다른 바이러스에 특이적인 엉뚱한 면역세포들까지 활성화되는 것을 발견했고 이러한 엉뚱한 면역세포에 의해 간 조직이 손상되고 간염이 유발되는 것을 확인했다.
연구팀의 발견은 방관자 면역세포가 인체 손상을 일으키는 데 관여한다는 점을 규명했다는 의의를 갖는다.
이번 발견의 핵심은 바이러스에 감염되면 감염된 인체 조직에서 과다하게 생성되는 면역 사이토카인 물질인 IL-15가 방관자 면역세포들을 활성화시키고, 활성화된 면역세포들은 NKG2D 및 NKp30이라는 수용체를 통해 인체 세포들을 무작위로 파괴할 수 있다는 것이다.
이러한 결과는 IL-15 사이토카인, NKG2D, NKp30 수용체와 결합하는 항체 치료제를 신약 개발하면 바이러스 및 면역 질환에서 발생하는 인체 손상을 막을 수 있다는 중요한 의미를 갖는다.
이번 연구는 중앙대학교 병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 인체에서 새로운 면역학적 원리를 직접 밝히기 위해 협동 연구를 한 것으로 중개 연구(translational research)의 주요 성과이다.
신 교수는 “면역학에서 불투명했던 방관자 면역세포 활성화의 의학적 의미를 새롭게 발견한 첫 연구사례이다”며 “향후 바이러스 질환 및 면역질환의 인체 손상을 막기 위한 치료제 연구를 계속하겠다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 방관자 면역세포에 의한 인체 손상 과정 개념도
2018.02.21
조회수 16918
-
신의철, 정민경 교수, 바이러스 간염 악화시키는 세포의 원리 규명
〈 신 의 철 교수, 정 민 경 교수 〉
우리 대학 의과학대학원 신의철 교수, 정민경 교수와 충남대 의대 최윤석 교수, 연세대 의대 박준용 교수로 이루어진 공동 연구팀이 바이러스 간염을 악화시키는 ‘조절 T 세포’의 염증성 변화를 발견했다.
이번 연구를 통해 다양한 염증성 질환을 이해하고 치료에 적용시킬 수 있을 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘소화기학(Gastroenterology)’ 2017년도 12월호 온라인 판에 게재됐다.
바이러스성 간염은 A형, B형, C형 등 다양한 간염 바이러스에 의해 발생하는 질환으로 간세포(hepatocyte)를 파괴시키는 특징을 갖는다.
이러한 간세포의 파괴는 바이러스에 의해 직접적으로 일어나는 것이 아닌 바이러스 감염으로 인해 활성화된 면역세포에 의한 것으로 알려져 있다. 그러나 그 상세한 작용 원리는 밝혀지지 않았다.
조절 T 세포는 다른 면역세포의 활성화를 억제해 인체 내 면역체계의 항상성을 유지하는 데 중요한 역할을 수행한다.
최근 연구에 따르면 염증이 유발된 상황에서는 조절 T 세포의 면역억제 기능이 약화되며 오히려 염증성 사이토카인 물질을 분비한다고 알려졌다. 그러나 A형, B형 등 바이러스성 간염에서는 이러한 현상이 과거에는 발견되지 않았다.
연구팀은 바이러스성 간염 환자에게서 나타나는 조절 T 세포의 변화에 주목했다. 이 조절 T 세포가 염증성 변화를 일으켜 TNF라는 염증성 사이토카인(면역 세포에서 분비되는 단백질) 물질을 분비할 수 있다는 사실을 처음 발견했다. 그리고 이 TNF를 분비하는 조절 T 세포가 바이러스성 간염의 악화를 유발함을 증명했다.
연구팀은 급성 A형 간염 환자를 대상으로 분석을 실시해 환자의 조절 T 세포의 면역억제 기능이 저하된 상태임을 밝혔고 TNF를 분비하는 것을 확인했다. 이를 통해 조절 T 세포 변화의 분자적 작용 원리를 밝히고 이를 조절하는 전사인자를 규명했다.
또한 조절 T 세포의 이러한 변화가 B형 및 C형 간염환자에게도 나타남을 발견했다.
이번 연구는 동물 모델이 아닌 인체에서 원리를 직접 밝히기 위해 충남대, 연세대 의대 등 임상 연구팀과 의과학대학원의 면역학 연구팀과의 협동 연구로 이뤄져 중개 연구(translational research)의 모범 사례가 될 것으로 예상된다.
신 교수는 “바이러스성 간염에서 간 손상을 악화시키는 조절 T 세포 변화에 대한 첫 연구사례이다”며 “향후 바이러스성 간염에서 효과적 치료 표적으로 이용할 수 있는 세포와 분자를 규명했다는 의의를 갖는다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 조절T세포에 의해 간손상이 악화되는 현상
그림2. 간염 환자와 정상인의 조절T세포 관찰 그래프
2018.01.08
조회수 14983
-
조광현 교수, 암세포 유형별 최적 약물표적 발굴기술 개발
〈 최민수 박사, 조광현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 암세포의 유형에 따라 최적의 약물 표적을 찾는 기술을 개발했다.
