우리 대학 문화기술대학원 이성희 교수 연구팀이 증강현실 아바타의 발판이 될 기술을 개발했다. 사용자의 움직임을 그대로 따라하면서도 사용자의 공간과 원격 공간의 차이를 인지해 바뀐 환경에 적응할 수 있는 기술이다.
연구팀은 사용자의 공간에는 식탁용 의자, 원격 공간에는 일인용 소파를 놓은 뒤 사용자가 식탁용 의자에 앉으면 아바타는 소파에 적합한 동작과 자세로 변형해 자리에 앉는 실험에 성공했다.
이번 연구는 지난 9월 19일부터 5일간 멕시코 메리다에서 열린 국제학술대회인 증강 및 혼합현실 학회 (ISMAR : International Symposium on Mixed & Augmented Reality) 2016에서 발표됐다.
증강현실 아바타는 사용자를 대신해 가상공간 혹은 원격공간에 존재하며 사용자의 움직임을 그대로 따라하고 반영한다.
하지만 사용자의 공간과 아바타가 존재하는 공간에 차이가 있기 때문에 사용자의 동작을 아바타에 그대로 적용하면 아바타는 가상, 원격 공간의 물체를 그냥 통과해버리는 등 사실성이 떨어지게 된다.
최근 증강현실 게임으로 큰 주목을 받았던 포켓몬 고 역시 가상의 캐릭터가 단순 이미지화되는 방식이었기 때문에 공중에 떠 있거나 지나가는 다른 사람들과 겹치는 현상이 발생했다.
연구팀은 위 현상을 해결하기 위해 사용자의 공간에는 식탁용 의자, 아바타의 공간에는 일인용 소파를 설치하고 깊이 기반 카메라를 이용해 환경 정보를 분석했다. 그리고 각 의자 간 대응점과 공간 상 사용자의 움직임 간 대응점을 찾아 이쪽 공간에서의 어느 한 점이 저쪽에서는 어디에 위치한 것인지 확인했다.
그 이후 사용자의 식탁용 의자에 앉는 동작을 분석 결과에 비춰 소파에 앉는 동작으로 변형시켜 아바타의 형상을 생성하는 것이다.
연구팀은 이 과정에서 자세(pose)가 아닌 동작(motion)의 대응점을 찾는데 주력했다. 자세는 정적이기 때문에 대응점을 찾기가 쉽지만 변형된 환경을 적용시키지 못한다. 반면 동작의 대응점을 찾아서 적용시키면 공간상의 움직임이 어떻게 움직이고 일그러지는지를 적용시킬 수 있다.
공간 대응관계를 이용한 증강현실 아바타의 동작 생성 기술은 주어진 공간 안에서 사용자의 움직임이 갖는 의미와 의도를 왜곡시키지 않고 다른 공간에 있는 증강현실 아바타의 동작으로 재생성할 수 있다.
이는 사용자가 증강현실 아바타의 공간 환경을 고려하지 않고 동작을 해도 자연스러운 아바타의 동작이 가능해짐을 의미한다.
연구팀은 증강현실 아바타가 멀지 않은 미래에 우리 일상 공간을 함께 공유하며 다양한 역할을 수행할 것이라고 예상했다. 이를 위해서는 증강현실 아바타가 지금보다 더 똑똑하게 환경을 이해하고 동작을 만들어내는 기술이 필요하다고 말했다.
이 교수는 “증강 현실의 주요 응용 분야 중 하나는 원격지에 떨어진 사람들이 마치 한 공간에 있는 것처럼 느끼며 교류할 수 있는 소셜 텔레프레즌스이다”며 “이번 연구는 원격지 인간의 동작을 공존 공간의 가구 환경에 맞춰 증강현실 아바타에 적용하기 위한 핵심기술이 될 것이다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어 실감교류 인체감응솔루션 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. AR 아바타의 모션 생성 기술을 응용한 AR 텔레프레즌스의 예제
그림2. AR 아바타 모션 생성 기술 개요도
우리 대학 기술경영학부 사회과학 AI 및 빅데이터 연구단(AI-SSRG, AI & Big Data Social Science Research Group, 책임교수 김원준 기술경영전문대학원장)이 올해 11월 5일부터 12월 3일까지 `제1회 KAIST AI 사회과학 연구 부트캠프(KAIST AI Social Science Research Boot Camp)'를 진행 예정이다. 사회과학 AI 및 빅데이터 연구단(AI-SSRG)은 경영·경제 AI/빅데이터 분야의 전 세계 연구자 및 석·박사과정 학생을 대상으로 경영정보시스템(Management Information System), 마케팅(Marketing), 회계 및 금융(Accounting & Finance), 혁신 및 전략(Innovation & Strategy), 경제(Economics) 등을 주제로 제1회 KAIST AI-SSRG 부트캠프를 진행한다. 이번 제1회 KAIST A
2021-11-05우리 대학 수리과학과 김재경 교수가 3월 1일 자로 기초과학연구원(IBS)의 수리 및 계산과학 연구단의 3번째 CI(Chief Investigator)로 임명됐다. 기초과학연구원(IBS)은 생물학 분야 다양한 난제들을 수학적 관점에서 풀어낼 새로운 연구그룹을 출범시킨다. 김재경 교수 국내에서는 아직 생소한 수리생물학 분야의 유망주로 주목받는 연구자다. 생물학 시스템을 수학적으로 이해하고, 질환의 발병 원인 규명, 치료제 개발 등에 기여할 수학 모델링을 개발하고 있다. 특히, 세포 간 상호작용을 규명한 수리생물학 연구로 국제 수학계와 생물학계 모두에서 주목을 받기 시작했다. 김 교수는 생물학자들과의 공동연구를 통해 여러 생물학적 난제를 해결해, 수학자로서는 드물게 생물학 분야 국제학술지에 많은 논문을 게재했다. 수학 모델링을 기반으로 ▲안정적인 생체 리듬을 유지할 수 있는 생물학적 회로 설계(Science, 2015), ▲생체시계의 속도가 유지되는 원리를 60여 년
2021-02-26생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다. 연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다. 사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다. 빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이
2020-02-21우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다. 연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다. 이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다. 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion
2020-02-06우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재
2020-01-08