< 김일두 교수, 구원태 학생 >
우리 대학 신소재공학과 김일두 교수 연구팀이 새집증후군, 새차증후군의 대표적 유해 가스인 톨루엔을 극미량의 농도에서도 검출할 수 있는 초고감도 감지소재 센서를 개발했다.
이번 연구 결과는 화학분야 권위 학술지 미국화학회지(JACS : Journal of the American Chemical Society) 10월자 온라인 판에 게재됐다.
톨루엔은 대표적 유독성, 휘발성 유기화합물로 중추신경계와 호흡기관에 이상을 유발한다. 두통을 유발하고 장기간 노출될 경우에는 사망에 이를 수도 있다.
실내 공기질 관련 톨루엔 농도의 정부 권고기준은 약 244ppb(10억분의 1 단위) 이하로 기준 수치를 넘어가면 새집증후군, 새차증후군 등을 유발시킨다.
하지만 공기 중의 톨루엔을 정밀 분석하기 위해서는 고가의 설비를 활용해야 하는 어려움이 있다. 현재까지 개발된 반도체식(저항 변화식) 휴대용 톨루엔 센서들은 톨루엔의 유무만 구분 가능할 뿐 십 억분의 1에서 백만분의 1(ppm) 사이의 극미량의 톨루엔은 검출할 수 없다는 한계가 있다.
연구팀은 기존 센서의 한계를 극복하기 위해 다공성 물질인 금속유기구조체(metal-organic framework)의 내부에 3나노미터 크기의 촉매 입자를 담지하고, 이를 나노섬유 소재에 붙여 최고 수준의 톨루엔 감지 특성을 갖는 센서를 개발했다.
연구팀은 금속유기구조체를 팔라듐 촉매와 결합시켜 복합 촉매로 활용했다. 이 복합 촉매는 다공성 금속산화물 나노섬유에 결착된 구조로 나노섬유 표면에서 형성되는 비균일 접합(heterojunction) 구조와 나노 촉매의 시너지 효과로 인해 초고감도의 톨루엔 감지특성을 보였다.
연구팀이 개발한 센서는 100ppb 수준의 극미량의 톨루엔 가스 노출에도 일반 공기 중의 상태에 비해 4배 이상의 탁월한 감도 변화를 보였다.
금속유기구조체 기반의 이종 촉매가 결합된 나노섬유 감지소재는 실내외 공기 질 측정기, 환경 유해가스 검출기, 호흡기반 질병진단 센서 등 다양한 분야에서 활용 가능하다.
또한 나노입자 촉매 및 금속유기구조체의 종류만 바꿔주면 톨루엔 외의 다른 특정 가스에 선택적으로 반응하는 고성능 소재를 대량으로 합성할 수 있다. 향후 다양한 센서 소재 라이브러리 구축이 가능할 것으로 기대된다.
김 교수는 “다종 감지 소재를 활용해 수많은 유해가스를 보다 정확히 감지할 수 있는 초고성능 감지소재로 적용 가능하다”며 “대기 환경 속의 유해 기체들을 손쉽게 검출해 각종 질환의 예방이 가능하고 지속적인 건강 관리에 큰 도움을 줄 것이다”고 말했다.
신소재공학과 구원태 박사 과정이 1저자로 참여한 이번 연구는 한국과 미국에 특허 출원됐다. 이번 연구는 미래창조과학부 X-프로젝트와 한국이산화탄소포집 및 처리연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노섬유 감지소재가 코팅된 개별 가스센서 및 가스센서가 장착된 스마트 시계
그림2. 저널 JACS에 게재된 논문 대표 이미지
그림3. 나노섬유사진
그림4. 1 ppm의 극미량 톨루엔 가스에 대한 우수한 선택성 및 반응성을 보여주는 표
한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다. 우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다. 이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다. 흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이
2024-11-20과학계에서는 지구 온난화와 같은 기후 변화 등 인류 활동으로 초래되어 오래도록 흔적을 남기는 지구 환경의 변동을 지칭하기 위해 ‘인류세’라는 지질시대 용어를 제안한 바 있다. 우리 대학은 국제 연구단체인 '인류세실무단'의 유일한 한국인 위원인 박범순 과학기술정책대학원 교수를 주축으로 '제2차 국제 인류세 심포지엄'을 개최하고 2일 오후 대전 본원에서 개막식열었다. '인류세를 투사하기: 다학문적 접근'을 주제로 열리는 이번 심포지엄에서는 개막식 당일을 포함해 3일간 인류세에 관한 토론과 미디어 아트 특별전이 이어진다. 산업 발전 이후 인간의 활동은 지구 시스템을 유례없이 빠른 속도와 거대한 규모로 변화시키고 있지만, 우리 사회의 발전상은 이를 감당하기엔 모자란 실정이다. 우리 대학은 인류세의 개념을 통해 이러한 변화를 감지하는 과학적 방법을 탐구하고, 인간뿐 아니라 비인간 존재와도 함께 살아가는 방식을 논의하기 위해 이번 심포지엄을 준비했다. 개막
2024-09-03자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다. *메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음
2024-08-20지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane prote
2024-06-05기존 폐플라스틱을 화학적으로 분해해 재융합하는 해중합의 중요성이 증대하고 있다. 해중합 과정에서 환경 유해 물질을 걸러내 친환경 용기 등을 생산할 수 있기 때문이다. 폐플라스틱의 재활용을 더 가속화할 수 있도록 KAIST 연구진이 해중합 온도를 낮출 수 있는 원리를 발견했다. 우리 대학 화학과 서명은 교수 연구팀이 고분자 자기조립을 활용하여 고분자의 해중합 온도를 낮추는 방법을 개발했다고 24일 밝혔다. *중합은 간단한 분자 수준의 단량체들이 화학적 반응으로 연결되어 거대한 고분자 사슬을 형성하는 것을 말하며, 해중합은 고분자 사슬을 단량체 수준으로 분해하는 것을 말함. 기존에 고분자를 해중합하여 화학적으로 분해하는 방법은 높은 온도가 필요하여 효율성이 낮았다. 연구팀은 고분자 합성과정에서 자기조립이 일어날 때 해중합 온도가 낮아지는 것을 발견했다. 고분자가 잘 섞이지 않는 용매에서 일어나는 자기조립은 엔트로피*에 반해서 질서를 만들어내는 과정이다. 조그만한 분자 단량
2024-05-24