이는 시스템생물학을 이용해 암세포의 유전자변이가 반영된 분자네트워크의 다이나믹스(동역학)를 분석해 약물의 반응을 예측하는 기술로 향후 암 관련 신약 개발에 크게 기여할 것으로 기대된다.
최민수, 시 주 (Shi Jue), 주 양팅 (Zhu Yanting), 양 루젠 (Yang Ruizhen)이 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 5일자 온라인 판에 게재됐다.
인간의 암세포는 유전자 돌연변이, 유전체 단위의 반복적 변이 등 여러 형태의 유전자 변이가 있다. 이러한 변이는 같은 암종에서도 암세포에 따라 많은 차이를 보이기 때문에 약물에 대한 반응도 다양하다.
암 연구자들은 암 환자에게서 빈번하게 발견되는 유전자변이를 파악하고 이 중 특정 약물의 지표로 사용될 수 있는 유전자변이를 찾기 위해 노력해 왔다. 이러한 연구는 단일 유전자변이의 발견 또는 유전자네트워크의 구조적 특징 분석에 초점이 맞춰져 있다.
하지만 이러한 접근 방법은 암세포 내 다양한 유전자 및 단백질의 상호작용에 의해 유발되는 암의 생물학적 특성과 이로 인한 약물반응의 차이를 설명하지 못하는 한계가 있다.
암세포의 유전자변이는 해당 유전자 기능 뿐 아니라 이 유전자와 상호작용하는 다른 유전자, 단백질에 영향을 미치기 때문에 결과적으로 분자네트워크의 다이나믹스(동역학) 특성에 변화를 일으킨다.
이로 인해 항암제에 대한 암세포의 반응이 변화하게 된다. 따라서 분자네트워크의 다이나믹스(동역학) 특성을 무시하고 소수의 암 관련 유전자를 표적으로 하는 현재의 치료법은 일부 환자에게만 유용하고 약물저항성을 갖는 대다수 환자에게는 효과적으로 적용되지 못한다.
조 교수 연구팀은 문제 해결을 위해 슈퍼컴퓨팅을 이용한 대규모 컴퓨터시뮬레이션과 세포 실험을 융합해 암세포 분자네트워크의 다이나믹스(동역학) 변화를 분석했다.
이를 통해 약물반응을 예측해 유형별 암세포의 최적 약물 표적을 발굴하는 기술을 개발했다. 이 기술은 대다수 암 발생에 관여하는 것으로 알려진 암 억제 유전자 p53의 분자조절네트워크에 시범적으로 적용됐다.
연구팀은 국제 컨소시엄인 암 세포주 백과사전(CCLE : The Cancer Cell Line Encyclopedia)에 공개된 대규모 암세포 유전체 데이터를 분자네트워크에 반영해 구축했으며 유전변이의 특성에 따라 서로 다른 분자네트워크를 생성했다.
각 분자네트워크에 대해 약물반응을 모사한 섭동분석을 수행해 약물반응을 나타내는 암세포의 변화를 정량화하고 군집화했다. 그 후 컴퓨터시뮬레이션 분석을 통해 효능, 조합에 따른 시너지효과 등 약물반응정도를 예측했다.
이러한 컴퓨터시뮬레이션 결과를 토대로 폐암, 유방암, 골종양, 피부암, 신장암, 난소암 등 다양한 암세포주를 대상으로 약물반응 실험을 수행해 비교 검증했다.
이 기술은 임의의 분자네트워크에 대해서 동일한 방식으로 적용할 수 있고 최적의 약물 표적을 발굴해 개인 맞춤치료에 활용가능하다.
연구팀은 암세포의 이질성에 따른 다양한 약물반응의 원인을 특정 유전자나 단백질뿐만 아니라 상호조절작용을 종합적으로 고려해 분석할 수 있게 됐다고 밝혔다.
또한 약물저항성의 원인을 사전에 예측하고 이를 억제할 수 있는 최적의 약물 표적을 발굴할 수 있게 됐고 기존 약물의 새로운 적용대상을 찾는 약물재창출에 활용될 수 있는 핵심 원천기술을 확보하게 됐다고 말했다.
