〈 송현준 교수, 김진모 박사과정, 임찬규 박사과정 〉
우리 대학 화학과 송현준 교수 연구팀이 탄산수에 포함된 이산화탄소를 99% 순수한 메탄 연료로 바꿔주는 금속산화물 혼성 광나노촉매를 개발했다.
태양광을 이용해 메탄으로 직접 변환하는 기술은 태양전지를 이용해 전기를 생산 후 이를 전지에 저장하는 방식보다 저장 가능한 에너지의 양 측면에서 매우 효율적이다. 이번 연구는 값싼 촉매 물질을 이용해 반응 효율과 선택성을 크게 높인 화학에너지 저장방법을 구현했다는 의의를 갖는다.
목포대 남기민 교수와 공동으로 연구하고 배경렬 박사, 김진모 박사과정이 공동 1저자로, 임찬규 박사과정이 3저자로 함께 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
태양광은 차세대 에너지원으로 주목받고 있지만 해가 떠있는 동안에만 이용하고 발전량이 날씨에 따라 일정하지 않다는 단점이 있다. 태양광 에너지를 연료 등의 화학에너지로 직접 변환할 수 있다면 에너지 저장 및 이용에서의 문제점을 해결할 수 있다.
특히 온난화의 주범으로 지목되는 이산화탄소를 태양광을 이용해 변환하는 기술이 에너지와 환경 문제를 함께 해결할 수 있어 주목받고 있다. 하지만 이산화탄소는 매우 안정적인 물질이기 때문에 다른 분자로의 변환이 어려워, 이를 극복하기 위해 효율과 선택성이 좋은 촉매를 개발해야 한다.
송 교수 연구팀은 선크림에 주로 사용되는 아연산화물 나노입자를 합성한 뒤 표면에 구리산화물을 단결정으로 성장시켜 콜로이드 형태의 아연-구리산화물 혼성 나노구조체를 제작했다.
구리산화물은 빛을 받으면 높은 에너지를 가진 전자를 생성하며 이는 탄산수에 녹아있는 이산화탄소를 메탄으로 바꿔주는 역할을 한다. 또한 아연산화물도 빛을 받아 전자를 생성한 뒤 구리산화물로 전달해 주기 때문에 마치 나뭇잎에서 일어나는 광합성 현상과 유사한 원리를 통해 오랜시간 반응 시간을 유지했다.
그 결과 수용액에서 반응 실험을 실시했음에도 불구하고 이산화탄소에서 99%의 순수한 메탄을 얻을 수 있었다.
기존의 불균일 광촉매는 고체의 분말 형태이기 때문에 구조가 균일하지 않고 물에 분산되기 어려웠다. 송 교수 연구팀은 나노화학 합성 방법을 이용해 촉매 입자의 구조를 일정하게 조절하고 높은 표면적을 유지시켰다. 이를 통해 기존 촉매보다 수용액에서의 이산화탄소 변환 활성을 수백 배 증가시켰다.
송현준 교수는 “태양광을 이용한 이산화탄소의 직접 변환 반응의 상용화에는 많은 시간이 필요하다. 그러나 이번 연구처럼 나노 수준에서의 촉매 구조의 정밀한 조절은 광촉매 반응의 효율 향상 및 원리 연구에 큰 도움을 줄 것이다”며 “이를 다양한 광촉매에 접목시키면 촉매 특성의 최대화가 가능할 것이다”고 말했다.
□ 그림 설명
그림1. 광나노촉매를 이용한 수용액에서의 이산화탄소 변환 반응 개념도
그림2. 아연-구리산화물 나노촉매의 구조와 이를 이용한 광촉매 CO2 변환 반응 및 안정성 테스트 결과
지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다. 세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다. 이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함
2025-04-01이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다. 기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다. 광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하
2025-02-10세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다. 기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다. 이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한
2025-01-23“KAIST는 아람코와의 공동 연구를 통해 뛰어난 성과를 거두고 있으며, 최근 개발한 기술을 글로벌 선도 기업인 아스펜테크(AspenTech)에 성공적으로 기술 이전하였습니다. 현재는 아람코와 함께 직접 공기 포집 기술의 상용화를 위한 논의를 활발히 진행 중이며, 이를 통해 지속 가능한 글로벌 에너지 전환을 위한 중요한 해결책을 제시할 수 있기를 기대합니다.”(KAIST 이광형 총장) 우리 대학은 세계 최대 석유회사인 사우디아라비아 아람코 (Aramco)와 설립한 ‘Aramco-KAIST 이산화탄소 연구센터’에서 지난 11월 25일 사우디아라비아 다란에 위치한 아람코 본사 연구센터(Aramco R&DC)와 함께 이산화탄소 및 지속가능한 에너지 기술에 대한 공동 워크숍을 성공리에 개최했다고 3일 밝혔다. 2013년부터 기후 변화의 주범인 이산화탄소(CO2) 문제 해결을 위해 설립한 아람코-KAIST 이산화탄소 연구센터는 많
2024-12-03대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다. 고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시
2024-07-29