조 교수는 “암세포별 유전변이는 약물반응 다양성의 원인이지만 지금까지 이에 대한 총체적 분석이 이뤄지지 못했다”며 “시스템생물학을 통해 암세포 유형별 분자네트워크의 약물반응을 시뮬레이션으로 분석해 약물 반응의 근본적 원리를 파악하고 새로운 개념의 최적 약물 타겟을 발굴할 수 있게 됐다”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 컴퓨터시뮬레이션을 통한 암세포 유형별 약물반응 예측 및 세포실험 비교 검증
그림2. 암세포별 분자네트워크의 동역학 분석에 기반한 약물반응 예측 및 군집화
그림3. 세포 분자네트워크 분석에 따른 암세포 유형별 약물타겟 발굴 및 암환자별 맞춤치료 전략 수립
2017.12.07
조회수 21112
-
조광현 교수, 간암 표적 치료제 내성 극복 위한 최적 약물조합 발견
〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다.
서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다.
우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다.
간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다.
간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다.
진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다.
소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다.
소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다.
조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다.
이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다.
공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다.
□ 사진 설명
사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인
사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과
사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
2017.08.24
조회수 19262
-
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉
우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다.
이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다.
뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다.
대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다.
연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다.
김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다.
이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명
그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 19048
-
박용근 교수, 세포 자유롭게 변형 가능한 홀로그래피 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 세포와 같이 복잡한 3차원 물체를 빛을 통해 자유자재로 제어할 수 있는 홀로그래피 기술을 개발했다.
이 기술은 복잡한 형상을 갖는 물체들을 포획하고 조립하면서 실시간 촬영이 가능해 세포들 간의 상호를 연구하거나 미세한 물체를 제작하고 조립하는 새로운 응용 분야를 개척할 수 있을 있을 것으로 보인다.
이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 22일자 온라인 판에 게재됐다.
광학 집게라고 불리는 기존 광 제어 기술은 레이저로 광 초점을 만들어 그 초점에 구형 물체를 포획하는 방식이다. 렌즈를 이용해 작은 레이저 광 초점을 만들면 이 광초점에 자석에 철가루가 끌려오듯 주변 미세 물체를 달라붙게 하는 기술이다.
또한 이 기술은 초점의 위치를 옮기거나 힘을 가하는 방식으로 포획된 구형 물체의 3차원 위치를 조절할 수 있다. 1997년 노벨 물리학상의 공적인 이 기술은 물리학 및 광학 분야 등에 널리 이용된다.
그러나 이 광학 집게 기술은 물체의 모양이 복잡해지는 경우에는 물체를 안정적으로 포획하기 어렵다. 제어할 수 있는 물체의 방향이 제한적이기 때문에 생명 세포처럼 복잡한 3차원 형상을 가진 미세 물체를 광 제어하는 데는 한계가 있었다.
연구팀은 문제 해결을 위해 임의의 형상을 가진 복잡한 물체도 포획할 수 있는 새로운 레이저 포획 기술을 개발했다.
이 기술은 우선 3차원 홀로그래픽 현미경을 이용해 물체의 3차원 정보를 실시간 측정한 뒤 그 정보를 바탕으로 물체를 효과적으로 제어할 수 있는 광학 패턴을 정밀히 계산해 입사하는 방식이다.
기존 광학 집게 기술이 단순한 광 초점을 이용한 수동적 방식이라면 이 기술은 물체에 따라 능동적으로 적용할 수 있다.
빛과 물체의 모양이 같아질 때 물체가 갖는 에너지가 최소화돼 복잡한 형상의 물체더라도 안정적으로 포획할 수 있음을 확인했다. 이는 물리적으로는 에너지를 최소화하는 방향으로 현상이 발생하는 원리와 같다.
연구팀은 물체가 다양한 위치, 방향, 모양을 갖게 제어해 물체의 3차원 운동을 자유자재로 제어하고 원하는 모양으로 만들 수 있었다. 마치 거푸집을 자유롭게 제작해 원하는 석고상을 만들어내는 것과 같다.
연구팀은 이 기술을 통해 적혈구 세포를 안정적으로 집어 원하는 각도로의 회전, 기역자 모양으로 변형, 두 개의 적혈구를 조립해 새로운 구조물 제작 등을 구현하는 데 성공했다. 또한 복잡한 구조인 대장암 세포를 안정적으로 포획하고 원하는 각도로 회전시킬 수 있었다.
이 기술은 안정적인 상태에서 세포를 원하는 모양으로 변형시킬 수 있어 세포에 힘을 가하여 변형시킬 때의 세포 반응을 정량적으로 분석할 수 있다.
논문의 1저자인 김규현 박사는 “복잡한 형상을 가진 물체의 모양, 특성 등 사전 정보를 몰라도 물체의 운동을 자유자재로 제어할 수 있는 기술이다”며 “생물 물리학 연구, 부유 물질 및 나노 물체 조립 등의 다양한 분야에 응용 가능할 것이다”고 말했다.
□ 그림 설명
그림1. 3차원 능동 광 제어 기술의 모식도
그림2. 복잡한 형태의 생명 세포들의 3차원 운동 및 모양 제어 결과
2017.05.25
조회수 13670